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3.1 Introduction 6

As Robert Cummins notes, capacities are an important type of explanandum 7

addressed by psychologists (Cummins 2000). In fact, this does not only hold with 8

respect to psychology, but seems to apply in equal measure to the other disciplines 9

that fall under the label ‘cognitive sciences’. All kind of cognitive capacities are 10

in need of explanation, from face recognition to the ability to play chess; from 11

motor skills to language acquisition. Now whereas most other types of explanandum 12

(events, occurrences, states of affairs etc.) are, at least intuitively, explained by 13

identifying their causes, capacities are typically explained in terms of a model.1;2
14

To put the difference between these two explanations in pragmatic or erotetic terms, 15

the former are answers to why-questions (Van Fraassen 1980), the latter to how- 16

questions.3 17

1Throughout this paper, the term ‘model’ is used in a loose sense, to encompass any schema
that mimics a certain pattern of behaviour that constitutes the explanandum. Of course, not all
such models are scientifically or even philosophically interesting. However, in what follows, some
specific types of models that are of interest will be considered in more detail.
2Of course, this is not to say that models cannot be causal in themselves, or that we cannot model
causes. Rather, the difference is that the explanation of an event, occurrence or state of affairs
typically refers to the cause of that event, occurrence or state of affairs, while the explanation of
a capacity refers to a model, which may include descriptions or simulations of causes, but not the
actual cause responsible for the capacity. In the former case, the explanans is located in reality, in
the latter, it is a description or simulation of the cause, not the cause itself that does the explaining.
3This is not to say that one cannot ask how-questions about events, or why-questions about
capacities (evolutionary explanations of biological traits provide examples of the latter strategy).
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In the cognitive sciences, two types of model are used to explain capacities: 18

functional and mechanistic models. Functional models explain capacities by decom- 19

posing them into ever smaller sub-capacities or -routines, and then attempt to 20

show how the overall capacity arises as a result of the way these sub-routines are 21

organized (a useful metaphor here is that of the assembly line, where a complex 22

task is divided into several simpler ones). These functional models can be highly 23

abstract, putting more emphasis on the function to be performed than what actually 24

performs it. Mechanistic models on the other hand, are less abstract. They too 25

involve decomposing a capacity into a hierarchy of sub-functions or -capacities, 26

but also include data on what type of entity is actually responsible for this or that 27

(sub-)function (I will explain these two types of models in more detail in Sect. 3.2). 28

According to some authors, mechanistic models are superior to functional models 29

precisely because they incorporate this additional information. While the latter 30

are merely loose conjectures, the former are, at least in the ideal case, complete 31

descriptions of the mechanism responsible for the explanandum. Indeed, Craver 32

goes so far as to say that only to the degree it describes the actual entities by 33

means of which a mechanism performs a capacity, can the model be said to explain 34

that capacity (Craver 2006). Functional models can be useful for the purposes of 35

prediction and control (they can successfully map the input-output patterns of the 36

target system) but explanation requires something further. In the case of cognitive 37

capacities, the model should at least be somewhat accurate (‘plausible’) from a 38

neurophysiological point of view, if it is to explain those capacities. In short, it seems 39

that on this view, accuracy with regard to a mechanism’s components is necessary 40

for a model to have explanatory power. 41

In this paper, I will argue against this view. Of course Craver is right in stating that 42

in cases where we try to explain a capacity as it is realized in some particular system 43

(which, of course, is what Craver and the mechanists in general are interested in), 44

mere phenomenal models are not explanatory. However, this conclusion does not 45

carry over to models in general: it is not correct to claim that descriptive accuracy is 46

necessary in every context. The argument I present takes the form of a reductio: if it 47

were necessary, this would exclude a whole range of models that are not only useful 48

in the phenomenal sense (for the purposes of control or prediction), but intuitively 49

also have explanatory power. These models are found in the context of engineering. 50

A particularly promising way to account for these models is to employ the pragmatic 51

perspective on explanation I hinted at above. We should realize that models need 52

not be answers to how-questions relative to some set of systems S , but can also 53

answer how-questions about capacities as such. The picture that emerges suggests 54

that explaining capacities is a much more dynamic affair—consequently, a simple 55

insistence on descriptive accuracy is too simplistic and does no justice to scientific 56

practice. 57

The point is simply that in the cognitive sciences, explaining how a capacity comes about by
constructing a model is simply a very prominent research strategy, as we shall see, which makes it
philosophically interesting.
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3.2 Functional Versus Mechanistic Explanations 58

Traditional functional explanations work by decomposition. They explain a capacity 59

by breaking it down into sub-capacities or -functions, and then show how the overall 60

capacity is a result of the organization of these sub-functions. Returning to the 61

metaphor of the assembly line, let us consider a factory churning out radios. This 62

factory effectively performs the function of taking parts as input and producing 63

radios as output. This function can be explained by dividing the assembly process 64

into several sub-routines carried out by workers standing alongside a conveyor belt, 65

where each subsequent worker adds a specific component to the radio, until the 66

finished product appears at the end of the belt, ready for transport. Once we know 67

all the sub-routines that make up the assembly process, and understand the way 68

they are organized (the order in which the parts are added) we can explain how the 69

factory performs its function by means of a flow-chart or box diagram. 70

This explanatory strategy was widely used in the cognitive sciences, especially in 71

the 1980s and 1990s. Cognitive capacities like memory storage, face recognition 72

and numerical cognition were explained by construing models of how these 73

capacities might be divided up into sub-functions. In psycholinguistics for example, 74

a particularly influential functional model for the capacity of speech production was 75

offered by Levelt (1989). Roughly, the process was divided into three steps: first, 76

the person conceptualizes what he wants to say, second, he formulates this into 77

language (this step is in turn divided into two sub-tasks, one of lexicalization, which 78

produces the words needed, and one of syntactic planning, which provides order and 79

grammatical structuring to these words) and finally, he engages in articulation (see 80

Fig. 3.1). 81

Of course, this is a rough sketch of how the capacity might be realized, but it need 82

not be wholly speculative. For example, the distinction between lexicalization and 83

syntactic planning may be grounded in experimental evidence: some test subjects 84

might be able to produce the right words, but fail to put them in the correct order. 85

In general then, functional models need not be merely phenomenal (input-output 86

mapping devices): with respect to the partitioning of a capacity into sub-routines, 87

Fig. 3.1 An adaptation
of Levelt’s functional model
of speech production. The
sequence of operations is
depicted vertically, with one
step (formulation) being
divided into two sub-routines
(lexicalization and syntactic
planning)
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one can be detailed or abstract, and this partitioning might be supported by 88

experimental evidence to a greater or lesser degree. 89

Yet however much informed a functional model like this might be, there is 90

one issue with respect to which it remains silent: it has nothing to say about 91

what actually performs all these sub-tasks. To put the point differently, it specifies 92

functions, but not the realizers of these functions. In the example of the assembly 93

line, imagine that in another factory, the different assembly tasks are realized by 94

robots instead of workers. From a certain level of abstraction, the two factories are 95

functionally equivalent, as they both perform the function of taking in parts as input 96

and producing radios as output. More formally, if we want to explain a capacity C 97

of a system S , we have to construct a functional model M which performs C , such 98

that for each input, output and input-output relation in S there is a corresponding 99

input, output and input-output relation in M . 100

In philosophy, this abstraction from what performs a function is often paired with 101

the thesis of multiple realizability, and has been a key motivator to argue in favour 102

of the autonomy of the special sciences (Fodor 1981). However, what was once 103

hailed as an advantage is now increasingly criticised as a weakness. To be sure, 104

functional models may succeed in correctly mapping the input-output relation of 105

the target system, and for the purposes of control or prediction this may suffice, but 106

does that make the model explanatory? Even though a particular partitioning of a 107

function into subroutines is supported by evidence, if we want to understand how 108

we, as humans, perform some kind of cognitive capacity, it seems imperative that we 109

know something of the brain regions involved. Too often, the critics say, researchers 110

are at a loss about what is really behind the boxes in their diagrams. For heuristic 111

purposes, e.g. when we are just mapping out a certain capacity, this may be fine,4 112

but if the original status of these boxes as mere placeholders is forgotten, they only 113

serve to mask gaps in our understanding (hence the derogatory term ‘boxology’ that 114

is sometimes applied to pure functional analysis). 115

In any case, a growing body of literature is devoted to an alternative approach 116

to explaining cognitive capacities: mechanistic explanations. Like functional expla- 117

nations, mechanistic explanations decompose the target capacity into several sub- 118

capacities. Unlike functional explanations however, mechanistic explanations also 119

incorporate information about what performs a certain (sub-)function. They explain 120

a capacity of a system by modelling the mechanism responsible for it: its operations, 121

its entities or parts and the way the operation and parts are organized come into 122

play.5 Of course, this model need not be a complete description of the mechanism. 123

4See for example Machamer et al., who write that a mechanistic explanation typically starts by
providing a mechanism sketch, which is “. . . an abstraction for which bottom out entities and
activities cannot (yet) be supplied or which contains gaps in its stages. The productive continuity
from one stage to the next has missing pieces, black boxes, which we do not yet know how to fill
in” (Machamer et al. 2000, p. 18).
5Another way to put the difference is that mechanistic explanations, besides decomposition, also
involve localization, where the latter notion is understood as the identification of activities with
parts (Bechtel and Richardson 1993).
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Ideally complete descriptions only serve as a regulative ideal: the degree of 124

completeness required depends on our purposes at the time. 125

So far so good. But some authors do not stop at that. They believe that if our 126

purposes are explanatory, then the model cannot afford to remain silent about the 127

parts or entities of a mechanism: 128

In order to explain a phenomenon, it is insufficient merely to characterize the phenomenon 129

and to describe the behavior of some underlying mechanism. It is required, in addition, 130

that the components described in the model should correspond to components in the 131

mechanism. . . . (Craver 2006, p. 361) 132

Note that in this quote, Craver no longer talks about capacities as they are realized 133

by humans, or indeed by any specific system: the claim he makes is about explaining 134

‘a phenomenon’, that is, about the explanatory power of models in general, not as 135

they apply to any particular system. Thus Craver seems to endorse the following 136

thesis: 137

(T) For a model to have explanatory power, it is necessary that it corresponds to 138

the target system, both with respect to its operations and the parts carrying 139

out these operations. 140

Now I agree that if we want to explain a capacity as it is performed by some system 141

or set of systems, we must say something about the parts or components involved 142

and, what is more, what we say should be correct. That is, the accuracy of the 143

model should extend beyond the input-output relations to the actual mechanism 144

itself. However, if from this concession T follows, we are in trouble, for not only do 145

the traditional functional models described above not give accurate descriptions of a 146

system’s components, they typically remain silent about them altogether! According 147

to T then, purely functional models are not explanatory. Nevertheless, from the 148

1970s onward, they have been used in cognitive psychology to explain all kind 149

of capacities. With this discrepancy in mind, in Sect. 3.3, I will try to account for 150

explanatory, yet purely functional models by considering some pragmatic aspects of 151

explanation, while in Sect. 3.4, I will give an example of an explanatory context in 152

which these aspects typically play a role. 153

3.3 Pragmatic Aspects of Explanation Considered 154

Although traditional functional models like the one sketched above are more 155

abstract than mechanistic explanations in that they remain silent about a system’s 156

components, it would be wrong to infer from this that they have no explanatory 157

power at all. To make this point, I will turn to a pragmatic account of explanation. 158

The account I shall develop is pragmatic in the sense that it elaborates on van 159

Fraassen’s erotetic model of explanation. 160

According to van Fraassen, explanations are answers to why-questions 161

(Van Fraassen 1980). However, as I have mentioned in the introduction, when 162

dealing with capacities, it is often more appropriate to say that explanations are 163
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answers to how-questions. Fortunately, it has been argued persuasively that how- 164

questions are valid explanation-seeking questions in their own right (Scriven 1962; 165

Salmon 1989). Again, while answers to the former typically consist of identifying 166

or referring to causes, the answers to the latter take the form of models. Recall 167

how functional models work: if we want to explain a capacity C of a system S , 168

we have to construct a functional model M which performs C , such that for each 169

input, output and input-output relation in S there is a corresponding input, output 170

and input-output relation in M . That is, if we want to answer a question like: 171

(1) How is C realized in S? 172

we should construct a model M that maps the input-output relations that make up 173

C . Having done that, we can answer (1) by saying: 174

(2) C is realized in S the same way that C is realized in M . 175

Note that although it looks like (2) just restates the mystery, it does not, for we 176

must remember that M is not a mechanism or system in nature, but a model that we 177

have constructed ourselves, so that we know in detail how it realizes C . However, 178

and this is where I agree with Craver, the question seems to ask something beyond 179

input-output mapping. For a simple example, consider: 180

(3) How is the capacity to recognize faces realized in the human brain? 181

Now some face-recognition systems have been developed that perform this capacity 182

very well, in that they are able, in experimental setups, to map the input-output 183

relations of the brain (they are presented with examples of faces and non-faces and 184

are able to tell the difference with more or less the same degree of accuracy as 185

humans), but do so in a fundamentally different way. Up until recently for example, 186

they could only use two-dimensional geometrical data. Of course we do not want to 187

count: 188

(4) The capacity to recognize faces is realized in the human brain by applying 189

algorithms to exclusively 2-D geometrical data. 190

as an answer to (3). As we know ourselves to see, e.g., chins and noses as 191

protrusions, (4) is clearly inaccurate. Beyond this appeal to ‘first person knowledge’ 192

however, there is also some ‘harder’ evidence. For example, 2-D face systems 193

notoriously suffer from what is known as the ‘lighting problem’: their ability to 194

recognize faces deteriorates significantly when the strength of the light coming 195

from the image they are presented with is varied, while humans tend to retain 196

their abilities in such circumstances. No matter how perfectly such systems may 197

mimic our performance in this task, we have to concede that, being 2-D, they are 198

not explanatory models for face recognition as it is performed by humans. 199

Granted then, a model may to a certain extent map the human input-output 200

relation for a capacity, without being explanatory with respect to the human 201

realization of that capacity. However, T makes a stronger claim than that. Craver 202

went beyond models for capacities as they are performed by humans or systems, 203

to claim that any model that does not offer an adequate description of a system’s 204
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components has no explanatory power. But do models always have to be models of 205

a capacity as it is performed in a specific (set of) system(s)? The erotetic approach 206

we have explored so far says that if a capacity is the explanandum, the explanans 207

can be viewed as an answer to a how-question. There is nothing to restrict this 208

type of question to include only capacities as they are realized in some system, we 209

can also ask how-questions about capacities as such, that is, without any particular 210

descriptive or correspondence constraints. Instead of (1), we might ask: 211

(5) How is C (as such) possible?6
212

The point here is not that researchers will actually be interested in how capacities 213

could be realized without any constraints: capacities are of course always realized in 214

some system. Rather, the point is that one can have legitimate motives in placing as 215

little constraints on the system as possible. In Sect. 3.4, I will consider one context 216

in which this strategy is commonplace, namely the context of engineering. For 217

now, note that at least in psychology and the cognitive sciences, asking explanatory 218

questions about capacities as such forms an important part of scientific practice, if 219

only as a preliminary strategy (that is, preliminary to the business of answering the 220

question how the capacity is realized in some particular system). In fact, this was 221

already noted by Dennett back in 1978:AQ1 222

Faced with the practical impossibility of answering the empirical questions of psychology 223

by brute inspection (how in fact does the nervous system accomplish X or Y or Z), 224

psychologists ask themselves an easier preliminary question: How could any system (ldots) 225

possibly accomplish X? This question is easier because it is ‘less empirical’; it is an 226

engineering question, a quest for a solution (any solution) rather than a discovery. (. . . ) 227

Seeking an answer to such a question can sometimes lead to the discovery of general 228

constraints on all solutions (. . . ), and therein lies the value of this style of aprioristic 229

theorizing. (. . . ). For instance, one can ask how any neuronal network with such-and-such 230

physical features could possibly accomplish human color discriminations (. . . ). Or, one can 231

ask, with Kant, how anything at all could possibly experience or know anything at all. Pure 232

epistemology, thus viewed (. . . ) is simply the limiting case of the psychologist’s quest. 233

(Dennett 1978, pp. 110–111) 234

Thus viewed, the ‘Kantian’ question (How is X possible at all?) can be interpreted as 235

constituting the extreme end of a continuum, while enquiries about how a particular 236

system performs that function occupies the opposite end (Fig. 3.2).AQ2 237

As Dennett notes, it is possible to begin with more general questions, discovering 238

constraints having to do more with C itself, and work your way to a particular 239

realization of C in S . However, explanation can also work in the opposite direction. 240

6Note that this question does not fall into the category of Craver’s how-possibly questions (Craver
2006). For Craver, how-possibly questions are loose inquiries that are made in the early stages of an
investigation, in which a lot of data is still missing: they are attempts to put some initial constraints
on the explanandum, prior to constructing a more informed (how-plausibly), and ultimately ideally
complete description (how-actually). Nevertheless, how-possibly questions in Craver’s sense are
still asked with respect to a capacity as it is performed by some system. The question under
consideration differs because it is asked about a capacity as such, regardless of any particular
realization.
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How does S perform C ? How is C possible at all ?How is C performed in S and S1...  ?

Fig. 3.2 Different levels of abstraction at which one might seek to explain a capacity

As one moves to the right of the spectrum, the number of constraints will decrease. 241

This means that somewhere along the line you get to the point where C is described 242

in such a general way that it applies to more than one system. In other words, the 243

scope increases. Examples of this can be found in medicine. If an impaired capacity 244

in a brain damaged patient has somehow been restored by the brain, we might be 245

interested to know just exactly how that capacity is carried out in this damaged brain. 246

In circumstances like these, we are actually looking to move toward the right end 247

of the spectrum. Of course, detail matters: as soon as we reach the point where all 248

the relevant systems fall under the scope of that capacity, we stop. In the example, 249

as soon as we have described the capacity in such general terms that it applies both 250

to healthy patients and the brain damaged patient, we stop jettisoning constraints. 251

This stopping has to do with our methodological interests: it is simply the act of 252

eliminating variables.7 253

In Sect. 3.4, I will give a more detailed example of this explanatory strategy. For 254

now, the point to note here is that abstraction is a matter of degree. How many 255

constraints one places on the system responsible for a certain capacity will be 256

decided by pragmatic issues. This however, seems at odds with T, which endorses 257

descriptive accuracy about implementational details as necessary for a model to 258

have explanatory power. Of course, this is particularly striking for questions located 259

near the right end of the spectrum: surely, one cannot expect a model answering (5) 260

to excel in descriptive accuracy, for there is no mechanism specified to describe. In 261

fact, any model of any system that realizes C is a valid answer. Again, scientists are 262

rarely (if ever) interested in capacities under no constraint whatsoever. Nevertheless, 263

the continuum sketched above suggests a more dynamic and more tolerant picture 264

of model-explanation; a picture which T, with its simple assertion that descriptive 265

accuracy about entities and parts is necessary for a model to have explanatory power, 266

is too rigid to encompass. 267

3.4 Explaining Capacities in Engineering Contexts 268

Explanation-seeking how-questions about capacities as such are often asked in cases 269

where the research is driven by engineering interests. In the case of the cognitive 270

sciences for example, type (5) questions might arise in artificial intelligence. Let us 271

consider one specific example of a cognitive capacity: exact calculation. 272

7Also, think of animal testing: here we continue to drop constraints until the capacity is described
in such a way as to apply across species. Again, S can be any system, natural or artificial.
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Humans are endowed with the capacity to perform exact calculations accurately, 273

up to a certain level of complexity. If we ask how we perform this capacity, the 274

model that answers this question indeed derives its explanatory power from (among 275

other things) its neurophysiological accuracy. That is, if we want to answer: 276

(6) How is the capacity to perform exact calculations realized in humans? 277

the model that we use to answer (6) has to reproduce the capacity under a number 278

of constraints. For example, some artificial computing devices might make poor 279

models, as they are disanalogous to human brains in important respects: they might 280

be neurophysiologically implausible, or they might fail to reproduce the capacity 281

to perform exact calculations (e.g., they might be less exact, or they might take far 282

longer to solve arithmetic problems). 283

However, although these respects are important to contexts like the one referred 284

to in question (6), there are other contexts in which they are less important, or even 285

irrelevant, and these other context might still have to do with explaining the capacity. 286

In other words, descriptive accuracy or correspondence is not the only explanatory 287

context in which we could be interested in the capacity: there are other reasons 288

we might want to explain the capacity to perform exact calculations. Suppose an 289

engineer wants to construct a desk calculator. Now of course, his goal is not to 290

construct a model of how humans perform complex calculations: after all, he is 291

designing a tool that, hopefully, surpasses our own ability. In fact, he seeks to 292

duplicate the capacity. Motivated by this interest of duplication, he might ask: 293

(7) How is exact calculation as such possible? 294

However, this is somewhat artificial. In fact, when constructing a desk calculator, 295

there are all kinds of constraints he needs to take into account.8 The point is that 296

these constraints are different from the ones applying to exact calculations as it is 297

performed by humans. Thus, a sensible strategy would be to put fewer constraints 298

on the capacity, until the scope is broad enough to apply to both humans and certain 299

artificial devices. In terms of the continuum sketched above, we stop somewhere in 300

the middle, at the point where the scope is just broad enough to encompass both the 301

human realization of the capacity and an artificial one. To put it in other terms, we 302

stop where the forces pulling in opposite directions, namely level of detail (to the 303

left) and duplication (to the right), balance out for the task at hand. 304

But that is not all. In engineering contexts, it is not uncommon to jettison the 305

requirement of descriptive accuracy completely. To appreciate this, let us continue 306

to pursue the example of the engineer trying to construct his desk calculator. Now 307

there are a number of models that can perform exact calculations. For reasons of 308

clarity, let us consider classic computationalism and connectionism. The symbolic 309

architecture of classic computationalism, where symbols are manipulated according 310

8Examples of such constraints are: the materials available, convenience of use and time considera-
tions (we want the calculator to perform calculations rapidly—within a timeframe that is of use to
us, that is).

rgervais
Notitie
plural: 'contexts'



UNCORRECTED
PROOF

R. Gervais

to a pre-programmed set of rules, is very good at performing very complex 311

calculations with great accuracy, far surpassing that of any human. On the other 312

hand, as a model of the mind, computationalism is outdated. The serial nature of its 313

operations and its consequent brittleness does not compare to the robustness of our 314

brains. Connectionism on the other hand, resembles our brains more closely. In fact, 315

in the original debate between computationalism and connectionism as candidate 316

models for the mind, the latter’s neural plausibility (in the form of distribution 317

of activity over a network of nodes, graceful degradation, its ability to recognize 318

patterns etc.) counted as an important point in its favour (McClelland and Rumelhart 319

1986).9 However, despite all these advantages, they perform poorly when it comes to 320

exact calculations. In fact, connectionist networks have been ridiculed for answering 321

a question like “What is two plus two?”, after much crunching, with “About four”. 322

Clearly, exactness is a virtue when it comes to desk calculators. In fact, when 323

engineering interests drive model construction, performance trumps accuracy. 324

Duplication therefore, is only a subsidiary goal: it is really the desire to make a 325

system that outperforms humans that motivates the engineer, and the model he 326

finally constructs will reflect this. Of this model, that is of the flow chart representing 327

how the calculator performs the exact calculations, we can say three things. First, 328

with regard to how humans perform exact calculations, it is an inaccurate model 329

and fails to explain it. Second, with regard to how the calculator performs it, it is an 330

ideally complete description and explains it, but that is hardly surprising, since it is 331

the very blueprint the engineer used to make the calculator in the first place. Third, 332

with regard to the capacity to perform exact calculations as such, it explains how that 333

capacity can be performed. When the engineer asked (7) and started decomposing 334

exact calculation down into sub-routines, he was looking for an explanation, only 335

not with neurophysiological accuracy on his mind, but performance. 336

Yet there are other interests besides duplication or performance that might prompt 337

the search for an explanation of such capacities. Another interest is unification. Once 338

an artificial system has been designed and constructed, then to anyone besides the 339

engineers involved in this process of designing and construction, the explanatory 340

question might arise as to what these artificial systems have in common with, e.g., 341

natural systems. Again, the term ‘system’ has been chosen to reflect the fact that 342

we might not only be interested in a capacity as performed by humans (or natural 343

systems in general), but also by artificial ones. Thus, one might ask the following 344

question: 345

(8) How is the capacity to perform exact calculations performed in this desk 346

calculator and in humans? 347

This question is situated somewhere in the middle of the continuum presented in 348

Sect. 3.3. In effect, what we are asking for here is what two realizations of the 349

capacity of exact calculations have in common with each other. These comparative 350

9As the debate currently stands though, connectionist networks are considered to be highly
idealized models too—but still more plausible than classic computationalist architectures.
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question-types are often motivated by unification: in revealing features that are 351

common to the operations of both types of systems, an answer to (8) brings 352

together information from multiple and diverse sources. And of course, an answer 353

to comparative question-types like (8) will typically take the form of a model— 354

precisely the kind of functional model introduced in Sect. 3.2. In the case of question 355

(8), this is especially clear, since any similarity between humans performing 356

complex calculations and desk calculators exercising the same capacity will not be 357

found in the entities, but will be confined solely to the domain of the operations. Yet, 358

despite its abstract nature, and pace T, such a model would clearly be of explanatory 359

value to those who are interested in the similarities between human and artificial 360

performances of exact calculation. 361

Again, all this does not tarnish the explanatory importance of mechanistic models 362

when it comes to explaining capacities as they are realized in particular systems. Of 363

course we need the models of, e.g., biological functions to be accurate, and not 364

only phenomenally adequate. It might even follow that for particular systems, this 365

accuracy is necessary for a model to have any explanatory power regarding that 366

capacity. What does not follow however, is that phenomenal and functional models 367

have no explanatory power in any context. Reiterating Dennett’s point, asking about 368

capacities under fewer constraints can be a valuable research strategy. Ultimately, 369

how many constraints one takes into account is decided by one’s interests: in the 370

case of performance, an interest typical of engineering contexts, these constraints 371

will surely be determined by practical considerations, but not empirical adequacy. 372

Nevertheless, this does not undermine the explanatory power of answers to such 373

questions. Hence, it seems that Craver’s thesis T is false as it stands. However, 374

although strictly speaking correct, this conclusion should not be the main point to 375

take away from this discussion, if only for the fact that Craver and the mechanists 376

have a very different context in mind from some of the ones considered in this paper. 377

Of greater importance is the observation, borne out by the continuum sketched in 378

Sect. 3.3 and illustrated in this section, that the business of explaining capacities 379

by constructing models is far more diverse and dynamic than Craver suggests. This 380

more constructive conclusion might serve as a starting point to reformulate T in a 381

way that either restricts its scope, so that it applies only to those contexts which 382

Craver had in mind, or to drop the requirement of descriptive accuracy, so that it 383

does justice to the practice of explaining capacities by constructing models. 384

3.5 Some Concluding Remarks 385

Two final remarks are in order. First, although distinct, engineering and accuracy 386

interests are often present at the same time and can even be complementary. 387

This is especially the case when a model has to be constructed of a capacity at 388

which, unlike exact calculations, humans are particularly good. Face recognition for 389

example, is a capacity in which we excel, and many of the early artificial systems 390

badly underperformed compared to us, being sensitive to all kind of distortions 391
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(we already encountered the lighting problem, faces presented at angles is another 392

one) that human test persons just see right through. In such cases of course, an 393

engineer wanting to design such an artificial system has everything to gain by 394

first asking how the capacity is realized in us. The point is though, that even 395

here, accuracy is only a sub-goal. As soon as artificial systems are starting to 396

equal or outperform us, engineers will drop accuracy as a goal, as it no longer 397

serves the greater goal of performance.10 Finally, one may wonder whether the 398

capacities targeted by functional explanations in engineering contexts, such as the 399

one described in Sect. 3.4, are still properly called cognitive capacities. Can we 400

still talk of subtraction as a cognitive capacity when it is performed by a humble 401

desk calculator instead of a person? Here, one might point out that the engineering 402

sciences (artificial intelligence in particular) have a history of fruitful interaction 403

with the cognitive sciences. Artificial systems can help us understand our own 404

capacities, while knowledge of these may in turn lead engineers to improve the 405

performance of these systems. After all, the point made in this article is that accuracy 406

and explanatory power can, and in some cases do, operate separately from each 407

other, not that they always do so. 408
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