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Introduction

Subject and aims of the thesis

There are strong pragmatic grounds for organizing our norms in a coherent way,
and, more generally, for reasoning in a way that is both inherently consistent and
in accordance with our perception of the world. However, there is no denying
that we sometimes face conflicts or requirements that we are unable to live up
to. The god of the protestants, for instance, provided mankind with a law it
was unable to keep, and then righteously damned all sinners for failing to keep
it [104]. For a more ‘earthly’ feel, just replace this god with some legislator or
commander-in-chief.

When confronted with a conflict of norms, we do not just give up on the
constraints of consistency and coherence. We are not in general at loss as to how
to act. In situations in which we have no uniquely action-guiding principle, we
simply try to reason onwards and do what we can.

The general aim of this thesis is to show in a formally precise way how we
can tolerate normative conflicts without these rendering our moral/ethical/legal
theories useless. I will argue that we can behave in a perfectly rational way despite
the presence of irresolvable conflicts, and in some cases even contradictions, in
the norms that are supposed to guide our behavior. My toolbox in doing so
consists of a set of logics. With Harry Gensler, I believe that logic helps us
clarify, understand, and evaluate:

Logic can help us understand our moral reasoning - how we go from
premises to a conclusion. It can force us to clarify and spell out
our presuppositions, to understand conflicting points of view, and to
identify weak points in our reasoning. Logic is a useful discipline to
sharpen our ethical thinking. [61, p. 38]

The branch of formal logic that studies our normative concepts is called deontic
logic. Over the last decades several deontic logicians have tried, with varying
degrees of success, to accommodate normative conflicts in their formal calculi.
Their proposals vary in the formalisms used and in the rules for normative reason-
ing that are given up or restricted in order to accommodate conflicting normative
directives.

I will present a new way of tackling the problem of tolerating normative con-
flicts in deontic logic. My approach is pluralist and contextual in spirit: I believe
that different strategies and different degrees of conflict-tolerance are called for
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ii INTRODUCTION

in different normative contexts. For instance, in the context of legal norms we
need a logic that differs significantly from the one we need for accommodating
conflicts in a moral context.

Despite its pluralist flavor, this approach will be spelled out and made precise
within one and the same logical framework: the standard format for adaptive
logics. The main technical merits of this thesis lie in its presentation and defense
of various adaptive deontic logics that (i) are capable of tolerating normative
conflicts, and (ii) are sufficiently powerful to account for our everyday normative
inferencing. In their treatment of the trade-off between (i) and (ii), these adaptive
systems outperform their competitors from the literature.

The main philosophical relevance of this thesis lies in its powerful formal
clarification of the idea that we can reason logically and coherently despite the
undeniable fact that every once in a while we are confronted with an unresolvable
normative conflict. Moreover, given recent developments in the fields of artificial
intelligence and legal science, the logics defined here may also serve a more prac-
tical purpose as specification devices for the development of ‘ethical’ computer
programs and artificial legal reasoners.

Before I outline the general structure of the thesis, two more remarks are
in order: First, all logics presented here are propositional monadic modal logics.
Given the limited expressive resources of such logics, I am not doing justice to the
complexity of the world when I say that the logics presented here can “account
for our everyday normative reasoning”. Surely, formalizing our actual normative
reasoning would require additional resources in our formal language (at the very
least this would require polyadic operators, predicates, etc.).

With Segerberg, I agree that “working with logical techniques pushes the
requirement of rigour so high that pressures of complexity enforce a very narrow
focus” [159, pp. 347-348]. Because of this narrow focus, additional expressive
resources are not considered in this thesis. Hence the reader should be warned
that when mentioning ‘our everyday (normative) reasoning’ I make abstraction
of extra resources in the language and hence target a rather simplified account
of our everyday reasoning.

Second, since many of the logics presented in this thesis result from collabora-
tions with various colleagues, chapters 1-7 are written in the ‘we’ form for reasons
of uniformity. Sections based on joint work are indicated at the beginning of each
chapter.

Structure of the thesis

This thesis is structured as follows:
Chapter 1 introduces some qualifications and terminological distinctions that

will be used throughout the thesis. It contains a first (informal) characterization
of what a normative conflict is, as well as a motivation for devising conflict-
tolerant deontic logics.

Chapter 2 is concerned with a presentation and discussion of the system best
known as Standard Deontic Logic. This system is formally characterized and
discussed at some length, with special attention to its treatment of normative
conflicts and its well-known problems or ‘paradoxes’.



iii

In Chapter 3 we turn to the problem of accommodating normative conflicts
in deontic logic, and discuss a number of strategies for preventing conflicts from
rendering our premises trivial. From this discussion we distil a number of desider-
ata for adequate conflict-tolerant deontic logics, against which we will evaluate
the logics presented later on.

In Chapter 4 we present the standard format for adaptive logics. The stan-
dard format provides a generic, unifying framework within which all adaptive
logics presented here are defined. Logics characterized within this framework
automatically inherit a dynamic proof theory, a characteristic semantics and a
number of meta-theoretical properties. We illustrate each of these by means of
a concrete example.

Chapters 5-7 contain the presentation and illustration of a number of adaptive
conflict-tolerant deontic logics that are argued to meet the desiderata given in
Chapter 3. Each of these chapters has a different focus.

In Chapter 5, we assess two logics that restrict the application of the rule that
allows us to aggregate two or more obligations to a single one. The first system is
inspired by Bernard Williams’ characterization of the structure of moral conflict,
and was already defined in Chapter 4. The second system has its roots in Sir
David Ross’ distinction between prima facie and all-things-considered obligations.

In Chapter 6, we turn to a different strategy for devising conflict-tolerant
adaptive deontic logics. The logics defined in this chapter are built ‘on top’
of a logic that invalidates the ex contradictione quodlibet principle according to
which a contradiction trivializes our premise set. Adaptive logics built ‘on top’ of
such logics are usually called inconsistency-adaptive logics. We present two such
systems. The first one allows for inconsistencies inside as well as outside the scope
of its deontic operators. The second one allows for inconsistencies inside, but
not outside the scope of its deontic operators. Moreover, the second system also
invalidates the excluded middle principle inside the scope of its deontic operators.

Chapter 7 builds on the ideas presented in Chapter 6, and adds some ex-
pressive power to the picture. In it, we present an inconsistency-adaptive deontic
logic capable of representing the actions of multiple agents. As such, the adaptive
logic presented in this chapter is capable of modeling normative conflicts between
different (groups of) agents.

We end this thesis with some concluding remarks on the merits of the systems
presented earlier.
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Chapter 1

Reasoning with normative
conflicts

The present world, and those
worlds we should think we could
bring about, are worlds of conflict

Michael Stocker [168, p. 125]

. I am indebted to Joke Meheus and Christian Straßer for valuable comments
on this chapter.

In this chapter, we introduce some terminology and some important distinc-
tions that often surface in the literature on normative conflicts and/or deontic
logic. Qualifications made here are used for the delineation of the topic and aim
of this thesis. Moreover, the discussion in this chapter serves as a basis for the
motivation of the logics defined in later chapters.

In Section 1.1 we informally characterize the concept ‘norm’, and briefly com-
ment on the history and subject of deontic logic. In Section 1.2 we elaborate on
some further distinctions often made when discussing the logical properties of
norms.

In Section 1.3 we provide a first, intuitive, characterization of a normative
conflict. We do so by means of a number of examples from the literature. Some
further distinctions and qualifications often made in the literature are discussed
in Section 1.4.

We turn to the debate on normative conflicts in a moral context in Section
1.5. Drawing on some of the nuances made earlier on, we defend the existence
of so-called ‘moral dilemmas’. In Section 1.6 we turn to normative conflicts in
general. We defend both the existence of irresolvable normative conflicts and the
need for accounting for them in our systems of deontic logic. Finally, we comment
on the problems relating to the assignment of truth-values to norms (Section 1.7)
and state some preliminaries on notation that will be used throughout this thesis
(Section 1.8).
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2 CHAPTER 1. REASONING WITH NORMATIVE CONFLICTS

1.1 Norms and deontic logic

Norms can be conceived as directives that are issued by a norm-authority to
direct the behavior of norm-subjects. As examples of norms, we can think of
military commands, orders and permissions given by parents to children, traffic
laws issued by a magistrate, etc. Norms can also be self-directed, issued and
aimed at directing one’s own behavior. More generally still, norms may arise
from institutions, from traditions or religions.1 For our present aims, we need
not settle on a more precise definition of what a norm is. Instead, we will illustrate
our claims by means of transparent examples and, where necessary, make clear
which kind or type of norm we have in mind.

Norms appear to come in three main varieties: obligations, prohibitions, and
permissions. Table 1.1 summarizes some roughly equivalent ways of expressing
such norms (examples taken from [124, p. 3]).

Obligations You ought to (should, must) attend the meeting.
You have an obligation (duty) to attend.
It is obligatory (required, mandatory, compulsory) that
you attend.
It ought to be (the case) that you attend.
You are obligated (obliged, required) to attend.

Prohibitions You are forbidden to attend.
You are prohibited from attending.
It is forbidden (prohibited) that you attend.
You ought not to attend.
You may not attend.

Permissions You may attend.
You are permitted (allowed, authorized, licensed, at lib-
erty, free) to attend.
It is permissible (acceptable, okay, legal) for you to at-
tend.
It is permitted (okay, acceptable) that you attend.
You have permission to attend.

Table 1.1: Expressing obligations, prohibitions, and permissions.

Deontic logic is concerned with the logical properties displayed by these con-
cepts and with the logical relations between them. More broadly, deontic logic
can be seen as the logical study of the normative use of language [8].

The formal study of norms was stimulated in the previous century by Ernst
Mally’s 1926 monograph Grundgesetze des Sollens: Elemente der Logik des Wil-
lens [119] and by G.H. von Wright’s 1951 article Deontic Logic [190]. Especially
the latter was very influential, as it contains the building blocks of the system
that is now known as Standard Deontic Logic (cfr. Chapter 2). It is hard to say

1More broadly still, norms are sometimes also taken to include rules, e.g. the rules of
grammar, the rules of chess, and customs [192]. We stick to the more narrow conception here.
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how far exactly the history of deontic logic dates back. For more details on the
origin and emergence of this field, we refer to [106].

1.2 Some distinctions

1.2.1 Norms and agency

Consider the sentences “The window ought to be open” and “Someone ought
to open the window”. In the former sentence, the obligation holds of a state of
affairs, whereas in the latter the obligation holds of an action. In the literature,
this distinction is known as that between “ought to be” and “ought to do” (see
e.g. [193]). Typically, “ought to do” statements are assumed to involve agency.

For reasons that we cannot yet spell out in detail, we find the “ought to be”
and “ought to do” reading of deontic operators suboptimal. Instead, we opt to
interpret obligations simply as statements of the form “it is obligatory that”. We
argue for this reading in Section 2.4.5, where we discuss nested occurrences of
deontic operators.

The distinction between agentive and non-agentive norms remains in full force
under this new reading. In a sentence of the form “It is obligatory that A” or
“It is permitted that A”, the term A may or may not be agentive. Compare “It
is obligatory that the window remains open” to “It is obligatory that John sees
to it that the window remains open”.

For reasons of generality and convenience, we will forget about the distinction
between agentive and non-agentive terms throughout most of this thesis, and
assume that the formalisms that we present can be augmented with formal means
for explicitly representing the notion of agency if necessary. In Chapter 7 we
return to this problem, and illustrate how some of the systems presented earlier
on can be enriched so as to explicitly represent agentive formulas.

1.2.2 Prescriptions and descriptions

In ordinary language, normative sentences exhibit a characteristic ambiguity. The
very same words may be used to enunciate a norm (give a prescription) and to
make a statement about norms (description) [192, pp. 104-106]. In deontic logic,
it is important to carefully distinguish between this prescriptive and descriptive
use of norms.

The distinction between prescriptions and descriptions is that between norms
themselves and statements about norms. In what follows, we take the term norm
to denote the former (prescriptive), and norm-proposition to denote the latter
(descriptive) interpretation of normative statements.2

For now, it suffices to see that when norms are given or issued, we use prescrip-
tions. When we report on or describe already existing norms, we use descriptions.
We return to the distinction between norms and norm-propositions in Section 1.7.

2Von Wright [192] and Åqvist [8] cite Ingemar Hedenius as the first philosopher to note
the distinction between norms and norm-propositions. According to Hedenius, norms are “gen-
uine”, and norm-propositions are “spurious” deontic sentences [85]. The distinction between
norms and norm-propositions was later also drawn – among others – by Wedberg [199], Stenius
[165], Alchourrón [1], and Hansson [78] (see also [8]).



4 CHAPTER 1. REASONING WITH NORMATIVE CONFLICTS

1.2.3 Further distinctions

In what follows, we will sometimes distinguish between moral norms, legal norms,
commands, etc. when motivating the context of applicability of some of the logics
presented in this thesis. However, in general the level of analysis that we are
concerned with is that of norms simpliciter, as specified in Section 1.1. Unless
stated explicitly, we will make abstraction of more refined distinctions occurring
‘inside’ norms. We already mentioned that, throughout most of the thesis, we will
not be concerned with the distinction between agentive and non-agentive norms.
Similarly, we will not make a formal distinction between binding and non-binding
norms, epistemic and non-epistemic norms (see e.g. [141]), etc. Interesting as
these distinctions may be, they fall outside the scope of this thesis.

1.3 Normative conflicts

1.3.1 Intuitive characterization

Intuitively, a normative conflict occurs whenever we find ourselves in a situation
in which our normative directives are inconsistent or not uniquely action-guiding
in the sense that we are permitted or even obliged to do something that is forbid-
den. We say that a normative conflict is escapable if the conflict does not require
us to violate any of our obligations. Otherwise the conflict is inescapable.

Example 1. Agamemnon is told by a seer that he must sacrifice his daughter to
satisfy a goddess who is delaying his expedition against Troy. As a commander,
Agamemnon ought to sacrifice his daughter in order to further the expedition.
However, as a father, Agamemnon ought not to kill his daughter [203].

Example 2. According to his religious beliefs, Yilmaz is prohibited to drink al-
cohol. However, according to the laws of his country, he is permitted to drink
alcohol.

In Example 1, Agamemnon faces an inescapable normative conflict since he
cannot possibly satisfy both his obligations as a commander and his obligations
as a father. In Example 2, Yilmaz faces an escapable normative conflict, since
he can satisfy all of his obligations by not drinking alcohol.

Next to the distinction between escapable and inescapable conflicts, we can
draw many more distinctions between ‘types’ of normative conflicts. We elaborate
on some of these in Section 1.4. First, let us look at some more examples.

1.3.2 More examples

The examples presented in this section are chosen in function of the discussions
that follow. A more comprehensive list of examples of normative conflicts (in no
particular order) is contained in Appendix A.

1.3.2.1 Tragic fiction

In discussions on normative conflicts, authors often cite ready-made fictional ex-
amples from popular culture where tailor-made constructions involving conflict-
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ing moral obligations are presented in an often very dramatic setting. Nonethe-
less, the very possibility of such situations is a forceful argument in defense of
the need for taking normative conflicts into account:

Theories in which moral dilemmas are advanced in practical decision-
making standardly draw on the literature of tragic fiction, and inge-
nious but farfetched imaginary obligation scenarios in which agents
are caught between identically forceful contrary moral requirements.
However remote and improbable, like the degenerate undecidable con-
structions in the metatheory of mathematical logic, the mere possi-
bility of moral dilemmas challenges the consistency and completeness
of systematic ethical judgment. [98, p. 43]

Example 3. In Sophie’s Choice, a novel by William Styron, Sophie arrives with
her two children at a Nazi concentration camp. A guard asks her to choose one
child, and he tells her that the child she chooses will be killed, and the other
child will live in the children’s barracks. Sophie does not want to choose at all,
but the guard tells her that, if she refuses to choose, both children will be killed
[164].

Example 4. A person falls overboard from a ship in a wartime convoy; if the
captain of the ship leaves his place in the convoy to pick him up, he puts the
ship and all on board at risk from submarine attack; if he does not, the person
will drown. In the film The Cruel Sea, a somewhat similar case occurs; the
commander of a corvette is faced with a situation in which if he does not drop
depth charges the enemy submarine will get away to sink more ships and kill
more people; but if he does drop them he will kill the survivors in the water. In
fact he drops them, and is depicted in the film as suffering anguish of mind [83,
p. 29].

1.3.2.2 From the newspaper

The examples below illustrate that normative conflicts not only occur in tragic
literature, but also in real life.

Example 5. SWIFT is a Belgium-based company with offices in the United States
that operates a worldwide messaging system used to transmit, inter alia, bank
transaction information. According to the U.S. Treasury, information derived
from the use of SWIFT data has enhanced the United States’ and third countries’
ability to identify financiers of terrorism, to map terrorist networks and to disrupt
the activities of terrorists and their supporters. However, in September 2006 the
Belgian Data Protection Authority stated that SWIFT processing activities for
the execution of interbank payments are in breach of Belgian data protection law.
American diplomats and politicians claim that SWIFT ought to continue passing
information to the U.S. Treasury, whereas according to Belgian law SWIFT ought
not to pass this information, since this activity is in breach of Belgian data
protection law.

Example 6. A team of Dutch scientists of the Erasmus Medical Center led by
the virologist Ron Fouchier has created a highly contagious variant of the H5N1
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(“bird flu”) virus. The scientists have submitted their results for publication in
Science, claiming that they have positively answered the question whether or
not the H5N1 virus can possibly trigger a pandemic by mutating into a more
transmissible variant.

On the one hand, many virologists support the publication of these results
due to their potential benefits for public health. According to Fouchier, the U.S.
National Institute of Health (NIH) has agreed to the publication of his team’s
results. On the other hand, representatives of the U.S. Government fear that
the publication of the study will give terrorists new knowledge for constructing
bio-weapons of mass destruction.

On December 20th 2011, the U.S. National Science Advisory Board for Biose-
curity (NSABB) ruled that all technical details must be left out for publication.
The journals Science and Nature opposed this decision. Eventually, on March
30th 2012, the NSABB revised its stance after a two-day meeting during which
its members decided (after voting) that the full paper can be published after all.3

The following case describes a more ‘tragic’ real-life normative conflict.

Example 7. During the Battle of Britain, Churchill was faced with the following
choice. Thanks to the British government’s access to Germany’s secret codes, he
was informed in advance of many planned German air raids on populated areas.
He could evacuate those areas, sparing many innocent lives, but doing so would,
with a significant degree of probability, reveal to the Germans that their codes
had been broken, seriously impairing the British war effort. He decided not to
evacuate these areas [108, p. 214].

1.4 Important qualifications

1.4.1 Prima facie obligations and all-things-considered
obligations

Inspired by Kant’s distinction between perfect and imperfect obligations accord-
ing to which only the imperfect ones admit of exceptions, moral philosophers
sometimes distinguish between so-called prima facie duties on the one hand, and
actual, proper, all-things-considered duties or duties sans phrase on the other.
This terminology first arises in the context of the moral dilemmas debate (cfr.
Section 1.5). The term ‘prima facie duty’ was coined by Sir David Ross in 1930
[153]. Against the utilitarians, Ross argued that (actual) duties are highly per-
sonal acts that arise in particular circumstances, and as such do not lend them-
selves to quantification according to some universal standard.4 Whether an act
is a duty ‘sans phrase’, ‘actual’ or ‘proper’ duty depends on all the morally sig-
nificant kinds it is an instance of. In contrast, a ‘prima facie duty’ or ‘conditional
duty’ refers to

3The controversy regarding this news item can be followed at
http://www.nature.com/news/specials/mutantflu/index.html.

4For details about Ross’ intuitionist views on morality and his distinction between prima
facie duties and actual duties, we refer to [153].
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the characteristic . . . which an act has, in virtue of being of a certain
kind (e.g. the keeping of a promise), of being an act which would be
a duty proper if it were not at the same time of another kind which
is morally significant. [153, p. 19]

The distinction between prima facie and actual duties was taken over by Hare,
albeit that the latter applied it in a different sense, and used it to argue against
Ross’ intuitionism. Hare discerns an intuitive and a critical level of (moral) think-
ing. Prima facie principles are relatively simple principles used at the intuitive
level. At the critical level, we select among prima facie principles and resolve
conflicts between them [83].

Notwithstanding their diametrically opposed meta-ethical positions (Ross the
intuitionist vs. Hare the utilitarian), Ross and Hare agree that, ultimately, all
moral conflicts are resolvable. Their defense of this claim is similar to the extent
in which they argue that, prima facie, conflicts arise between moral principles.
After critical investigation, however, the conflicts disappear.

We pick up the discussion on the ultimate existence of moral dilemmas below
in Section 1.5. In what follows, we use the terms ‘prima facie’ and ‘all-things-
considered’ in a sense very similar to that of both Ross and Hare, except that
we do not tie the concepts to any meta-ethical views. We take the distinction
to apply to each two-level view on morality according to which (a) at the first
‘prima facie’ level, conflicts may arise between duties, and (b) in case no conflict
arises, a prima facie obligation becomes actual.

Philosophers that deny the existence of moral dilemmas (such as Ross and
Hare) use the distinction between prima facie and all-things-considered obliga-
tions to argue that, in case a conflict arises between two prima facie obligations,
we can always, at the deeper, all-things-considered level, find certain features
which distinguish both obligations, and make a choice in favor of one of the
alternatives. We return to this claim in Section 1.5.

1.4.2 Overriding and overridden norms

If a moral philosopher claims that, all-things-considered, we can always make a
choice in favor of one of two conflicting prima facie obligations, she claims that,
ultimately, one of the two obligations will always override the other. Consider,
for instance, the following variant of Plato’s classic case (Republic 331c) of a
person who ought to return a borrowed weapon (because he promised to do so),
and who ought not to return it (because the lender has become insane).

Example 8. A friend leaves you with his gun saying he will be back for it in the
evening, and you promise to return it when he calls. He arrives in a distraught
condition, demands his gun, and announces he is going to shoot his wife because
she has been unfaithful. You ought to return the gun, since you promised to do
so – a case of obligation. And yet you ought not to do so, since to do so would
be to be indirectly responsible for a murder [109, p. 148].

In this example, your obligation not to return the gun ultimately overrides
your obligation to return it. Although prima facie both obligations are in conflict,
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everyone likely agrees that, all-things-considered, one obligation outweighs the
other [70, 154].

The idea of norms overriding one another is broader than suggested by the
distinction between prima facie and all-things-considered obligations. We could
for instance use it to model a more fine-grained hierarchical normative structure,
and introduce a partial or total order on various degrees of obligation. Conflicts
between norms of different degrees can then be resolved in favor of the norms that
are higher up in the hierarchy and that override the ones lower in the hierarchy.
This approach is of great practical interest, but falls outside the scope of this
thesis. For some examples of it, see e.g. [81, 182].

Another way of implementing the idea that one norm overrides another is to
give precedence to norms that, given some normative context, are more specific
than others. As an example, Horty cites the etiquette norms “Don’t eat with
your fingers” and “If your are served asparagus, eat it with your fingers”. When
eating asparagus, the latter (more specific) norm overrides the former [91]. Lo-
gicians typically use conditional operators for modeling cases of specificity. This
approach will not be pursued here, although we briefly return to it in Section
2.4.1. For some treatments of specificity cases in the literature that make use of
conditional operators, see e.g. [42, 171].

1.4.3 Normative standards

In Examples 1 and 2 it seems that the normative conflict in question arises
due to opposing directives originating from different normative standards. In
Example 1, Agamemnon ought, as a father, not to sacrifice his daughter. As
a commander however, he ought to further the expedition. Similarly, Yilmaz
ought, as a religious devotee, not to drink alcohol. As a citizen of his country
however, he is permitted to drink alcohol. Thus, one might object, Agamemnon
and Yilmaz face no normative conflict simpliciter. Instead, the apparent conflict
they face is relative to different normative codes.

In Section 5.2 we will present a logic capable of distinguishing between dif-
ferent normative standards or codes in view of which norms arise.

1.4.4 Further distinctions

Apart from their relative strength and the normative standards in view of which
they arise, there are various other features on the basis of which we can distinguish
between two or more norms. In legal practice, for instance, there are a number of
‘meta-norms’ for conflict-resolution according to which later laws may override
earlier ones (lex posterior derogat priori), laws promulgated by higher or more
competent authorities may override laws promulgated by lower authorities (lex
superior derogat inferiori), and particular laws may override more general laws
(lex specialis derogat generali) [3, 124].

Some authors also make the distinction between intrapersonal and interper-
sonal normative conflicts. Intrapersonal conflicts are conflicts in which the con-
flicting norms concern one and the same agent (or group of agents). Interpersonal
conflicts are conflicts in which the conflicting norms hold for different (groups
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of) agents. Both Marcus and Sinnott-Armstrong refer to the following example
as an interpersonal dilemma [121, 164].

Example 9. In Sophocles’ Antigone, Creon declares the burial of Antigone’s
brother Polyneices illegal on the not unreasonable grounds that he was a traitor
to the city and that his burial would mock the loyalists who defended the city,
thereby causing civil disorder. At the same time, there is reason for Creon to
respect the religious and familial obligation of Antigone to bury her brother [72,
p. 4].

In the example, Creon’s obligation to keep his word and preserve the peace
conflicts with Antigone’s obligation to bury her brother. In Chapter 7 we present
a multi-agent logic that respects the distinction between inter- and intrapersonal
normative conflicts.

There are various other properties of norms that we can use for distinguishing
between them. For instance, next to the concrete agents for which a norm holds,
we could also specify the interest group in view of which it holds [107]. Moreover,
we could discern norms with different probabilities [40] or degrees of utility [93],
etc.

1.5 Normative conflicts and moral dilemmas

As mentioned in Section 1.4.1, the distinction between prima facie and all-things-
considered obligations was introduced by Ross in order to argue against the
existence of moral dilemmas. A moral dilemma is any situation in which, at the
same time,

(a) there is a moral requirement for an agent to adopt each of two alternatives,

(b) neither moral requirement is overridden in any morally relevant way,

(c) the agent cannot adopt both alternatives together, and

(d) the agent can adopt each alternative separately.

The characterization in terms of (a)-(d) is taken from [164]. Some authors add to
it that the impossibility to adopt both alternatives together must be circumstan-
cial : that the conflict arises contingently or that it is not logically impossible to
realize both alternatives together [37, 203]. This additional demand is important
for the discussion in Section 5.1, but we can ignore it for now. The characteriza-
tion of moral dilemmas can be extended straightforwardly to situations in which
more than two alternative moral requirements are in conflict (moral trilemmas,
quadrilemmas, etc.).

Using the terminology from Section 1.4.1, opponents of the existence of moral
dilemmas argue that in case a conflict arises between two (or more) prima facie
obligations, we can always, at the all-things-considered level, find certain features
which distinguish the obligations from each other, so that we can make a choice in
favor of one of the alternatives. Using the terminology of Section 1.4.2, they argue
that when faced with conflicting obligations, one of these ultimately overrides the
other(s).
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At least in theory, we can always construct counterexamples to the arguments
of philosophers that deny the existence of moral dilemmas. Consider Example
3 above. In the novel, Sophie has to choose between the lives of her older and
younger kid. The younger child is more dependent and thus less likely to survive
in the children’s barracks. This might constitute a (morally relevant?) reason for
Sophie to let her oldest child live. However, the example can easily be modified
so that there is no relevant difference between both alternatives. For the sake of
argument, take Sophie’s children to be identical twins. This assumption removes
all morally relevant differences between Sophie’s alternatives.

Cases like the modified Sophie case, in which no morally relevant differences
can be found between two incompatible requirements, are sometimes called sym-
metrical conflicts [140, 164]. Note that in these cases none of the qualifications
discussed in Section 1.4 is in force. These are normative conflicts of the same
preference, arising from one and the same authority in view of one and the same
normative standard, that hold in view of one and the same interest group in the
same circumstances. In the words of Ruth Barcan Marcus:

There is always the analogue of Buridan’s ass. Under the single
principle of promise keeping, I might make two promises in all good
faith and reason that they will not conflict, but then they do, as a
result of circumstances that were unpredictable and beyond my con-
trol. All other considerations may balance out. The lives of identical
twins are in jeopardy, and, through force of circumstances, I am in
a position to save only one. Make the situation as symmetrical as
you please. A single-principled framework is not necessarily unlike
the code with qualifications or priority rule, in that it would appear
that, however strong our wills and complete our knowledge, we might
be faced with a moral choice in which there are no moral grounds for
favoring doing x over y [121, p. 125].

It seems, then, that despite the efforts of philosophers like Ross and Hare,
moral dilemmas exist after all. If one moreover accepts that non-overridden
moral requirements constitute all-things-considered obligations, then conflicting
all-things-considered obligations exist as well. In any case, the possibility of sym-
metrical conflicts shows that not all conflicts between obligations are ultimately
resolvable. This suffices for our discussion on moral dilemmas. Next, we will
extend the discussion to irresolvable normative conflicts in general. For a good
collection of texts on the topic of moral dilemmas, see [72].

A final remark is in order here. Even if one does not agree with the arguments
presented above, the answer to the question concerning the existence of moral
dilemmas bears no weight on the question concerning the existence of normative
conflicts in general. Under our characterization of normative conflicts, even prima
facie conflicting obligations constitute a normative conflict. Thus, whatever one
thinks about moral dilemmas, the existence of normative conflicts in general is
not at stake.



1.6. WHY? 11

1.6 Why devise logics for tolerating normative conflicts?

We are concerned with the treatment of irresolvable normative conflicts in deontic
logic. Here, we briefly motivate this aim and further delineate the scope of our
investigation.

1.6.1 Irresolvable conflicts

By now, it is clear that not all normative conflicts are resolvable. First, normative
conflicts can be irresolvable due to their symmetry. At least in theory, it is
possible to construct a conflict between two (or more) normative requirements
in such a way that none of the alternatives are normatively distinguishable from
each other. We already encountered such a ‘symmetric’ example in a moral
context in Section 1.5.

Second, normative conflicts can be irresolvable in practice due to the incom-
parability of the conflicting alternatives. Even if normatively relevant features
are present by means of which we can at least try to investigate which of the
alternatives outweigh the other(s), it is not always possible to do so. When, for
instance, different normative standards are at work, it is not always possible to
weigh each conflicting alternative against the other(s). Moreover, our normative
theories may not be as well-developed as we need them to be in order to resolve
complex situations of conflict. In international law for instance, “the avenues of
norm conflict resolution are [. . .] at best rudimentary. It therefore knows conflicts
that are both unavoidable and irresolvable” [136, p. 470].

In complex real-life settings it is not always clear how to proceed when a con-
flict arises. This is illustrated by the fact that different courts or governments can
have diametrically opposed views on the same matter (e.g. the SWIFT case from
Example 5). Institutions sometimes even change their minds when it comes to
making a decision involving complex normative conflicts. Consider, for instance,
the situation sketched in Example 6 in which the NSABB revised its stance on
the publication of a controversial scientific result.

It seems, then, that if we want to investigate the logical relations between
norms, we have to take into account the reality of irresolvable normative conflicts.
This is the main task to be set out in the remainder of this thesis.

1.6.2 Modeling irresolvable conflicts

Resolving normative conflicts is not always possible. A fortiori, it is not possible
to devise a logic that will – given some normative and factual information –
always provide us with a consistent and uniquely action-guiding set of normative
directives. All we can do is

(a) to devise logics that do not trivialize normative conflicts, and

(b) to devise logics that resolve some, but not all normative conflicts.

For target (b), we need to provide our obligations, prohibitions and permissions
with some kind of weight and triggering condition such that, when faced with a
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conflict, we can give priority to norms that are more important or more specific
given the context. This aim lies outside the scope of this thesis.

For target (a), we need to devise logics that, given their intended context of
application, are conflict-tolerant : systems that consistently allow for the pres-
ence of irresolvable normative conflicts. This is exactly what we will do in the
remainder of this thesis. As will become clear, the mere technical incorporation
of normative conflicts in deontic logic poses some problems that are interesting
and difficult in their own right. We say that a logic tolerates or accommodates
normative conflicts in case such conflicts do not give rise to triviality or explosion
in the logic. For now, this rather vague characterization suffices. In chapters to
come, we further refine what it means for a logic to be conflict-tolerant.

Before we turn to deontic logic, we must still answer an important question.
Why, if not for resolving them, need we at all develop logics for ‘merely’ tolerating
normative conflicts?

Let us make a short detour concerning the general usefulness of logical meth-
ods. Sven Ove Hansson mentions the following advantages of formalization in
philosophy:5

When we formalize an informal discourse, we have to make up our
minds on issues that are otherwise often neglected, such as the choice
of basic concepts, the interdefinability of these concepts, and what
principles of inference apply to them. Formalization also stimulates us
to provide a reasonably complete account of the entities that we deal
with. In particular, the rigorousness of a formal language makes it
meaningful to search for a complete list of valid principles of inference.
[86, pp. 99-100]

Hansson divides philosophical and interpretational discussions on formal models
into three types:

(Type 1) New aspects on issues already discussed in informal philosophy.

(Type 2) New philosophical issues discovered in the formalism that have philo-
sophical relevance apart from the formal models.

(Type 3) Issues peculiar to the chosen formalism that have no bearing on philo-
sophical issues expressible without the formalism.

Suppose now that we formalize the sentence “A is obligatory” as OA. We can
then illustrate how the debate concerning normative conflicts in deontic logic
gives rise to issues of all three types.

As an issue of type 1, consider the formalization of conflicting obligations. In
[69] Goble distinguishes three such formalizations, each one more comprehensive
than its predecessors. First, he considers formulas of the form OA ∧O¬A. Next,
he considers a logically inconsistent state of affairs, A and B, both conjuncts of
which are obligatory, i.e. OA, OB, yet ⊢ ¬(A∧B). Third, he considers situations

5For a more detailed account of Hansson’s views on formalization in philosophy, see [80].
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in which OA and OB, yet ¬ ◇ (A ∧ B), where ◇ abbreviates some sense of
possibility (e.g. physical possibility). Assuming the principle (NM),

⊢ ¬◇ (A ∧ ¬B) ⊃ (OA ⊃ OB) (NM)

Goble ultimately reduces all conflicting obligations to formulas of the form OA∧
O¬A. Suppose that OA,OB, and ¬◇(A∧B). Then, assuming the validity of all
rules and axioms of (the propositional fragment of) Classical Logic (henceforth
CL), we obtain O¬B as well as O¬A by the substitution-instances ¬◇ (A∧B) ⊃
(OA ⊃ O¬B) and ¬◇ (B ∧A) ⊃ (OB ⊃ O¬A) of (NM).

Is (NM) not a tad too strong? In [129], it was argued that it is. We return
to this point in Section 5.1. For now, it suffices to see that Goble’s discussion
illustrates that for issues of type 1, logic provides the clarification and precision to
take philosophical discussions to a higher level. In trying to formalize conflicting
obligations, we are faced with new questions concerning the validity of schemas
like (NM).

But the use of formal methods in philosophy need not stop here. During the
second half of the previous century, formal philosophers used arguments from
deontic logic for arguing against the very possibility of conflicting (moral) obli-
gations. Suppose, for instance, that we accept the unconditional validity of the
aggregation rule (AND) and the ‘Kantian’ rule according to which ‘ought’ implies
‘can’ (OIC):

(OA ∧OB) ⊃ O(A ∧B) (AND)

OA ⊃◇A (OIC)

Suppose further that we accept all inferences of CL, and that we know that OA,
that OB, and that ¬◇ (A ∧B). Then, using (AND), we obtain O(A ∧B) from
OA and OB. However, using the contraposition rule from CL, we also obtain
¬O(A∧B) from ¬◇ (A∧B) using (OIC). Thus, we end up with a contradiction.
This shows that, on pain of inconsistency, one cannot accept all of CL, (AND),
and (OIC) while agreeing that there are conflicting (moral) obligations which can
be formalized as we did here.

This problem too will be treated in much more detail later on in this thesis.
What matters for now is that we are here faced with a new and philosophically
interesting problem – an issue of type 2 in Hansson’s taxonomy – that arose
through and has its origins in attempts to logically characterize the inferences
underlying our everyday normative reasoning.

As a problem of type 3, Hansson cites the fact that in Standard Deontic
Logic the formula Oq is derivable from the formulas Op and O¬p. This is a
logical artefact that, although of technical importance, has little to do with moral
philosophy. In conclusion, Hansson states that “formal philosophy can only be
successful if we have a strong emphasis on issues of types one and two” [86,
p. 101].

Keeping in mind Hansson’s desiderata for success, we will in the remainder
stress the philosophical significance and interest of the logics presented in this
thesis, and hope that the type 1 and type 2 examples above already illustrate
to some extent the philosophical use of the task at hand. Some more examples
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of philosophical (type 1 and type 2) issues raised by the problem of normative
conflicts in deontic logic are:

(i) What types of normative conflicts are particularly important under which
circumstances? Are there contexts in which certain types of normative
conflicts can be ignored?

(ii) To what extent should normative conflicts be isolated in deontic logics?
Which rules of inference are applicable to conflicting norms?

(iii) Given the possibility of conflicting norms, which inferences should hold
unrestrictedly in a conflict-tolerant deontic logic? Which inferences should
be restricted? Which inferences should not be valid under any condition?

Apart from these philosophical issues, there is also an obvious practical inter-
est in the development of logics capable of accommodating irresolvable normative
conflicts. The development of systems capable of tolerating conflicting norms is
considered an important challenge in the fields of deontic logic [77] and normative
multi-agent systems [36], with very concrete applications in artificial intelligence
[184, 133, 196, 202] and legal science (witness the fact that entire academic jour-
nals are devoted to the treatment of legal conflicts and to applications of AI and
logic in law).6

1.7 Norms, truth-values and the possibility of deontic
logic

Before we turn to deontic logic in all its formal details, we stop for one more
moment to consider its very possibility. During the first half of the previous
century, moral philosophers of the emotivist and prescriptivist persuasion have
argued that there are no logical relations between imperatives,7 while others
argued that there are.8 In the field of deontic logic, this debate is best known
in the form of a puzzle made explicit by the Danish philosopher Jørgensen (the
puzzle is also known as Jørgensen’s dilemma) [99]:

(i) Logical operations only hold for sentences with truth values. Imperatives
do not have truth values. Therefore there can be no logic of imperatives.

(ii) It seems evident that inferences can be formulated in which some or all
of the premises are imperatives. From the sentences ‘Love your neighbor
as yourself’ and ‘Love yourself’, the conclusion ‘Love your neighbor’ seems
inescapable.

As formulated by Jørgensen, the puzzle only applies to imperatives, and not
to norms in general. But if in (i) and (ii) we replace ‘imperatives’ by ‘ought-
statements’, ‘ought-sentences’, or ‘normative statements’, then the argument still

6The Journal of Conflict Resolution (ISSN: 0022-0027) is an illustration of the former,
Artificial Intelligence and Law (ISSN: 0924-8463) an illustration of the latter.

7E.g. Ayer in [10, pp. 107-109], Stevenson in [167, pp. 113-114].
8E.g. Hare in [82, Ch. 2].
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bears some intuitive force. It seems, then, that Jørgensen’s puzzle applies not
just to imperatives, but to evaluative sentences in general.

Clearly, the thorn in the eye of the deontic logician is (i). If (i) is correct (and
if Jørgensen’s argument applies to evaluative sentences in general) then the very
enterprise of deontic logic seems ill-conceived. So let us take a closer look at (i).

(a) Logical operations hold only for sentences with truth values.

(b) Imperatives do not have truth values.

If (a) and (b) are true, then (c) is unavoidable:

(c) There can be no logic of imperatives.

However, even if (c) is correct, we still need

(d) Jørgensen’s argument applies to evaluative sentences in general.

in order to attain the conclusion

(e) There can be no logic of norms.

Thus, if (e) is to be avoided, then we must deny one of (a), (b), and (d). Let us
examine each of these premises in turn, starting with (a). Supposing that logical
deduction should not just be pursued as a purely formal game, but that instead
logical operations are to some extent meaningful and subject to interpretation, we
require some ‘hereditary property’ to be conferred upon the conclusion whenever
this property is possessed by the premises. Usually, it is the truth value ‘true’
which constitutes this hereditary property [200]. This is why (a) seems intuitive.

We could, however, escape the conclusion (e) if we replace ‘truth’ with a
different hereditary property in the specific case of norms. We could, for instance,
replace it with the concept of validity (relative to some normative system) [200].
Or we could say that an imperative sentence is ‘binding’ if there is a reason for
the agent to perform the required action [195].

Alternatively, one can take Jørgensen’s puzzle seriously without acknowledg-
ing (e) by constructing a non-truth-functional semantics for norms. This is the
main motivation behind e.g. the input/output logics devised by Makinson and
van der Torre [77, 113, 115].

The price to pay for this solution is that we seem to ‘broaden the conception
of logic’. But this need not be too problematic. In the words of von Wright:

Deontic logic gets part of its philosophic significance from the fact
that norms and valuations, though removed from the realm of truth,
yet are subject to logical law. This shows that logic, so to speak, has
a wider reach than truth. [191, Introduction]

Instead of (a), we could also reject (b), the claim that imperatives do not have
truth values. For instance, Kalinowksi argued that people normally treat moral
and legal norms as true or false, and that such norms can be part of logical
inference [100]. Hansen, however, claims that such considerations confuse the
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notion of truth with that of a legal or moral norm’s validity, i.e. the ‘external’
recognition of a norm as valid in a certain society [76, pp. 5-6].

Another way out of the acceptance of (e) is to deny (d). This road was taken
up by Hage, who argues that imperatives are not closely connected to norms,
and that the relevance of Jørgensens puzzle for legal theory and deontic logic is
very limited [74, Ch. 6].

As a final option (a last refuge for the deontic logician, if you wish), we
mention that some philosophers have accepted (e), but not

(f) There can be no deontic logic.

One can acknowledge (e) while denying (f) by distinguishing between norms
and norm-propositions (cfr. Section 1.2.2), and by arguing that deontic logic is the
logic of norm-propositions. As such, (e) is acknowledged and Jørgensen’s puzzle
is taken seriously, while (f) is denied and deontic logic is saved once again.9

Throughout this dissertation, we take norms (including imperatives) to stand
in relationships that parallel the logical relationships between propositions (Jør-
gensen too must acknowledge at least this, since it is implied by the second
horn of his ‘dilemma’). For instance, there exist negated orders, conjunctive
commands, conditional requests, etc. Moreover, inferential-like relations hold
amongst imperatives as well as between imperatives and (factual) statements.

Given these parallels, we will in the remainder use the same words (“logi-
cal”,“valid”,“invalid”,“inference”, etc.) for studying normative inference as we
do for studying the relations of implication between (non-normative) proposi-
tions. For ‘purist’ philosophers who wish to introduce a new set of terms for
talking about normative inference, Castañeda provides the following suggestion:

we may naturally use the old terms, which the purist philosopher
applies to propositions, prefixed by the morpheme ‘sh−’. Thus, we
would speak of imperative sh−reasonings, which divide into those
which are sh−valid and those which are sh−invalid, the latter being
those in which the sh−premises sh−imply the sh−conclusions, and so
on. [44, p. 101]

Our approach is consistent with suggestions made for rejecting (a) or (b). Readers
that acknowledge both (a) and (b) can still read on under the assumption that
the logics defined in this dissertation are logics of norm-propositions instead of
logics of norms. The latter claim holds especially for the systems defined in
Section 6.2, which are presented explicitly as logics of norm-propositions.

Clearly, Jørgensens puzzle need not constitute the end of (semantical ap-
proaches to) deontic logic. What the puzzle illustrates instead is that we should
perhaps not take norms to be ‘true’ in the same sense in which we take factual
or analytical (‘tautological’) statements to be ‘true’.

9A diverging position is taken up by Alchourrón and Bulygin, who take seriously the dis-
tinction between norms and norm-proposition while at the same time denying (e). Instead
Alchourrón and Bulygin proceed to construct a logic of norm-propositions ‘on top’ of the logic
of norms [1, 2, 4]. We discuss the approach of Alchourrón and Bulygin in Section 6.2.7.1.
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1.8 Preliminaries

Let Wa be a denumerable stock p, q, r, . . . of atomic propositions. The set of
literals is defined by W l = {A,¬A ∣ A ∈Wa}. The set W of well-formed formulas
(wffs) of the propositional fragment of CL is defined recursively as follows:

W ∶= Wa ∣ ¬⟨W⟩ ∣ ⟨W⟩ ∨ ⟨W⟩ ∣ ⟨W⟩ ∧ ⟨W⟩ ∣ ⟨W⟩ ⊃ ⟨W⟩ ∣ ⟨W⟩ ≡ ⟨W⟩ ∣ �
We use the notational convention that WL abbreviates the set of L-wffs.

Where Γ ⊆ WL and A ∈ WL, we write Γ ⊢L A to denote that A is L-derivable
from Γ, and ⊢L A to denote that A is L-derivable from the empty premise set.
M is an L-model of Γ iff M ⊩ A for all A ∈ Γ. ⊧L A iff all L-models verify A,
and Γ ⊧L A iff all L-models of Γ verify A.

Where unambiguous, we will sometimes use ⊢ and ⊧ without subscripts.





Chapter 2

Normative conflicts and Standard
Deontic Logic

Sometimes it seems as though
the standard is only a target for
deontic logicians to snipe at

James Forrester [57, p. 1]

. I am indebted to Joke Meheus and Christian Straßer for valuable comments
on this chapter.

In this chapter, we define and discuss the system best known as Standard
Deontic Logic (SDL). After some preliminaries on deontic operators and on the
syntax of SDL (Section 2.1), we provide an axiomatic and semantic characteri-
zation of SDL in Section 2.2.

In Section 2.3, we briefly discuss the formal treatment of normative conflicts
by SDL as a foretaste of what is to come in the next chapter. We conclude
with a section on some of the well-known problems and puzzles relating to SDL
(Section 2.4). Readers familiar with these issues can safely skip Section 2.4. We
conclude this chapter with a preliminary assessment of SDL in Section 2.5.

2.1 Preliminaries

2.1.1 Deontic operators

We denote obligations by means of the operator O, permissions by means of the
operator P, and prohibitions by means of the operator F. A sentence like “It is
obligatory that the street is clean” can be formalized as OC, where C abbreviates
“the street is clean”. Similarly, PC denotes “It is permitted that the street is
clean”, and FC denotes “It is forbidden that the street is clean”.

Many deontic logicians standardly assume that the following equivalences hold
between obligations, permissions, and prohibitions:

PA ≡ ¬O¬A (2.1)

19
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O¬AOO

�� ##
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PA P¬A

Figure 2.1: The deontic square of opposition.

PA ≡ ¬FA (2.2)

FA ≡ ¬PA (2.3)

FA ≡ O¬A (2.4)

OA ≡ ¬P¬A (2.5)

OA ≡ F¬A (2.6)

Assuming that the equivalences (2.1)-(2.6) hold, the relations between obligations
and permissions are depicted graphically in the deontic square of opposition (Fig-
ure 2.1). In this figure, one-directional arrows represent implications, and two-
directional arrows represent contradictories; the nodes connected by a dotted line
are contraries, and those connected by a double line are subcontraries.1

As we shall see later on, not all of (2.1)-(2.6) are uncontested. The relation
of the concept of permission to the concepts of obligation and prohibition is
especially problematic. Equivalences (2.4) and (2.6) however are – to the best of
our knowledge – uncontested. For these reasons, we shall in the remainder skip
the F-operator and assume that it can be defined in terms of the O-operator in
the following way: FA =df O¬A. The P-operator remains an essential part of our
main language schemas.

2.1.2 Language

The setWO of wffs of the fragment of SDL without iterated modalities is defined
as:

WO ∶= W ∣ O⟨W⟩ ∣ P⟨W⟩ ∣ ¬⟨WO⟩ ∣ ⟨WO⟩ ∨ ⟨WO⟩ ∣ ⟨WO⟩ ∧ ⟨WO⟩ ∣ ⟨WO⟩ ⊃
⟨WO⟩ ∣ ⟨WO⟩ ≡ ⟨WO⟩

We also define the sets WO′ and WO∖P. The set WO′ of wffs of full SDL (with
iterated modalities) is defined as:

WO′ ∶= W ∣ O⟨WO′⟩ ∣ P⟨WO′⟩ ∣ ¬⟨WO′⟩ ∣ ⟨WO′⟩ ∨ ⟨WO′⟩ ∣ ⟨WO′⟩ ∧ ⟨WO′⟩ ∣
⟨WO′⟩ ⊃ ⟨WO′⟩ ∣ ⟨WO′⟩ ≡ ⟨WO′⟩

The set WO∖P of SDL-formulas without a primitive P-operator is defined as:

WO∖P ∶= W ∣ O⟨W⟩ ∣ ¬⟨WO∖P⟩ ∣ ⟨WO∖P⟩ ∨ ⟨WO∖P⟩ ∣ ⟨WO∖P⟩ ∧ ⟨WO∖P⟩ ∣
⟨WO∖P⟩ ⊃ ⟨WO∖P⟩ ∣ ⟨WO∖P⟩ ≡ ⟨WO∖P⟩

1Two formulas are contraries if they cannot both be true; they are subcontraries if they
cannot both be false.
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In the remainder, we shall work mostly with the set WO. We come back to
the use of iterated deontic modalities in Section 2.4.5. For future reference, we
also define the language WO

◻ , obtained by adding to WO the alethic modality ◻:

WO
◻ ∶= WO ∣ ◻⟨W⟩ ∣ ¬⟨WO

◻ ⟩ ∣ ⟨WO
◻ ⟩∨⟨WO

◻ ⟩ ∣ ⟨WO
◻ ⟩∧⟨WO

◻ ⟩ ∣ ⟨WO
◻ ⟩ ⊃ ⟨WO

◻ ⟩ ∣
⟨WO

◻ ⟩ ≡ ⟨WO
◻ ⟩

2.2 SDL

As mentioned at the beginning of the previous chapter, von Wright’s 1951 paper
Deontic Logic [190] has stimulated a lot of later work on deontic logic. With one
small modification (the addition of the axiom O(A∨¬A)), the ‘minimal’ system
of deontic logic proposed in this paper is now known as Standard Deontic Logic
or SDL. SDL has an extremely elegant Kripke-style possible worlds semantics.2

In this section, we present an axiomatic and semantic characterization of SDL,
mention some of its meta-theoretical properties, and discuss some closely related
systems of deontic logic that are sometimes called ‘standard’ as well.

2.2.1 Axiomatization

SDL is defined for the set of wffs WO by adding to CL the axiom schemas (K),
(P) and (D), and the rule (NEC):

O(A ⊃ B) ⊃ (OA ⊃ OB) (K)

PA ≡ ¬O¬A (P)

OA ⊃ PA (D)

If ⊢ A then ⊢ OA (NEC)

Adding (K), (P), and (NEC) to CL gives us the basic normal modal logic
K for the language schema WO. SDL extends K by (D). For that reason, it is
sometimes called KD or simply D.

(P) is often replaced by the definition PA =df ¬O¬A. In this case the P-
operator need not be a primitive symbol in the language. Since later on in this
dissertation we will question some instances of (P) in specific deontic contexts,
we stick to the axiomatic characterization of the P-operator here.

The following axiom schemas and rules are derivable in SDL, and are stated
here for future reference:

(A ∧ ¬A) ⊃ B (ECQ)

(OA ∧OB) ⊃ O(A ∧B) (AND)

OA ⊃ ¬O¬A (CONS)

If ⊢ A ⊃ B then ⊢ OA ⊃ OB (RM)

If ⊢ A ≡ B then ⊢ OA ≡ OB (RE)

Fact 1. (ECQ), (AND), (CONS), (RM), and (RE) are SDL-valid.

2In fact, developments in the newly established field of deontic logic played an important
role in the invention of what we now call possible worlds semantics. See [205] for more details.
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The proof of Fact 1 is safely left to the reader. Moreover, we leave it to the
reader to check that SDL validates all logical relationships between the deontic
operators that are displayed in the deontic square of opposition (Figure 2.1).

2.2.2 Semantics

We define SDL semantically by means of a Kripke-style possible worlds semantics
with an actual or designated world. An SDL-model is a quadruple ⟨W,w0,R, v⟩,
where W is a set of worlds3, w0 ∈W is the actual world, R is a serial accessibility
relation4 on W and v ∶Wa×W → {0,1} is an assignment function. The valuation
vM ∶WO ×W → {0,1}, associated with the model M , is defined by:

(Ca) where A ∈Wa, vM(A,w) = 1 iff v(A,w) = 1
(C¬) vM(¬A,w) = 1 iff vM(A,w) = 0
(C∨) vM(A ∨B,w) = 1 iff vM(A,w) = 1 or vM(B,w) = 1
(C∧) vM(A ∧B,w) = 1 iff vM(A,w) = vM(B,w) = 1
(C⊃) vM(A ⊃ B,w) = 1 iff vM(A,w) = 0 or vM(B,w) = 1
(C≡) vM(A ≡ B,w) = 1 iff vM(A,w) = vM(B,w)
(CO) vM(OA,w) = 1 iff vM(A,w′) = 1 for every w′ such that Rww′

(CP) vM(PA,w) = 1 iff vM(A,w′) = 1 for some w′ such that Rww′

An SDL-model M = ⟨W,w0,R, v⟩ verifies A, M ⊩ A, iff vM(A,w0) = 1.

2.2.3 Meta-theory

Theorem 1. SDL is reflexive, transitive and monotonic.5

Theorem 2. SDL is compact (if Γ ⊢SDL A then Γ′ ⊢SDL A for some finite
Γ′ ⊆ Γ).

Theorem 3. If Γ ⊢SDL B and A ∈ Γ, then Γ − {A} ⊢SDL A ⊃ B (Generalized
Deduction Theorem for SDL).

Theorem 4. If Γ ⊢SDL A, then Γ ⊧SDL A. (Soundness of SDL)

Theorem 5. If Γ ⊧SDL A, then Γ ⊢SDL A. (Strong Completeness of SDL)

Proofs for Theorems 1-5 can be found in any good introductory textbook on
modal logic, e.g. [97].

3If one feels that the notion of a ‘world’ has too strong a metaphysical connotation, a more
neutral word may be used to denote the elements of W , e.g. points.

4R is serial iff, for every w ∈W there is a w′ ∈W such that Rww′.
5Where CnL(Γ) denotes the consequence set of some premise set Γ for the logic L, a logic

L is reflexive iff, for all premise sets Γ, Γ ⊆ CnL(Γ); it is transitive iff, for all sets of wffs Γ and
Γ′, if Γ′ ⊆ CnL(Γ) then CnL(Γ∪Γ′) ⊆ CnL(Γ); and it is monotonic iff, for all sets of wffs Γ and
Γ′, CnL(Γ) ⊆ CnL(Γ ∪ Γ′).
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2.2.4 More ‘standard’ deontic logics

In [8], Åqvist widens the conception of what it is to be a ‘standard’ deontic logic.
Roughly, he defines a normal propositional monadic von Wright-type deontic logic
to be a logic that contains CL, (K), (P), and (NEC). A strongly normal propo-
sitional monadic von Wright-type deontic logic moreover contains (D). Åqvist’s
umbrella conception of ‘standard’ or ‘normal’ deontic logics (we use the terms
interchangeably here) also includes strengthenings with iterated modalities that
make use of axiom schemas like:

OA ⊃ OOA (2.7)

POA ⊃ OA (2.8)

O(OA ⊃ A) (2.9)

Furthermore, it allows him to regard conditional extensions of these systems as
‘standard’. Thus, for Åqvist, SDL as defined here is just one of many ‘standard’
deontic logics.

Another interesting development worth mentioning in this context is Ander-
son’s reduction of deontic logic to modal logic with only alethic modalities [5, 6].
This reduction is realized by adding to the basic normal modal logic K a constant
proposition V representing a violation (penalty, sanction) relative to a norma-
tive system under investigation. Where ◻ is the necessity operator of K, the
F-operator is then defined as FA =df ◻(A ⊃ V), i.e. A is forbidden if it entails
a violation. The other operators are defined in terms of F: OA =df F¬A, and
PA =df ¬FA.

Around the same time and independently from Anderson, Kanger [102] pro-
posed a roughly equivalent reduction by making use of a constant proposition Q
for abbreviating that all normative demands are met (see [126] for a comparison
with Anderson’s reduction). The Anderson-Kangerian reduction of deontic to
alethic modal logic is an extension of SDL. More precisely, SDL is the deon-
tic fragment of the Anderson-Kanger systems (see [8, Section 14] for a rigorous
stipulation of the deontic fragment of these systems, and for the proof that this
fragment is equivalent to SDL).

We sympathize with Åqvist’s, Anderson’s and Kanger’s characterization of
‘standard’ deontic logics and recognize their historic importance. Yet although
many of the systems defined by these authors are very similar to SDL, and
although many of the claims we make about SDL also hold for ‘normal’ deontic
logics in these families, we will in the remainder keep on referring to the system
SDL as defined in Sections 2.2.1 and 2.2.2 when we talk about Standard Deontic
Logic. We briefly return to the Anderson-Kangerian reduction in Section 2.4.3.

2.3 SDL and normative conflicts

2.3.1 Formalizing normative conflicts

Many inescapable normative conflicts fit the general logical form OA ∧ O¬A.
Take, for instance, Example 1 from the previous chapter. Where d abbreviates
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“Agamemnon sacrifices his daughter”, it seems that, as a commander, Agamem-
non faces the obligation Od. As a father, however, Agamemnon ought not sacrifice
his daughter, O¬d. Similarly, in Example 5, SWIFT ought not to pass the infor-
mation (O¬i) according to Belgian data protection regulations, whereas SWIFT
ought to pass the information (Oi) according to the U.S. Treasury. In general,
we call conflicts of the type OA ∧O¬A OO-conflicts.

Escapable conflicts do not fit the logical form OA∧O¬A. In Example 2, Yilmaz
ought not drink any alcohol (O¬d) according to his religious beliefs, whereas he
is permitted to do so (Pd) according to the laws of his country. Thus, escapable
normative conflicts generally appear to be of the form OA∧P¬A (or O¬A∧PA).
In general, we call conflicts of the type OA ∧ P¬A (or O¬A ∧ PA) OP-conflicts.

In more complex situations, more than one proposition may be involved in a
normative conflict. Consider the following example.

Example 10. Alice is throwing a party for her birthday. Since Bob and Charles
are good friends of Alice, she ought to invite Bob (Ob) and to invite Charles
(Oc) to her party. However, when Bob and Charles get together, they usually
get drunk, and chances are that they will annoy the other guests. Hence Alice
ought not invite both Bob and Charles to her party (O¬(b ∧ c)).

In view of (RE), O¬(b ∧ c) is equivalent to O(¬b ∨ ¬c). The latter formula
generates a conflict together with the obligations Ob and Oc. Since two proposi-
tions (b and c) are involved, we say that we are dealing with a binary normative
conflict.

Following [63], we say that, where n > 1, a conflict of the form OA1 ∧ . . . ∧
OAn ∧ O(¬A1 ∨ . . . ∨ ¬An) is an n-ary OO-conflict. Similarly, a conflict of the
form OA1 ∧ . . . ∧OAn ∧ P(¬A1 ∨ . . . ∨ ¬An) is an n-ary OP-conflict.

In Section 3.2.1, we elaborate further on how to formalize normative conflicts
in deontic logic, and on the expressive resources needed for doing so. For now, we
suppose for the sake of argument that – at least when restricted to the language
schema WO – many examples of normative conflicts indeed bear the logical form
OA ∧O¬A, OA ∧ P¬A, or O¬A ∧ PA.6

2.3.2 Explosion

We can formalize normative conflicts in SDL as OO-conflicts or OP-conflicts, but
we cannot consistently do so. SDL trivializes OO- and OP-conflicts:

OA ∧O¬A ⊢SDL � (OO-EX)

OA ∧ P¬A ⊢SDL � (OP-EX)

Suppose that we are facing an OO-conflict OA∧O¬A. By (D), we can derive PA
from OA. By (P), we can derive ¬O¬A from PA. But then the contradiction
O¬A ∧ ¬O¬A is derivable, and, by (ECQ), it follows that �.

6This also holds for binary, ternary, etc. conflicts, since every n-ary OO-conflict OA1 ∧ . . .∧
OAn∧O(¬A1∨. . .∨¬An) is SDL-equivalent to the formula O(A1∧. . .∧An)∧O¬(A1∧. . .∧An) in
view of (AND) and (RE); similarly, every n-ary OP-conflict OA1∧. . .∧OAn∧P(¬A1∨. . .∨¬An)
is SDL-equivalent to the formula O(A1 ∧ . . . ∧An) ∧ P¬(A1 ∧ . . . ∧An).
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Similarly, when faced with an OP-conflict OA ∧ P¬A, we can derive ¬O¬¬A
from P¬A by (P). By (RE), it follows that ¬OA. Again, we have derived a
contradiction, and again � follows by (ECQ).

Given the existence of normative conflicts, and assuming that they can be
formalized as OO- and OP-conflicts, the explosion principles (OO-EX) and (OP-
EX) show that SDL is incapable of modeling our actual normative reasoning.

For now, this is all we say about explosion. In the next chapter we will have
a lot more to say about this phenomenon. There, we will tackle the remaining
questions concerning the formalization of normative conflicts, and take a closer
look at some of the inferences that lead to explosion in SDL. Moreover, we will
define an additional set of more sophisticated explosion principles, all of which
also arise in SDL.

2.4 More problems

Given the dominant role of SDL in this dissertation, it is important that, apart
from its incapability to accommodate normative conflicts, we also mention its
other problems and ‘puzzles’. This section is largely meant to inform the reader
about some well-known issues pertaining to SDL, and to facilitate the discussion
in later chapters.

2.4.1 Chisholm’s puzzle and contrary-to-duty obligations

Consider the following sentences, which appear both consistent and independent
of one another [46]:

(i) It is obligatory that Jones goes to the assistance of his neighbours

(ii) It is obligatory that if Jones goes to the assistance of his neighbours, then
he tells them he is coming

(iii) If Jones does not go to the assistance of his neighbours, then he ought not
tell them he is coming

(iv) Jones does not go to the aid of his neighbours

The three most popular formalizations of (i)-(iv) are the following [126, 127]:

Formalization 1 Formalization 2 Formalization 3
(i) Og Og Og
(ii) O(g ⊃ t) O(g ⊃ t) g ⊃ Ot
(iii) ¬g ⊃ O¬t O(¬g ⊃ ¬t) ¬g ⊃ O¬t
(iv) ¬g ¬g ¬g

Formalization 1 is SDL-inconsistent. From (i) and (ii) we can derive Ot
by (K). From (iii) and (iv) we obtain O¬t. Together, Ot and O¬t imply � by
(OO-EX).

In formalization 2, the independence of the premises is lost, since (iii) is an
SDL-consequence of (i). Similarly, in formalization 3, (ii) follows from (iv).
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Thus, in none of the formalizations above, the premises are both consistent and
independent of each other.7 This is Chisholm’s puzzle.

The sting in Chisholm’s puzzle is caused by the contrary-to-duty obligation
(iii). In order to solve the puzzle, many authors have relied on the stronger
resources of dyadic deontic logic. Let O(A ∣ B) express “it is obligatory that B
under condition A”. Then the following formalizations of (i)-(iv) seem to fare
better:

Formalization 4 Formalization 5
(i) Og Og
(ii) O(g ⊃ t) O(g ∣ t)
(iii) O(¬g ∣ ¬t) O(¬g ∣ ¬t)
(iv) ¬g ¬g

LetWO
C be obtained by adding the conditional obligation operator toWO (and

by closing it under the classical connectives), and let SDLC be the logic obtained
by the grammar WO

C and by the axioms and rules of SDL. Then formalizations
4 and 5 are better than formalizations 1-3 since they satisfy the demands of
consistency and independence. However, the problem reappears when we try
to detach conditional obligations. Consider the following detachment principles
commonly occurring in the literature on dyadic deontic logic:

(A ∧O(A ∣ B)) ⊃ OB (F-DET)

(OA ∧O(A ∣ B)) ⊃ OB (D-DET)

The factual detachment principle (F-DET) allows to derive an unconditional
obligation from a conditional one whenever its condition holds. The deontic
detachment principle (D-DET) allows to derive an unconditional obligation from
a conditional one whenever the condition of the latter obligation is also obligatory.

If (F-DET) and (D-DET) were added to SDLC, then formalizations 4 and 5
become inconsistent again. In case of formalization 4, we could then derive O¬t
from (iii) and (iv) by (F-DET), while we could derive Ot from (i) and (ii) by
(K). By (OO-EX), it follows that �. In case of formalization 5, the argument is
analogous, except that here we also need (D-DET) in order to derive Ot from (i)
and (ii).

The principles (F-DET) and (D-DET) are not easily given up. With Van Eck,
we agree that it is hard to “take seriously a conditional obligation if it cannot,
by way of detachment, lead to an unconditional obligation” [186, p. 263]. Hence,
given the intuitive appeal of (F-DET) and (D-DET), it seems that Chisholm’s
puzzle reappears in the conditional setting as a dilemma of commitment and
detachment. As this is clearly a problem for conditional logics, it need not
concern us here. For a more detailed discussion of Chisholm’s puzzle, and for
some attempts at solving it, see [8, 173].

As a final remark on Chisholm’s puzzle, note that, given the present level of
analysis, the puzzle loses (part of) its sting in a logic capable of accommodating

7One may feel that an important alternative formalization is missing, i.e. {Og, g ⊃ Ot,O(¬g ⊃
¬t),¬g}. However, it is readily seen that this formalization combines the disadvantages of
formalizations 2 and 3.
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OO-conflicts. For then the first formalization of premises (i)-(iv) is no longer
inconsistent, and one might argue that Jones is simply facing two conflicting
obligations here. On the one hand, he should tell his neighbours he is coming
due to his obligation in (i). On the other hand, he should not tell them he is
coming due to the fact that he does not go (iv). For a more detailed analysis of
the situation at hand, we need additional expressive resources.

2.4.2 Ross’ puzzle and free choice permissions

The following inference is SDL-valid:

OA ⊢SDL O(A ∨B) (2.10)

According to (2.10), if a certain state of affairs A is obligatory, then A ∨B too
is obligatory. For instance, if I ought to mail a letter, then I also ought to mail
the letter or burn it. Alf Ross felt that there is something paradoxical in this
inference, since there is a way of fulfilling the second obligation without fulfilling
the first one (namely to burn the letter without mailing it) [152]. Therefore Ross
and others concluded that (2.10) should not be a theorem of deontic logic.

(2.10) is valid in view of the CL-theorem A ⊃ (A ∨B), (NEC) and (K). To
say that OA implies O(A ∨B), then, appears no more paradoxical than to say
that A implies A ∨B. But is this sufficient to dismiss Ross’s paradox?

According to some, it is. Castañeda, for instance, argues that Ross’s puz-
zle arises from ‘semantical atomism’. Against such atomists, Castañeda argues
that no sentence is an island unto itself: “When one infers a conclusion one is
considering one member of a related set – and one must remember the premises,
or remember that the premises are still valid or true, or whatever property is
supposed to be preserved in inference” [43, pp. 64]. According to Castañeda we
must simply forget about Ross’s puzzle.

Von Wright is less pleased with easy dismissals of Ross’s puzzle, and relates
it to the problem of free choice permission. Ross again has argued that there is
a sense of permission (free choice permission) according to which from P(A∨B)
we are able to derive both PA and PB. When the waiter at a restaurant tells
you that “You may have steak or fish for lunch”, then, normally, it follows that
you may have steak for lunch. Similarly, it follows that you may have fish for
lunch. However, both inferences are SDL-invalid:

P(A ∨B) /⊢SDL PA (2.11)

P(A ∨B) /⊢SDL PB (2.12)

According to von Wright, (2.10) strikes us absurd because “We incline to think
of the obligatory as also permitted and we ‘naturally’ understand disjunctive
permissions as free choice permissions. This being so, Ross’s Paradox seems to
allow the inference from the obligatoriness of a certain action to the permittedness
of any other action” [193, p. 22]. In symbols, von Wright’s inference is that from
OA to PB. From OA it follows that O(A∨B) by (2.10). By (D), P(A∨B). Now
if P(A ∨B) were a free choice permission, it would follow that PB, contrary to
inference (2.12).
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Von Wright solves the apparent paradox by adopting a pluralist position. He
takes Ross’s puzzle to arise from a confusion between different concepts of per-
mission, namely the P-operator from SDL and a free choice permission operator
P′ for which (2.11) and (2.12) are valid:

The moral to be drawn from these considerations is that there are
several concepts of permission and obligation. The “paradoxes” arise
through a confusion on the intuitive level between different concepts.
When the concepts are clearly separated there are no “paradoxes”.
Their separation is achieved through the construction of a variety of
deontic logics. [193, p. 33-34]

Føllesdal and Hilpinen disagree. In [52], they argue that (2.10), (2.11), and
(2.12) may be explained by reference to general conventions regarding the use
of language. One such convention is that it is generally assumed that people
make as strong statements as they are in a position to make. Thus, if someone
wants another person to mail a letter, it is very awkward for her to say that it is
obligatory that the letter be mailed or burned, especially if the latter alternative
is forbidden. Similarly, they argue that the logical force of the word “or” in “You
may have steak or fish for lunch” is really the same as that of “and”. Thus, the
sentence should be formalized not as a disjunctive permission, P(A∨B), but as a
conjunction of two permissions, PA ∧ PB. For Føllesdal and Hilpinen, “There is
no need to invent special notions of permission and obligation on the basis of this
accidental interchangeability of the words ‘or’ and ‘and’ in ordinary language”
[52, p. 23].

It seems, then, that Ross’s puzzle can be resolved in various ways. With
Åqvist, we agree that:

Contrary to the view of its originator, the Alf Ross paradox does not
seem to be a serious threat to the very possibility of constructing a
viable deontic logic. But it usefully directs our attention to the am-
biguity of normative phrases in natural language as a possible source
of error and confusion – in viable deontic logics we should be able to
express, to do justice to, and to pinpoint such ambiguities. For this
reason I agree with von Wright in claiming that the puzzle deserves
serious consideration. [8, p. 179]

2.4.3 The good Samaritan

As formulated by Arthur N. Prior, the paradox of the good Samaritan is the
following:

[H]elping someone who has been robbed with violence is an act that
can only occur if the person has been so robbed (“x helps y who
has been robbed” necessarily implies “y has been robbed”); but the
robbery (being wrong) necessarily implies the sanction; therefore the
succor (since it implies robbery) implies the sanction, too, and is also
wrong. [148, p. 144]
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Where h abbreviates “x helps y who has been robbed” and r abbreviates “y
has been robbed”, Prior formalizes the good Samaritan paradox as follows, using
Anderson’s reduction from Section 2.2.4:

(i) “x helps y who has been robbed” necessarily implies “y has been robbed”
(◻(h ⊃ r))

(ii) It ought not be the case (is forbidden) that y has been robbed (◻(r ⊃ V))

But then, in view of the K-theorem

◻(A ⊃ B) ⊃ (◻(B ⊃ C) ⊃ ◻(A ⊃ C)) (2.13)

(iii) It ought not be the case (is forbidden) that x helps y (◻(h ⊃ V))

Surely, (iii) is a weird conclusion to draw from (i) and (ii).

In the non-Andersonian language of SDL, the good Samaritan paradox is
usually formalized as follows [7, 42, 126, 139]:

(i′) It is obligatory that x helps y who has been robbed (O(h ∧ r))

In view of (RM) and the CL-theorem (h ∧ r) ⊃ r, (i′) immediately gives us:

(ii′) It is obligatory that y has been robbed (Or)

A third formalization of the good Samaritan paradox is found in e.g. [105]:

(i′′) It is obligatory that x helps y who has been robbed (Oh)

(ii′′) y has been robbed (r)

Since h entails r (⊢ h ⊃ r), we can derive Or from Oh by (RM).

If the formalizations above are correct, then it is clear that the central prin-
ciple underlying this ‘paradox’ is (RM) or – in case of the first formalization –
its alethic counterpart (RM◻):8

If ⊢ A ⊃ B, then ⊢ ◻A ⊃ ◻B (RM◻)

However, there is something fishy about the above formalizations of the good
Samaritan puzzle. In each of these formalizations, the paradoxical effect that “it
is obligatory that y has been robbed” only occurs if the entire sentence “x helps
y who has been robbed” occurs within the scope of a modal operator.

Suppose now that we formalize the situation as follows:

(i′′′) If y has been robbed, then it is obligatory that x helps y (r ⊃ Oh)

(ii′′′) y has been robbed (r)

8Theorem (2.13) arises after applying (RM◻) and the alethic counterpart of (K) to the
CL-theorem (A ⊃ B) ⊃ ((B ⊃ C) ⊃ (A ⊃ C)).
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Then the paradox no longer arises. With Forrester, we agree that it feels more
natural to read the clause “who has been robbed” as outside the scope of the
O-operator [55].9

Are we then freed from all puzzles relating to the SDL-derivable rule (RM)?
Not yet, since in the very same paper in which Forrester showed that the good
Samaritan puzzle loses its bite, he goes on to develop an ‘adverbial’ variant in
which the problems centering (RM) reappear: the gentle murderer puzzle.

2.4.4 The gentle murderer

The gentle murderer puzzle arises from the following premises:

(i) It is obligatory that Smith not murder Jones (O¬m)

(ii) If Smith murders Jones, it is obligatory that Smith murders Jones gently
(m ⊃ Og)

(iii) Smith murders Jones (m)

Clearly,

(iv) If Smith murders Jones gently, then Smith murders Jones (⊢ g ⊃m)

From (ii) and (iii), we can derive Og by modus ponens (MP). From (iv), it
follows that ⊢SDL Og ⊃ Om by (RM). But then, by (MP) again, it follows that
it is obligatory that Smith murders Jones (Om). To make things worse, Om and
(i) cause full explosion by (O-EX). This is Forrester’s gentle murderer puzzle.

Castañeda famously called this puzzle “the deepest paradox of all” in deontic
logic, but he nonetheless proposed a solution for it [45]. Other solutions were
presented e.g. by Meyer [131] and by Sinnott-Armstrong [163]. The solutions
of Castañeda and Sinnott-Armstrong were questioned by Goble in [64]. Like
Forrester’s, Goble’s own solution to the gentle murderer involves rejecting (RM).
We feel, however, that this is too drastic. We come back this point in Section
3.2.2.2.

Despite the trouble it causes for SDL, two remarks will suffice to show that
the gentle murderer ‘paradox’ need not pose problems for us here. First, one
might argue that Smith is simply facing two conflicting obligations here. On the
one hand, Smith ought not to murder Jones, while on the other hand he ought
to murder Jones (albeit gently). Thus, Forrester’s paradox loses its sting in any
logic capable of accommodating conflicting obligations.

Second, if one feels intuitively unsatisfied by the dissolution of the gentle
murderer puzzle in conflict-tolerant deontic logics, there is still the possibility of
enriching SDL with degrees of obligation. In the resulting enrichment, Smith’s
obligation not to murder should carry more weight than his obligation to murder
gently. Moreover, the violation of the stronger obligation not to murder should
not free Smith from his weaker obligation to murder gently.10

9Forrester’s argument can be generalized to the epistemic variant of the good Samaritan
puzzle formulated by Åqvist in [7]. See [55] for some discussion.

10Alternatively, one might argue that a dyadic operator is needed for formalizing Smith’s
‘conditional’ obligation to murder gently, or that different ‘kinds’ of obligation are at stake here
(see [173]).
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2.4.5 Iterated deontic modalities

Iterated or nested deontic modalities are deontic operators that occur within the
scope of another deontic operator. The set of formulas in which such iterations
occur consists of those formulas that belong toWO′ , but not toWO. The problem
relating to iterated deontic operators is twofold. First, we need to know how
such formulas are to be interpreted. Second, we need to find out if there are
any theorems or ‘truths’ of deontic logic that pertain to the nesting of deontic
operators.

To see why the first point is important, it suffices to try and pronounce
(let alone interpret) a formula like OPOFOPA. But we need not consider such
complex iterations in order to realize that the interpretation of iterated deontic
modalities is ambiguous. Consider, for instance, the seemingly sensible statement
“Parking on highways ought to be forbidden”. Taking h to denote “parking on
highways”, the statement could be formalized as:

OFh (2.14)

If we accept equivalences (2.1)-(2.6) from Section 2.1.1, then by some simple
propositional manipulations (2.14) is equivalent to the formula

FPh (2.15)

In [120], Marcus argued that although (2.14) and (2.15) are equivalent assuming
CL and (2.1)-(2.6), their meaning is quite different. Whereas (2.14) describes
a desirable state of affairs (“It ought to be that . . .”), (2.15) describes the very
same state of affairs as if it already obtains (“It is forbidden that . . .”). The
conclusion seems to be that we cannot trust our pre-formal intuitions regarding
iterated deontic modalities.

Marcus’ confusion disappears if we only consider statements of the form “it is
obligatory that A”. Clearly, if a formula OA is read as “it ought to be that A”,
then O¬A should not be equivalent to FA if the latter is read as “it is forbidden
that A. For “it ought not be that A” is a very different statement from “it is
forbidden that A”. This is why we mentioned in Section 1.2.1 that we will not
read a formula OA as “it ought to be that A”, but rather as “it is obligatory that
A”.

The problem posed by Marcus was addressed in an agentive setting in [32,
197]. Although interesting because of the formalisms used there for representing
agency in deontic logic, we do not believe that agentive modalities are required
for addressing Marcus’ original problem of parking on highways. We simply need
to be aware of the ambiguity between statements of the form “it ought to be that
A” and statements of the form “it is obligatory that A”.

Depending on our interpretation of nested occurrences of deontic operators,
we might wonder if there are any theorems of deontic logic that concern iterated
modalities. Proposed candidates for such theorems include the schema (2.9) from
Section 2.2.4, according to which “It is obligatory that what is obligatory is the
case”. Prior, for instance, takes this schema to be intuitively acceptable [149].

Other candidate schemas include (2.7) and (2.8) from Section 2.2.4, as well
as for instance the schema

OOA ⊃ OA (2.16)
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The question whether or not to accept iterated modalities and (some) axiom
schemas pertaining to them bears influence on the topic of this dissertation. For
given a schema like (2.16) a formula OOA ∧ O¬A reduces to the OO-conflict
OA ∧O¬A. However, such questions are secondary to the more general question
which axioms pertaining to iterated deontic modalities should be valid in which
contexts, if we should at all allow for such iterations. As the latter question
remains largely unanswered, we will not say much about nested modalities in
the remainder. In Chapter 7 however, we come back to nested modalities in the
setting of multi-agent logics.

2.4.6 Permission

Remember from Section 2.4.2 that ‘permission’ is a very ambiguous term in our
natural language. With Stenius, we agree that “it is much more difficult to get an
intuitive grasp of “permission” than of “obligation”, or, above all, “prohibition””
[166, pp. 66-67]. Apart from free choice permissions, we can distinguish at least
two other senses of permission in our natural usage of the term.

The P-operator of SDL is typically conceived as a weak or negative permission
operator. In this sense of the term, a permission to A merely denotes the absence
of an obligation to the contrary. Thus, if P is an operator for weak permission,
then PA is logically equivalent to ¬O¬A.

As opposed to weak or negative permissions, philosophers also speak of strong
or positive permissions, i.e. permissions that are either explicitly stated as such, or
permissions that are derivable from other explicitly stated permissions or obliga-
tions. In case of a strong permission, the usual interrelations between obligations
and permissions (as displayed in the square of opposition at the beginning of this
chapter) break down.

In Section 6.2 we have much more to say on the distinction between weak
and strong permission, and define a logic that is capable of formalizing both
concepts. Regarding other notions of permission (e.g. the concept of free choice
permission from Section 2.4.2) we adopt a pluralist stance. Calculi of deontic
logic can be enriched at will with various conceptions of permission, depending
on the normative context for which they are devised. As long as we are aware of
which intuitive concept we are dealing with, there is no problem.

2.5 A first assessment of SDL

Some of the ‘puzzles’ mentioned above constitute no real problem for SDL (e.g.
Ross’ puzzle and the Good Samaritan). For others, we seem to need additional
expressive resources. Chisholm’s puzzle seems to suggest that we need a con-
ditional obligation operator, while the gentle murderer puzzle may be better
addressed in a language capable of expressing various degrees or kinds of obliga-
tion. Moreover, problems relating to the concept of permission seem to require
the definition of additional permission operators for strong permission, and per-
haps for free choice permission. We also noted that two of the more serious
‘paradoxes’, namely Chisholm’s puzzle and the gentle murderer, lose their bite
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(at least from a technical point of view) in systems capable of accommodating
OO-conflicts.

From the discussion in this chapter, we can extract two main drawbacks
of SDL. First and foremost, SDL is incapable of accommodating normative
conflicts due to its validation of (OO-EX) and (OP-EX). Second, SDL lacks the
expressive means to model some key features of our normative reasoning.

In the remainder of this thesis, we will tackle the first criticism. In chapters
5-7 we present a number of non-monotonic weakenings of SDL that overcome
this problem. Nonetheless, SDL will have an important role to play in this thesis.
Although its rules and axioms are not infallible, we argue in later chapters that
SDL functions as a standard of deduction for deontic logic, the inferences of
which have intuitive appeal and are valid in a defeasible manner.

The second drawback, concerning expressivity, can in principle be overcome
by enriching the language of SDL with additional expressive resources, e.g. addi-
tional obligation and/or permission operators, so as to tackle some of the puzzles
mentioned above. The resulting enrichments would still be ‘standard’ under
Åqvist’s umbrella conception from Section 2.2.4. As such, its lack of expressivity
need not be fatal to SDL, although, admittedly, there is much work to be done
in devising the appropriate enrichments.

SDL is an extremely simple and elegant tool for reasoning about norms. We
think it remains intelligible as a ‘standard’ system of deontic logic, provided that
we weaken it a bit by taking its inferences to hold in a defeasible manner, and
provided that we allow for it to be enriched with additional expressive resources
when required by the context of application at hand. For now, this suffices as a
first assessment of the standard system of deontic logic.





Chapter 3

Avoiding explosion

To see the harm of inconsistency,
imagine that you wake up with
contradictitis – a dreaded
condition that makes you believe
not A whenever you believe A
[. . . ] Contradictitis would be a
living hell

Harry Gensler [61, p. 30]

. Section 3.4 of this chapter is based on the paper A Unifying Framework for
Reasoning about Normative Conflicts (in Michal Pelǐs and Vı́t Punčochář
(eds.), The Logica Yearbook 2011 ) [27].

. I am indebted to Joke Meheus and Christian Straßer for valuable comments
on this chapter.

In Chapter 1 we showed that there are irresolvable normative conflicts. In
Chapter 2 it became clear that, when formalized as OO- or OP-conflicts, SDL
cannot accommodate normative conflicts. In this chapter, we extend the discus-
sion of Section 2.3 to deontic logic in general, and present some first proposed
solutions to the problems posed by normative conflicts in deontic logic.

In Section 3.1 we define two explosion principles that are more refined than
those presented in the previous chapter, and that will be very useful later on.
In Section 3.2 we discuss the main strategies for avoiding (deontic) explosion.
The list of approaches and systems evaluated in this chapter is not exhaustive.
For instance, we limit the discussion in Section 3.2 to monotonic proposals. The
discussion of technically more involving non-monotonic approaches is postponed
until later chapters.

In Section 3.3, we distil from the preceding discussion a number of design re-
quirements for devising conflict-tolerant deontic logics (CTDLs). Later proposals
will then be tested against these desiderata.

Constructing a CTDL can be done in many ways. From this multitude of
approaches we have no preference for one particular account. Instead, we embrace

35
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the pluralism and adopt a context-dependent approach. We conclude this chapter
with some thoughts on this form of logical pluralism (Section 3.4).

3.1 Deontic explosion

In Section 2.3.2 we stated the explosion principles (OO-EX) and (OP-EX), and
showed how they are SDL-valid in view of (D), (P), and (ECQ). A more re-
fined, yet equally unintuitive explosion principle is that of deontic explosion [69].
Deontic explosion occurs when from a normative conflict it follows that every-
thing is obligatory. The deontic explosion principle for OO-conflicts is given by
(OO-DEX). For OP-conflicts, it is given by (OP-DEX):

OA ∧O¬A ⊢SDL OB (OO-DEX)

OA ∧ P¬A ⊢SDL OB (OP-DEX)

Clearly, (OO-DEX) and (OP-DEX) are SDL-valid, since they are instances of
(OO-EX) and (OP-EX) respectively. What’s interesting about (OO-DEX) and
(OP-DEX), however, is that they also arise in logics weaker than SDL. If, for
instance, we were to remove (D) from SDL, (OO-DEX) would still be valid,
whereas (OO-EX) would not be.1

(OO-DEX) holds in any logic that validates all of CL, (NEC), and (K). From
the CL-theorem A ⊃ (¬A ⊃ B), it follows by (NEC) that ⊢SDL O(A ⊃ (¬A ⊃ B)).
By (K), we get ⊢SDL OA ⊃ O(¬A ⊃ B) Suppose now that OA. By (MP),
O(¬A ⊃ B). By (K), O¬A ⊃ OB. Suppose that O¬A. Then, by (MP) again, OB.

In Section 3.2, we present and discuss various ways of making sure that princi-
ples like (OO-DEX) and (OP-DEX) do not arise. Some clues as to how to proceed
are clear already: from every set of principles that gives rise to (OO-(D)EX) or
(OP-(D)EX), at least one principle must be restricted or given up in order to
obtain a conflict-tolerant deontic logic.

3.2 Strategies for avoiding explosion

In the literature on normative conflicts, there is a strong tendency to focus on
OO-conflicts. Presumably, this is due to the sense of moral urgency surrounding
inescapable conflicts between two or more (moral) obligations. This tendency is
reflected in the structure of this section, although we will occasionally extend the
discussion to other types of conflicts.

There are two main strategies for averting the validity of (OO-(D)EX). The
first is to enrich the formal language of SDL in order to distinguish between
various features in view of which normative conflicts arise. The second strategy
is to weaken SDL by rejecting or restricting some of its axiom schemas and/or
inference rules.

1SDL without (D) would just be the deontic variant of the basic normal modal logic K.
Thus, (OO-DEX) and (OP-DEX) are valid in any normal modal logic. Referring back to
the discussion in Section 2.2.4, it is now clear that (OO-EX) holds only in strongly normal
propositional monadic von Wright-type deontic logics, whereas (OO-DEX) holds in all normal
propositional monadic von Wright-type deontic logics.
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3.2.1 Formalizing normative conflicts in richer formal
languages

3.2.1.1 Relativizing deontic operators

In [44], Hector-Neri Castañeda proposes to use indexed deontic operators in order
to formalize normative conflicts. By relativizing the axioms of deontic logic to the
agents in view of which norms hold, he avoids difficulties with conflicting norms
– as long as those norms arise from different agents. Consider the following
example:

Example 11. (i) Insofar as you promised to Jones, it is obligatory that you wait
for Jones’ friend (Of). However, (ii) insofar as you promised to your wife, it is
obligatory that you do not wait for Jones’ friend (O¬f).

In formalizing (i) as Of and (ii) as O¬f , we end up with an OO-conflict,
which causes explosion in SDL. Moreover, we lose the information that the
obligation Of holds in view of your promise to Jones, whereas O¬f holds in
view of your promise to your wife. As a solution to these problems, Castañeda
suggested that we relativize our obligations and their logical properties to the
sources from which they arise. Following this suggestion, we can formalize (i) as
Ojf , and (ii) as Ow¬f , where the subscripts j and w denote ‘Jones’ and ‘wife’
respectively. Since in Castañeda’s system we can no longer employ (AND) for
aggregating obligations with different subscripts, explosion is avoided. Moreover,
the subscripting gives us a more informative formalization.

Castañeda’s proposal was taken up independently by Schotch and Jennings
in [157]. The method of adding sub- and/or superscripts to deontic operators
can also be used for indicating authorities, normative standards and/or interest
groups in view of which (conflicting) norms hold. In a multi-agent setting it
was followed by Kooi and Tamminga in [107]. The latter authors use indices for
representing bearers and interest groups. In a legal setting, the idea was taken
up by Herrestad and Krogh in [87], where deontic operators are relativized to
their bearers and counterparties.

Another way of dealing with normative conflicts by enriching the expressive
power of SDL is to introduce a preference ordering on our obligations and per-
missions, e.g. [81]. Doing this allows us to model situations in which more binding
obligations or permissions override less binding ones. Yet another extension of
SDL consists in making its deontic operators dyadic in order to properly express
under which conditions our obligations and permissions hold true (cfr. Section
2.4.1).

The main tenet of all these proposals is the following: in making our formal
language more expressive, we can distinguish in our formalization between dif-
ferent features of conflicting norms. In the words of Castañeda: “a conflict of
duties is the truth of a conjunction of the form OiA ∧OjB, where A and B are
at least causally incompatible and i ≠ j” [44, p. 264]. In the richer language,
formalizations of this kind no longer cause (deontic) explosion.

These enrichments are very successful in increasing the expressive power of
SDL. Furthermore, they effectively allow us to consistently model conflicts be-
tween norms of different hierarchies, norms issued by different authorities, norms
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arising from different normative standards, norms that hold in different circum-
stances, etc. However, two main problems remain.

The first problem is that in merely relativizing deontic operators we can no
longer aggregate obligations with different indices. Suppose, for instance, that we
use different indices for representing the sources in view of which your promises
arise. Consider the following example.

Example 12. Inasmuch as you promised to Jones, it is obligatory that you invite
him for your birthday party (Ojj). Moreover, inasmuch as you promised to
your wife, it is obligatory that you do not invite both Jones and Smith for your
birthday party (Ow¬(j ∧ s)).

Provided that this is all the information available to you, it makes sense for
you to conclude that you ought not invite Smith for your birthday party (for
this is the only way for you to fulfill the promises you have made to Jones and
to your wife). However, if, as in the example, subscripts are added to your obli-
gations, and there is no way of aggregating obligations with different subscripts,
the subscripted logic will not lead you to this conclusion.

The example illustrates that if we want to use indices for consistently allowing
for normative conflicts, and if we want our logic to be capable of modeling actual
normative reasoning, we will also need some sort of ‘overarching’ aggregation rule
for aggregating obligations with different subscripts. Clearly, such a rule must
somehow be restricted so as to avoid the aggregation of obligations that are, or
that turn out to be, conflicting. This is a difficult, but not unsolvable problem
which we will tackle in Section 5.2.

The second (and worse) problem is that the richer formal languages discussed
above are still insufficiently rich for accommodating all normative conflicts. As
explained in Section 1.6.1 normative conflicts may be irresolvable for reasons of
symmetry. Conflicts may arise in which there are no relevant differences between
each of the alternatives. In such cases, no subscripts/indices are available for
distinguishing between different features of conflicting obligations. In the words
of Forrester: “The promise of subscripting then proves to be an illusion. Sub-
scripting does not prevent irresoluble conflicts of obligation from occurring, nor
does it explain away all of the conflicts that seemingly do occur” [56, p. 41].

We conclude with a remark arising from practical, rather than philosophical
considerations. There are contexts of application in which we simply lack the
necessary formal means for distinguishing between various features of conflict-
ing obligations. In a legal context, for instance, existing principles such as the
aforementioned lex specialis, lex posterior, etc. may not be of any help. By the
complexity of the world and by mere human mistakes, conflicts may arise be-
tween norms promulgated at the same time, by the same authority, etc. In the
words of Alchourrón and Bulygin:

Even one and the same authority may command that p and that not p
at the same time, especially when a great number of norms are enacted
on the same occasion. This happens when the legislature enacts a very
extensive statute, e.g. a Civil Code, that usually contains four to six
thousand dispositions. All of them are regarded as promulgated at
the same time, by the same authority, so that there is no wonder
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that they sometimes contain a certain amount of explicit or implicit
contradictions. [3, pp. 112-113]

3.2.1.2 Alethic modalities

Many normative conflicts arise from the impossibility to fulfill two or more
obligations. This has led some philosophers to make use of both deontic and
alethic modalities in formalizing normative conflicts. A conflict is then repre-
sented as a situation in which it is obligatory that A1 and . . . and obligatory
that An, but in which it is impossible to realize all of A1, . . . ,An. In symbols:
OA1 ∧ . . .∧OAn ∧¬◇ (A1 ∧ . . .∧An) (where, following the usual convention, ◇A
abbreviates “it is possible that A”).

Formalizations that make use of the alethic operator ◇ were presented in e.g.
[88, 164, 203]. Bernard Williams in particular preferred to formalize normative
conflicts by making use of the diamond, at least in a moral context. According to
Williams, the basis of moral conflicts is contingent in the sense that it is the world,
not logic, that makes it impossible for two (or more) conflicting obligations to be
satisfied; we can consistently imagine a state of affairs in which they could all be
satisfied, but the present factual situation makes it impossible to do so. Williams’
concern lies only with conflicts that have a contingent basis, with conflict via the
facts, and not with conflicts between logically incompatible obligations:

I shall further omit any discussion of the possibility (if it exists) that
a man should hold moral principles or general moral views which
are intrinsically inconsistent with one another, in the sense that there
could be no conceivable world in which anyone could act in accordance
with both of them; as might be the case, for instance, with a man
who thought that he ought not to go in for any blood-sport (as such)
and that he ought to go in for foxhunting (as such). I doubt whether
there are any interesting questions that are peculiar to this possibility.
[203, p. 108]

Williams argues that, in case two moral obligations conflict, a situation should
always be conceivable in which the very same obligations can be consistently
satisfied. Moral conflicts between logically incompatible obligations, if they exist
at all, are at best uninteresting.

Understood in this way, moral conflicts can take two basic forms: “One is
that in which it seems that I ought to do each of two things, but I cannot do
both. The other is that in which something which (it seems) I ought to do in
respect of certain of its features also has other features in respect of which (it
seems) I ought not do it”[203, p. 108].

Next, Williams argues that conflicts of the second form are reducible to con-
flicts of the first form. He illustrates this reduction by means of Example 1 from
Section 1.3.1. In this example, the roots of the conflict are exposed by acknowl-
edging that the conflict arises from the contingent incompatibility of Agamem-
non’s duties as a commander, respectively as a parent. Given this acknowledg-
ment, Williams believes we can formalize Agamemnon’s dilemma by making use
of alethic modalities: “here again there is a double ought: the first, to further
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the expedition, the second, to refrain from the killing; and that as things are
he [Agamemnon] cannot discharge both” [203, p. 119]. Seen in this way, the
real roots of OO-conflicts are no longer concealed, and a more realistic picture
is offered of how the situation is. As an upshot, moral conflicts need no longer
wear the form of an inconsistency of the type “ought-ought not”, and all moral
conflicts are, ultimately, of the form OA1 ∧ . . . ∧OAn ∧ ¬◇ (A1 ∧ . . . ∧An).

Let us point to two extra considerations that arise in view of Williams’ char-
acterization of moral conflicts. First, it is important to realize that Williams’
characterization is not generalizable to normative contexts in general. In legal
contexts, for instance, it is perfectly possible that, in some specific situations,
the law considers it mandatory for someone to act in two logically incompatible
ways. Similarly, an authority may command someone to do the logically impos-
sible. Williams does not argue against (the use of) constructing formal calculi
that consistently allow for the presence of conflicts like these, which arise through
human fault. Instead, Williams claims that there is nothing morally relevant to
say in such cases.

Second, an extra difficulty arises from the use of the diamond operator: a new
argument for explosion becomes available in view of the principle that ‘ought’
implies ‘can’ (OIC):

OA ⊃◇A (OIC)

Suppose that you are facing two obligations OA and OB, and that it is impossible
for you to fulfill both obligations (¬◇(A∧B)). By (AND), we can derive O(A∧B)
from OA and OB. By (OIC) and CL, however, we can derive ¬O(A ∧B) from
¬◇ (A ∧B), which contradicts O(A ∧B). Hence, if (OIC) is a valid principle of
deontic reasoning, then moral conflicts as formalized by Williams cause explosion
all over again:

OA,OB,¬◇ (A ∧B) ⊢ � (◇-EX)

Altogether, Williams’ formalization of normative conflicts is restricted in scope
(i.e. confined to the moral context) and – in combination with (OIC) – explosive
when combined with SDL. In Chapter 4, we use a logic that makes use of alethic
modalities as an illustration of the standard format for adaptive logics. In Section
5.1 we come back to Williams’ approach and discuss his solution for avoiding the
validity of (◇-EX).

3.2.2 Weakening SDL

Although they succeed in consistently formalizing many instances of normative
conflicts, the approaches presented in Section 3.2.1 cannot accommodate each
and every such instance. This is due to their verification of full SDL.

Instead of enriching the language of SDL in order to distinguish between dif-
ferent features of conflicting norms, we can also weaken SDL in order to increase
the degree of conflict-tolerance of our logic. We already noted, for instance,
how removing (D) from SDL results in a logic that invalidates (OO-EX). In this
section, we evaluate some suggestions along this line. In the literature on SDL-
weakened deontic logics we can distinguish between three dominant strategies
for accommodating normative conflicts. The first strategy consists in restricting
the aggregation schema (AND). The second strategy proceeds by restricting the
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inheritance principle (RM), and the third strategy is that of replacing CL with
a weaker logic that invalidates (ECQ), and by building a deontic logic on top of
this weaker (paraconsistent) alternative. After presenting these main strategies,
we also consider some hybrid proposals made in the literature.

3.2.2.1 Weakening aggregation

Restricting or rejecting the aggregation schema (AND) is an intuitive solution
for accommodating normative conflicts in deontic logic. Bernard Williams, for
instance, argued that an agent facing two conflicting obligations thinks that she
should fulfill each of these obligations, but not both of them [203, p. 120]. Lou
Goble too stated that giving up (AND) is “perhaps the most natural suggestion
for avoiding deontic explosion” [69, p. 466]. In several papers Goble advocated
the use of one particular non-aggregative logic, namely the logic P [65, 66, 67].
P is a very well-behaved system and has a natural interpretation in a Kripke-
like semantics.2 Its semantics was constructed independently from Goble by
Schotch & Jennings [157]. A system closely akin to P was also axiomatized by
van Fraassen in [58].3

For the language WO∖P, P is axiomatized by adding to CL the rules (NEC),
(RM), and (PN):

If ⊢ A, then ⊢ ¬O¬A (PN)

Where Γ ⊆WO∖P, we write Γ ⊢P A to denote that A is P-derivable from Γ, and
⊢P A to denote that A is P-derivable from the empty premise set.4

Semantically, a P-model M is a quadruple ⟨W,R, v,w0⟩ where W is a set of
possible worlds, R is a non-empty set of serial accessibility relations R on W ,
v ∶ Wa ×W → {0,1} is an assignment function, and w0 ∈ W is the designated
world. The valuation vM defined by the model M is characterized by adding the
clause (CO′) to the CL-clauses (Ca)-(C≡) from Section 2.2.2:

(CO′) vM(OA,w) = 1 iff, for some R ∈ R, vM(A,w′) = 1 for all w′ such
that Rww′

M is a P-model of Γ iff M ⊧ A for all A ∈ Γ. A P-model M verifies A iff
vM(A,w0) = 1, and Γ ⊧P A iff all P-models of Γ verify A.

A permission operator P for the logic P is defined as PA =df ¬O¬A. In [65],
Goble proved soundness and (weak) completeness for P.

Next to its elegance and simplicity, a main advantage of P is that it invalidates
(OO-DEX):

OA ∧O¬A ⊬P OB (3.1)

A first disadvantage is that P is not fully conflict-tolerant. Suppose, for instance,
that OA ∧ P¬A. Due to the definition of its P-operator, P¬A is P-equivalent to
¬O¬¬A. Due to (RM) and the CL-theorem A ⊃ ¬¬A, we can derive O¬¬A from

2Goble also proposed a preferential semantics for P in [65, 66].
3The main difference between van Fraassen’s system and P is that the latter validates O⊺

for all tautologies ⊺, while the former does not (see also [65, footnote 3]).
4Goble is only interested in the theorems of his logic, not in a consequence relation. As

we are mainly interested in the consequence relation, we define one for P. Semantically, we
slightly modify Goble’s semantics in such a way that we introduce a designated world in the
models.
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OA, and we obtain a contradiction. Since P contains all of CL, it follows that
�. Hence, (OP-EX) is valid in P.

A second disadvantage of P is that it is too weak to account for our everyday
deontic reasoning. As an illustration, consider the following example by Horty
[91]:

Example 13. An agent, Smith, is confronted with two obligations. First, it is
obligatory that Smith fight in the army or perform alternative service to his
country (O(f ∨s)). Second, it is obligatory that Smith does not fight in the army
(O¬f). The first obligation follows from Smith’s duties as a citizen, whereas
the second arises from his pacifist convictions. No conflict seems to be present
between Smith’s obligations: he can safely fulfill both simply by performing
alternative service to his country. Hence, it is obligatory that Smith perform
alternative service to his country (Os).

The inference drawn in Example 13 is SDL-valid: O(f ∨ s),O¬f ⊢SDL Os.
However, P invalidates the inference: O(f ∨ s),O¬f /⊢P Os.

Making abstraction from the fact that P cannot accommodate OP-conflicts,
its main problem appears to be that if (AND) is rejected in its entirety, we end
up with a logic that is too weak. This led Horty to the observation that:

Apparently, what is needed is some degree of agglomeration [aggrega-
tion], but not too much; and the problem of formulating a principle
allowing for exactly the right amount of agglomeration [aggregation]
raises delicate issues that have generally been ignored in the litera-
ture, which seems to contain only arguments favoring either wholesale
acceptance or wholesale rejection. [95, p. 580]

In his [69], Goble is sceptical of the very idea of an aggregation principle that
allows for “exactly the right amount of aggregation”. He discusses various ap-
proaches (including an alternative presented by Horty), and comes to the conclu-
sion that none of them lives up to this daunting task. Below, we briefly discuss
two such proposals together with Goble’s criticism.

First, suppose that we restrict (AND) by imposing a further consistency re-
quirement which results in the ‘consistent aggregation’ rule (CAND):

If /⊢ A ⊃ ¬B, then (OA ∧OB) ⊃ O(A ∧B) (CAND)

Although this suggestion appears natural, it is much too strong. In the presence
of a normative conflict OA ∧O¬A and some random formula B such that /⊢ ¬B,
(CAND) allows one to derive O(A ∧ (¬A ∨B)), from which follows OB. Hence
(CAND) gives rise to the explosion principle

If /⊢ ¬B, then OA,O¬A ⊢ OB (3.2)

Second, Goble discusses the weakened aggregation rule of permitted aggrega-
tion (PAND):

P(A ∧B) ⊃ ((OA ∧OB) ⊃ O(A ∧B)) (PAND)

Instead of allowing aggregation for obligations that are jointly compatible (as is
the case for (CAND)), this alternative allows aggregation for obligations that are
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jointly permissible. Unfortunately (PAND) suffers from problems very similar
to those of (CAND). Whereas in the case of (CAND) explosion follows from
an OO-conflict OA∧O¬A in the presence of some contingent formula ¬B, in the
case of (PAND) explosion arises when faced with an OO-conflict OA∧O¬A in the
presence of some formula B such that B is permitted. To see why, note that PB ≡
P((A∨B)∧(¬A∨B)), that from OA it follows that O(A∨B) and that from O¬A
it follows that O(¬A∨B). Hence, by (PAND), we obtain O((A∨B)∧ (¬A∨B))
(which is equivalent to OB) from OA ∧O¬A. This yields

OA,O¬A ⊢ PB ⊃ OB (3.3)

Both proposed weakenings ((CAND) and (PAND)) illustrate that avoiding
unwanted consequences when weakening the aggregation rule of SDL is very dif-
ficult. Goble discusses two more classes of solutions to the aggregation-problem.
The first is that of ‘constrained consistent aggregation’, as proposed by Horty
[91, 92, 95] and van Fraassen [58].5 As this approach is non-monotonic and tech-
nically more involving, we postpone a more detailed discussion of it until Section
5.3. The second solution is that of ‘two-phase deontic logic’, as proposed by van
der Torre and Tan [185]. We discuss this proposal in Section 3.2.2.4.

In [63], Goble proposes a restricted aggregation schema that allows for the
application of (AND) unless one of the formulas to be aggregated or a subformula
of one of these formulas is ‘tainted’ by an OO-conflict. Let UA = ¬(OA ∧O¬A)
abbreviate that A is unconflicted. Where B1, . . . ,Bn are all subformulas of A
(including A itself), we write fA to abbreviate the conjunction UB1 ∧ . . .∧UBn.
The ultra-unconflicted aggregation schema (UU-AND) is given by:

f(A ∧B) ⊃ ((OA ∧OB) ⊃ O(A ∧B) (UU-AND)

As opposed to (CAND) and (PAND), (UU-AND) seems to do the job. Never-
theless, (UU-AND) is not a very ‘natural’ aggregation rule. In complex settings,
it requires a lot of calculations to know whether or not we can aggregate two
obligations. We return to this point in Section 3.3.2.

3.2.2.2 Weakening inheritance

A second way of weakening SDL so as to make it more conflict-tolerant is to
weaken the inheritance principle (RM). Like the first one, this approach is ‘clas-
sical’ in the sense that full CL remains valid in the resulting weakened logic.

A solution along this line was explicitly advocated by Goble in [68, 69], where
he defined his family of DPM-systems. On the one hand, weakening (RM) seems
intuitive due to the ‘paradoxes’ that hinge on this principle (cfr. Section 2.4). On
the other hand, rejecting all instances of (RM) results in a very weak logic. The
inference from O(A ∧B) to OA, for instance, fails when (RM) is given up.

In the DPM-systems, (RM) is replaced by a rule of permitted inheritance
(RPM):

If ⊢ A ⊃ B, then ⊢ PA ⊃ (OA ⊃ OB) (RPM)

5A conditional version of the proposals of Horty and van Fraassen was presented by Hansen
in [75].
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Moreover, (D) is invalid in all members of the DPM-family. In order to apply the
weakened inheritance principle (RPM) to a CL-theorem A ⊃ B and an obligation
OA, the logic requires that A is permitted.6 For instance, in order to apply
(RPM) to O(p ∧ q) in order to derive Oq, we also need P(p ∧ q). Since (P) is
DPM-valid, this means that the obligation O(p ∧ q) cannot be involved in a
normative conflict whenever (RPM) is applicable.

In cases in which the required permission statements are not derivable from
the premises by means of DPM, we are faced with a dilemma. If we would add
these permissions to the premise set, we run the risk of causing explosion. If we
do not add them, then (RPM) is not applicable and we end up with a very weak
consequence set. This is suboptimal for various reasons, which we will discuss in
more detail in Section 3.3.3.

The problems concerning the applicability of (RPM) are resolved by the adap-
tive extensions of some systems in the DPM-family proposed in [175].

3.2.2.3 Going paraconsistent

The ‘classical’ approaches presented in Sections 3.2.2.1 and 3.2.2.2 may succeed
in making deontic logic OO-conflict-tolerant, but OP-conflicts cannot be consis-
tently allowed for by merely restricting or even rejecting (AND) and/or (RM).
The reason is that, in view of the interdefinability principle (P) and CL, every
OP-conflict PA ∧ O¬A is equivalent to a contradiction ¬O¬A ∧ O¬A. Thus, ei-
ther the interdefinability of O and P must be given up in order to accommodate
OP-conflicts, or we need a logic that invalidates certain axiom schemas and/or
rules of CL.

Moreover, remember from Section 2.3.2 that, if full CL is kept valid, either
(P) or (D) must be restricted or given up in order to avoid (OO-EX). In view
of these considerations it seems reasonable to try and weaken CL in order to
consistently allow for the presence of both OO- and OP-conflicts. The most
obvious way to do so is to weaken the CL-negation to a paraconsistent negation
connective. A logic is paraconsistent if it invalidates the schema (ECQ), i.e. if it
consistently tolerates contradictions.

Several authors have presented paraconsistent deontic logics in order to ac-
count for normative conflicts. Da Costa & Carnielli [48], McGinnis [125, 124]
and Priest [145] reject (ECQ) by weakening the negation of CL. Routley &
Plumwood [154] reject (ECQ) by using a relevant implication instead of material
implication.

An extra argument in favor of a paraconsistent approach is that paraconsis-
tent deontic logics are capable of tolerating contradictory permissions and con-
tradictory obligations: formulas of the forms PA∧¬PA or OA∧¬OA respectively.
Contradictory obligations and permissions may look like exotic beasts, but in
certain contexts of application (e.g. legal contexts, logics of command) it seems
reasonable to take into account the possibility of contradictory norms. Consider
the following example from [145, pp. 184-185].

6In some other systems in the DPM-family, this is also required for applying a weakened
aggregation principle, cfr. Section 3.2.2.4.
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Example 14. Suppose that, in some country, (i) women are not permitted to vote,
and (ii) property holders are permitted to vote. Suppose further that (possibly
due to a recent revision of the property law) women are allowed to hold property.
Then (i) and (ii) cause an inconsistency in case there exists a female property
holder, since the latter is both permitted and not permitted to vote (Pv ∧¬Pv).7

The drawback of the paraconsistent deontic logics presented in [48, 145, 154]
is that they are rather weak. For instance, they cannot account for Example 13
from Section 3.2.2.1. The reason is that many paraconsistent logics invalidate
principles like disjunctive syllogism (from A ∨B and ¬A to derive B), contrapo-
sition (from ¬B and A ⊃ B to derive ¬A), and even modus ponens.

In Chapters 6 and 7 we present some adaptive logics with a paraconsistent
negation connective. These logics are both fully conflict-tolerant and capable of
accounting for Example 13 and other ‘toy’ examples from the literature.

3.2.2.4 Mixed proposals

Of course, a CTDL need not merely weaken (AND), (RM), or CL. Some authors
have suggested combined proposals. As mentioned, van der Torre and Tan opted
for such an approach in [185]. In their ‘two-phased’ system of deontic logic,
two O-operators O1 and O2 are distinguished. (CAND) applies to the first,
whereas (RM) applies to the second. Both operators are related by the schema
O1A ⊃ O2A.

For Example 13, the resulting two-phased system yields O1(f ∨ ¬s),O1¬f ⊢
O2s, whereas O1(f ∨¬s),O1¬f ⊬ O1s and O2(f ∨¬s),O2¬f ⊬ O2s. With Goble,
we agree that there is a certain ambiguity about this two-phased approach, and
that it is not at all obvious

that there is any such ambiguity of ‘ought’ as it occurs in the discourse
that gives us the argument about Smiths service and inclines us to
accept its being valid. Nor is it obvious that, as that argument is
given, the premises should be taken in the first of the two senses
rather than the second, even while the conclusion is taken in the
second and not the first. [69, p. 471]

In the very same paper, Goble presents his own ‘mixed’ variant. It concerns the
logic DPM.2 of his DPM family (cfr. Section 3.2.2.2) in which both (RM) and
(AND) are restricted. More precisely, (RM) is restricted to (RPM), while (AND)
is restricted to (PAND).8

DPM.2 faces pretty much the same problem as its relatives in the DPM-
family. In order to apply the weakened inheritance principle the user has to
“manually” add permission statements. For DPM.2, we need to do this not
only in order to apply (RPM), but also in order to apply (PAND). As promised,
we will return to this problem in Section 3.3.3.

7In line with the discussion in Chapter 6, the P-operator should be interpreted prescriptively
here.

8In [175] a variant of this logic is presented in which (PAND) is replaced by the schema
(PAND’), (OA ∧OB ∧ PA ∧ PB) ⊃ O(A ∧B).
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This concludes our overview of the different strategies for devising CTDLs.
The discussion so far is restricted to monotonic solutions. In later chapters, we
will assess the more involving (yet more promising) non-monotonic CTDLs. Why
a non-monotonic approach is more promising than a monotonic one, will be clear
by the end of this chapter.

3.3 Design requirements

Before we move on to present the standard format for adaptive logics and the
CTDLs defined within this framework, we round up the above discussion by
stating three desiderata for CTDLs.

3.3.1 Non-explosiveness

Clearly, any adequate CTDL should invalidate principles like (OO-EX) and (OO-
DEX). Depending on the context, it might also be required to invalidate (OP-EX)
and (OP-DEX). However, the cases of (CAND) and (PAND) show that we must
also be on guard for ‘weaker’, more refined explosion principles. A logic that
merely restricts (AND) to (CAND), validates the inference (3.2). A logic that
merely restricts (AND) to (PAND), validates the inference (3.3). Both of these
inferences pose serious problems for the systems in question.

In [174], some other more refined explosion principles were specified that can
serve as benchmarks for measuring the conflict-tolerance of various deontic logics.
Here are some examples:

OA,O¬A ⊢ OB ∨O¬B (3.4)

OA,O¬A ⊢ OB ∨ PB (3.5)

OA,O¬A ⊢ OB ∨ ¬O¬B (3.6)

OA,O¬A ⊢ PB (3.7)

A further requirement is to demand not just that there is a non-trivial model that
validates the conflicting norms, but to also impose certain normality conditions
on this model. For instance, non-explosive models should also validate a non-
conflicting obligation, e.g. OC and ¬O¬C, and/or a non-conflicting permission,
e.g. PD and ¬O¬D, and/or there should be a proposition E such that neither
E nor ¬E is obligatory, i.e. ¬OE ∧ ¬O¬E, and/or there is a proposition F such
that both, F and ¬F , are allowed, i.e. PF ∧ P¬F . These conditions obviously
hold for the real world, so there should also be interpretations of deontic conflicts
that satisfy these criteria. We denote such refinements by adding the additional
requirements in set brackets after the basic principle, for instance, where γ =
{¬OE,¬O¬E} and γ′ = {OC,¬O¬C,PD,¬O¬D,¬OE,¬O¬E,PF,P¬F},

{OA,O¬A} ∪ γ ⊢ OB ∨ PB (3.8)

{OA,P¬A} ∪ γ′ ⊢ OB ∨ PB (3.9)

Indeed, any truly conflict-tolerant logic should be tolerant concerning any of these
principles.



3.3. DESIGN REQUIREMENTS 47

Another more fine-grained explosion principle involves the further require-
ment that non-explosive models invalidate the derivation of OB for any contin-
gent formula C. For instance,

If /⊢ C, then {OA,O¬A} ∪ γ ⊢ OB ∨ PB (3.10)

There is no clear-cut test that a ‘conflict-tolerant’ deontic logic does not validate
some very sophisticated, counter-intuitive explosion principle. The best we can do
is to test any proposed candidate system not only for the validity of the principles
(OO-EX), (OP-EX), (OO-DEX), and (OP-DEX), but also for the validity of more
refined inferences like (3.4)-(3.10) above.

3.3.2 Non-monotonicity and inferential strength

A disadvantage of the systems presented in Section 3.2.2 is that, although capable
of tolerating various types of normative conflicts, these systems are too weak to
account for our natural deontic reasoning. All of the CTDLs discussed above are
monotonic (remember that a logic L is monotonic iff, for all sets of L-wffs Γ and
Γ′, CnL(Γ) ⊆ CnL(Γ ∪ Γ′)).

Consider now the following inferences:

(a) O(¬p ∨ q) (a’) O(¬p ∨ q)
(b) Op (b’) Op
(c) Oq (c’) O¬p

(d’) Oq

On the one hand, the inference from (a) and (b) to (c) seems reasonable as
an instance of the deontic disjunctive syllogism (DDS) schema,

O(¬A ∨B),OA ⊢ OB (DDS)

In Example 13 for instance, we wanted to apply this inference in order to attain
the intuitively correct conclusion. The inference from (a’)-(c’) to (d’) on the
other hand, seems dubious. In order to derive (d’), we need to rely essentially
on premise (b’), which is directly involved in an OO-conflict. In view of the
conflicting obligations at lines (b’) and (c’), it seems better not to derive Oq for
at least two reasons.

First, we do not want to draw any conclusions from conflicting obligations.
Instead, we want to isolate whichever premises behave abnormally, and use only
the non-conflicting part of our premise set for inferring new conclusions.

The second reason is of a technical nature. Note that in any logic which
validates the deontic addition (DA) schema,

OA ⊢ O(A ∨B) (DA)

premise (a’) is derivable from (c’). If a logic validates both (DA) and (DDS),
then (d’) is derivable from (a’) and (b’). But then (OO-DEX) is valid in this
logic, since we have derived (d’) from (b’) and (c’).
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If normative conflicts are present, there is a trade-off between isolating con-
flicts in order to avoid explosion on the one hand, and allowing for those inferences
that are intuitive in the absence of conflicts on the other hand. Some inferences
sometimes ought to be blocked in order to avoid explosion, while at other times
their application is harmless. The application of (DDS) to derive Oq, for instance,
is harmless if all we know is that Op and O(¬p ∨ q). But it is problematic if we
also know that O¬p.

If we want to infer (c) from (a) and (b) without being able to infer (d’) from
(a’)-(c’), then we need a non-monotonic logic, i.e. a logic for which some con-
clusions derivable from a premise set may not be derivable anymore if further
premises are added. Only non-monotonic logics can overcome the trade-off be-
tween the isolation of conflicts and the inferential power necessary to model our
everyday normative reasoning.

In general, non-monotonic logics are better capable of dealing with conflicts
due to their flexibility when new information is added to the premises. In Chap-
ters 5-7 we present a number of non-monotonic CTDLs devised within the adap-
tive logics framework for defeasible reasoning, and compare these with other
non-monotonic approaches from the literature.

3.3.3 User-friendliness

In Section 3.2.2.2 we already mentioned the suboptimality of the need to ‘manu-
ally’ add formulas to the premise set in order for further information to become
available. Here, we further explain and motivate this claim, and illustrate it by
means of the DPM logics from Section 3.2.2.2.

In all interesting cases, determining which statements can safely be added
‘manually’ to a set of premises (that is, in such a way that no explosion follows)
requires reasoning. Suppose, for instance, that O(p ∧ q) and that P(p ∧ q) is
not derivable from the premise set. Then Oq is not DPM-derivable from the
premises, unless we add P(p ∧ q) so that we can apply (RPM) to O(p ∧ q). But
adding this statement is a non-trivial deed to say the least, since it might give
rise to an inconsistency when conjoined with the other premises.

The application of (RPM) is especially problematic in cases where the premises
are complex, plentiful, and/or tightly interwoven. In such complicated setups it
might not be obvious at all that for instance OA ∧ O¬A is derivable. However,
suppose that in this case the user naively added PA to the premises in order to
apply (RPM) to OA. Since in the DPM systems PA is equivalent to ¬O¬A the
user gives way to explosion by adding this permission to the premise set.

In short, the reasoning required for a sensible application of the inheritance
principle falls partly outside the scope of the logic. Whenever the required per-
mission statements are not derivable from the premises, additional consistency-
checks are needed in order to be able to apply (RPM) without running the risk
of causing explosion.

Ideally, we would like the logic to be more ‘user-friendly’ and do this reasoning
in our place.
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3.4 Logical pluralism

The aim of this thesis is not to present and defend one particular conflict-tolerant
deontic logic that allows for the consistent possibility of all types of normative
conflicts. We believe instead that the adequacy of a given CTDL is a context-
dependent matter: both its rules of inference and its degree of conflict-tolerance
depend on the concrete application of the logic. Let us illustrate this claim by
means of three examples, each of which is situated in a different ‘deontic’ context.

(1) As a first example, consider a moral context. In discussions on moral
dilemmas, philosophers have typically focussed on conflicting obligations. Moral
dilemmas are conceived as situations in which an agent ought to adopt each of
two or more alternatives which are equally compelling from a moral point of view,
and in which the agent cannot do both (or all) of the actions [164].

In this context, there is nothing particularly ‘dilemmatic’ about an OP-conflict
(here, the agent can still safely fulfill all of her moral requirements, i.e. all of her
obligations). Thus, a CTDL for modeling moral dilemmas need not necessarily
account for the possibility of OP-conflicts.

How should SDL be weakened in this context? One suggestion is to reject
or restrict the aggregation schema (AND). In the moral context, (AND) was
disputed (amongst others) by Bernard Williams, who argued that an agent facing
conflicting obligations thinks that she should fulfill each of the obligations, but
does not think that she should fulfill all [203].

(2) Next, consider the context of normative systems. When talking about
norms belonging or not belonging to such a system, we use norm-propositions
(cfr. Section 1.2.2). Thus, formulas of the form OA [PA] are interpreted as “there
exists a norm to the effect that A is mandatory [permitted]”. In Section 6.2, we
argue that normative systems often contain irresolvable conflicts between norms,
and that these conflicts can be formalized as OO- or OP-conflicts (see also [1, 2]).

In this context, a formula ¬Op [¬Pp] denotes the absence of a norm to the
effect that p is mandatory [permitted].9 Whereas a normative system may very
well contain both a norm to the effect that p is mandatory as well as a norm to
the effect that ¬p is mandatory or permitted, it is less clear how such a system
could both contain and not contain a norm to the effect that p is mandatory or
permitted.10 Thus it is reasonable to construct a logic of normative systems that
takes into account the possibility of OO- and OP-conflicts, but not the possibility
of contradictory norms.

Due to the possibility of OP-conflicts and the specific interpretation of the
deontic operators in this context, a concrete CTDL for normative systems should
invalidate the interdefinability schema (P) [192]. In Section 6.2 we further de-
fend and illustrate the claims made here, and present a concrete CTDL that
accommodates OO- and OP-conflicts and that invalidates (P).

(3) As a final illustration, consider the logic of commands. Since it is possible
for a (confused) authority to assert that p is obligatory, and also that ¬p is

9Formulas of the form PA are interpreted here as strong or positive permissions, in accor-
dance with their interpretation in [1].

10Exceptions can be made, for instance, when one of two parties argues that system S does
contain a norm to the effect that A is permitted, whereas the other argues that S doesn’t
contain such a norm. However, such a context is different from the one discussed here.
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obligatory or permitted, OO- and OP-conflicts should be tolerated. Moreover,
assuming the validity of (P), we should allow for the possibility of contradictory
obligations and permissions in this setting, since a formula OA∧P¬A is equivalent
to OA ∧ ¬OA and ¬P¬A ∧ P¬A in view of (P).11 In Section 6.1, we present a
CTDL that is fully conflict-tolerant in the sense that it tolerates OO-conflicts, OP-
conflicts as well as contradictory obligations and permissions. This logic weakens
SDL by turning its classical negation into a paraconsistent one, as discussed in
Section 3.2.2.3.

One need not agree with all the details in illustrations (1)-(3) in order to
be convinced by the main argument, namely that different normative contexts
require different CTDLs. From the illustrations, it is also clear that the degree of
conflict-tolerance of a given CTDL, i.e. the variety of types of normative conflicts
that the CTDL should consistently allow for, is also context-dependent.

The remarks made here on logical pluralism partly answer the questions raised
in point (i) of Section 1.6.2. Depending on the context, some types of normative
conflicts need not be accommodated and may be ignored. When investigating
the nature of moral dilemmas we may for instance leave OP-conflicts out of the
picture. The types of inferences that are valid in the presence of normative con-
flicts are context-dependent as well. (P) for instance seems intuitive when dealing
with commands, but contra-intuitive when dealing with norm-propositions. As
promised, we will flesh out the details of some suggestions made here in chapters
to come.

11Some authors have argued against the principle (P) given the possibility of normative
conflicts or normative gaps (see the discussion in Section 6.2.2). However, their arguments
presuppose a descriptive reading of the O- and P-operator, as opposed to the present prescriptive
reading. We come back to this point in detail in Chapter 6.



Chapter 4

The standard format for adaptive
logics

A rule is amended if it yields an
inference we are unwilling to
accept; an inference is rejected if
it violates a rule we are unwilling
to amend. The process of
justification is the delicate one of
making mutual adjustments
between rules and accepted
inferences

Nelson Goodman [71, p. 64]

. I am indebted to Joke Meheus, Christian Straßer and Frederik Van De Putte
for valuable comments on this chapter.

The standard format for adaptive logics (henceforth ALs) provides a unified
characterization of ALs. All ALs defined later on in this thesis are defined within
this format. An AL defined within the standard format is characterized as a
triple consisting of a so-called lower limit logic, a set of abnormalities and an
adaptive strategy. After introducing the standard format in Section 4.1, we
discuss each of the elements in this triple characterization in turn. In Sections
4.2 and 4.3 we present some requirements on the lower limit logic and the set
of abnormalities. In Sections 4.4 and 4.5 we discuss the two adaptive strategies
currently defined within the standard format, the reliability strategy and the
minimal abnormality strategy. A comparison between these strategies is provided
in Section 4.6. Each element in the triple characterization of an AL is illustrated
by means of a concrete example, the adaptive deontic logic Px

◇.
In Section 4.7 we state some meta-theoretical properties that come for free

with ALs defined within the standard format. In Sections 4.8 and 4.9 we discuss
two more features peculiar to ALs, their dynamic proofs and their so-called up-
per limit logic. We end this chapter with a brief mentioning of some adaptive
strategies other than reliability and minimal abnormality (Section 4.10).

51
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4.1 The standard format

ALs are tools for explicating and understanding defeasible human reasoning
patterns. The first ALs arose from Diderik Batens’ work on reasoning in the
presence of inconsistent information [11, 12]. Later applications of ALs include
inductive generalization [18], abductive reasoning [128, 59, 112], abstract argu-
mentation [176], reasoning with vague premises [188], belief revision [183], and
reasoning with prioritized beliefs [189] and prioritized norms [182]. Moreover,
ALs have been used to characterize existing non-monotonic consequence rela-
tions [23, 25, 170, 189].

The standard format for ALs was introduced by Diderik Batens in [14, 16].
It provides a generic, unifying framework within which most existing ALs are
defined. ALs characterized within this format automatically inherit a number of
meta-theoretical properties that in earlier times had to be proven separately for
each AL in question.

An AL in standard format consists of three elements:

1. A lower limit logic LLL,

2. A set of abnormalities Ω, and

3. An adaptive strategy (reliability or minimal abnormality).

Let ALr denote the AL defined by ⟨LLL,Ω, reliability⟩, and ALm the AL defined
by ⟨LLL,Ω, minimal abnormality⟩. By ALx we refer to either ALr or ALm, i.e.
x ∈ {r,m}. In Sections 4.2-4.5 we discuss each element in the definition of an AL
in turn. We illustrate each element by means of a concrete AL, the deontic logic
Px
◇.

4.2 The lower limit logic

An adaptive logic ALx is built ‘on top’ of a lower limit logic LLL. In order to be
eligible as a lower limit logic (LLL) in the standard format for ALs, LLL must
meet criteria (i)-(vi). Let Γ,Γ′ ⊆WLLL and A ∈WLLL:

(i) Reflexivity: Γ ⊆ CnLLL(Γ).

(ii) Transitivity: if Γ′ ⊆ CnLLL(Γ) then CnLLL(Γ ∪ Γ′) ⊆ CnLLL(Γ).

(iii) Monotonicity: CnLLL(Γ) ⊆ CnLLL(Γ ∪ Γ′).

(iv) Compactness: if A ∈ CnLLL(Γ) then there is a finite Γ′ ⊆ Γ such that
A ∈ CnLLL(Γ′).

(v) Supraclassicality: if A ∈ CnCL(Γ) then A ∈ CnLLL(Γ).

(vi) Soundness and completeness: Γ ⊢LLL A iff Γ⊧LLLA.
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Any logic that meets these criteria is suitable as a LLL for an AL defined within
the standard format.1

Its LLL is the monotonic base of an AL. Syntactically, an AL allows for the
application of all LLL-valid inferences in an adaptive proof. As we explain below,
ALs enhance the static proof theory of their LLL with a dynamic element, by
means of which additional consequences are usually derivable. Semantically, ALs
proceed by selecting a certain subset of the LLL-models of a given premise set.
The exact set of LLL-models that is selected depends on the other two elements
in the definition of ALx.

We promised to illustrate the workings of ALs by means of an example from
deontic logic, the adaptive logic Px

◇. The LLL of Px
◇ is the logic P◇. P◇

strengthens Lou Goble’s logic P from Section 3.2.2.1. It is defined for the lan-
guage WO

◻ from Section 2.1.2. Where ◇A =df ¬ ◻ ¬A, P◇ is obtained by adding
to the axiomatization of P the schemas (CONS), (◻K), (OIC) and (◇AND) as
well as the rule (◻NEC):

◻(A ⊃ B) ⊃ (◻A ⊃ ◻B) (◻K)

If ⊢ A then ⊢ ◻A (◻NEC)

OA ⊃◇A (OIC)

(OA ∧OB) ⊃ (◇(A ∧B) ⊃ O(A ∧B)) (◇AND)

In other words, P◇ strengthens P with (CONS), with a K-operator for repre-
senting alethic modalities, and with the bridge principles (OIC) and (◇AND).2

Since P◇ contains (CONS), it cannot accommodate OO-conflicts. OP-conflicts
too cause explosion in P◇. For suppose that OA and P¬A. Since (P) holds
in P, P¬A ≡ ¬O¬¬A. By (RE) and some simple propositional manipulations,
¬O¬¬A ≡ ¬OA. Thus, by modus ponens, we can derive ¬OA from P¬A, and we
obtain a contradiction.

Remember from Section 3.2.1.2 that normative conflicts can also be formalized
by making use of alethic modalities. Bernard Williams took conflicting moral
obligations to be situations in which it is morally obliged to do two or more
things (OA1 ∧ . . . ∧OAn), while at the same time it is (physically) impossible to
fulfill the obligations (¬◇(A1∧ . . .∧An)). It is these types of conflicts which P◇
is able to accommodate, and on which we will focus during this chapter while
explaining how adaptive logics work. Note that (◇AND) blocks the aggregation
of two obligations whenever it is not possible to fulfill both of them.

When more than two obligations need to be aggregated, we can use the fol-
lowing derived rule:

(OA1 ∧ . . . ∧OAn) ⊃ (◇(A1 ∧ . . . ∧An) ⊃ O(A1 ∧ . . . ∧An)) (◇AND’)

1For technical reasons, it is sometimes required that LLL is equipped with a distinct set
of classical connectives. Since all classical connectives are present or definable in the logics
presented in this thesis, this is a very straightforward operation. For reasons of didactics and
convenience, we skip it here and refer the reader to [19, Sec. 4.3], [181, Sec. 2.7], or [172, Sec. 2.8]
for more details.

2Alethic modalities are often characterized by modal logics like T, S4 or S5. If the reader
has a preference for a stronger modality, then the corresponding axiom schemas (T), (S4) and
(S5) can be added to P◇ at will. This is inessential for our present purposes, hence we stick
to the weakest normal modal logic, K.
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Fact 2. (◇AND’) is valid in P◇.

Proof. Suppose that OA1, . . . ,OAn and ◇(A1 ∧ . . . ∧An). By K-properties, (�)
◇(⋀Θ) for all Θ ⊆ {A1, . . . ,An}. By OA1,OA2, (�) and (◇AND), O(A1 ∧A2).
By OA3, (�) and (◇AND), O(A1∧A2∧A3), and so on until O(A1∧ . . .∧An).

It is straightforward and left to the reader to show that P◇ meets criteria
(i)-(v). For (vi), we provide a semantical characterization of P◇ and a proof
outline of the following theorem in Appendix D:

Theorem 6. Γ ⊢P◇ A iff Γ⊧P◇ A

4.3 Abnormalities

Adaptive logics typically interpret a given premise set ‘as normally as possible’
with respect to some standard of normality. Intuitively, the set of abnormalities
determines what it means to violate the standard of normality that an AL applies.
For instance, if the aim of an AL is to interpret a set of premises ‘as consistently
as possible’, then inconsistencies will typically give rise to an abnormality in the
AL.

Formally, the set of abnormalities Ω of an adaptive logic ALx is a set of LLL-
wffs characterized by a (possibly restricted) logical form, or a union of such sets.
To interpret a premise set ‘as normally as possible’, then, is to interpret this set
in such a way that as few abnormalities as possible follow from it. Semantically,
ALx selects LLL-models of a given premise set that are ‘as normal as possible’
in terms of the abnormalities they verify. Syntactically, ALx usually strengthens
LLL by allowing for the application of a defeasible inference rule that considers
abnormalities to be false ‘whenever possible’. The phrases between inverted
commas are disambiguated by the third element in the definition of ALx, the
adaptive strategy.

Before we explain the workings of the different adaptive strategies, we return
to our example, the logic Px

◇. Remember from Section 3.3.3 that we wish for
implementations of our logics to be user-friendly in the sense that they should
not leave any complicated reasoning processes to the user. However, in P◇ the
application of (◇AND) is very demanding, since it requires a consistency-check
on our premises: before we can aggregate two obligations, we need to ensure that
they are not involved in a normative conflict. Ideally, this check should be done
by the logic itself, and not by the user.

We will overcome this problem by letting the resulting adaptive extension Px
◇

of P◇ do the required work in our place. Px
◇ allows us to aggregate obligations

‘as much as possible’ by allowing for its application unless applied to formulas
which are (jointly) impossible. To this end, we could define the set Ω of Px

◇-
abnormalities simply as the set of P◇-wffs of the form ¬◇A. It will prove more
economical, however, to define Ω as follows:

Ω = {¬◇⋀∆ ∣ ∆ ⊆W l, for all A ∈Wa ∶ {A,¬A} /⊆ ∆}
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The constraint that, for all A ∈ Wa, {A,¬A} /⊆ ∆ is to ensure that Ω contains
only P◇-contingent formulas.3 Thus, P◇-valid formulas of the form ¬◇(A∧¬A)
do not give rise to abnormalities, nor do any of their consequences. For instance,
neither the P◇-wff ¬◇ (p ∧ ¬p) nor its P◇-consequence ¬◇ (p ∧ ¬p ∧ q) belong
to the set Ω.

Although Ω does not contain all P◇-contingent wffs of the form ¬◇A (due
to its restriction to conjunctions of literals within the scope of the ◇-operator),
we can guarantee that each contingent wff of this logical form is P◇-equivalent
to an abnormality, or to a conjunction of abnormalities:

Fact 3. If A ∈WO
◻ is of the logical form ¬◇B and B is CL-consistent, then A

is P◇-equivalent to a member of Ω, or to a conjunction of members of Ω.

Proof. Let B1 ∨ . . . ∨ Bn be a disjunctive normal form of B such that, for all
i ∈ {1, . . . , n}, Bi is CL-consistent. Then, by K-properties, ¬ ◇ B ⊣⊢P◇ ¬ ◇
(B1 ∨ . . . ∨Bn)⊣⊢P◇(¬◇B1 ∧ . . . ∧ ¬◇Bn). Since, for all i ∈ {1, . . . , n}, Bi is a

CL-consistent conjunction of members of W l, it follows that ¬◇Bi ∈ Ω.

Fact 3 warrants our restriction of Ω to conjunctions of literals within the
scope of a ◇-operator preceded by a negation. Although nothing prevents one
from defining the set of abnormalities as the set of all formulas of the form ¬◇A
(where A ∈W), the present definition is much more succinct.

4.4 The reliability strategy

Together with the set of abnormalities, the adaptive strategy stipulates what it
means to interpret a premise set ‘as normally as possible’. The two prominent
adaptive strategies defined within the standard format are the reliability strategy
and the minimal abnormality strategy. Reliability is slightly more ‘cautious’
than minimal abnormality. We discuss each strategy in turn, both from a proof
theoretical and semantical point of view.

4.4.1 Proof theory

Before we get to the specifics of the reliability strategy, we need to introduce
some general (strategy-independent) features of adaptive proofs. A line in an
annotated adaptive proof consists of four elements: a line number i, a formula A,
a justification (consisting of a series of line numbers and a derivation rule), and
a condition ∆. The condition of a line is a (possibly empty) set of abnormalities.
Intuitively, we interpret a line i at which formula A is derived on the condition ∆
as “At line i of the proof, we have derived A on the assumption that all members
of ∆ are false”.

The presence of a condition is part of what makes an adaptive proof dynamic.
The dynamics of these proofs is controlled by attaching conditions to derived
formulas and by introducing a marking definition. The rules determine which
lines (consisting of the four aforementioned elements) may be added to a given

3A formula A is L-contingent iff neither A nor ¬A is L-valid.
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proof. The effect of the marking definition is that, at every stage4 of the proof,
certain lines may be marked whereas others are unmarked. Formulas occurring
at lines that are marked at a certain stage s in the proof, are considered not
derivable at that stage. The marking definition is different for each adaptive
strategy.

Let us now introduce the rules of inference of an adaptive logic in standard
format and the marking definition for the reliability strategy. The rules of in-
ference reduce to three generic rules: a premise introduction rule PREM, an
unconditional rule RU, and a conditional rule RC. Where Γ ⊆ WLLL is the set
of premises, and where

A ∆

abbreviates that A occurs in the proof on the condition ∆, the inference rules
PREM and RU are given by

PREM If A ∈ Γ: ⋮ ⋮
A ∅

RU If A1, . . . ,An ⊢LLL B: A1 ∆1

⋮ ⋮
An ∆n

B ∆1 ∪ . . . ∪∆n

The premise introduction rule PREM simply states that, at any stage of a
proof, a premise may be introduced on the empty condition. What the uncon-
ditional rule RU comes to is that, whenever A1, . . . ,An ⊢LLL B and A1, . . . ,An

occur in the proof on the conditions ∆1, . . . ,∆n respectively, then B may be
added to the proof on the condition ∆1 ∪ . . . ∪∆n.

Let a Dab-formula be a finite disjunction of members of Ω, and Dab(Θ) =df
⋁Θ, where Θ is a finite and non-empty set of abnormalities (Θ ⊆ Ω).5 The
conditional rule RC is defined as follows:

RC If A1, . . . ,An ⊢LLL B ∨Dab(Θ): A1 ∆1

⋮ ⋮
An ∆n

B ∆1 ∪ . . . ∪∆n ∪Θ

In general, if A1, . . . ,An ⊢LLL B ∨ Dab(Θ) and A1, . . . ,An occur in a proof
on the conditions ∆1, . . . ,∆n respectively, then, by the conditional rule RC, we
can infer B on the condition ∆1 ∪ . . . ∪∆n ∪Θ. RC is the only rule that allows
for the introduction of new conditions in an adaptive proof.

4A stage of a proof is a sequence of lines and a proof is a sequence of stages. Every proof
starts off with stage 1. Adding a line to a proof by applying one of the rules of inference brings
the proof to its next stage, which is the sequence of all lines written so far.

5If Θ is a singleton {A} for some A ∈ Ω, then Dab(Θ) = A.
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Since, for instance, ⊢P◇ ◇(p ∧ q) ∨ ¬ ◇ (p ∧ q), and since ¬ ◇ (p ∧ q) ∈ Ω,
this means that in any Px

◇-proof we can derive ◇(p∧ q) via RC on the condition
{¬◇ (p ∧ q)}.

Suppose now that Op and Oq. Then, since Op,Oq ⊢P◇ ◇(p∧ q)∨¬◇ (p∧ q),
it follows by (◇AND) and CL that Op,Oq ⊢P◇ O(p ∧ q) ∨ ¬ ◇ (p ∧ q). Hence,
in any Px

◇-proof in which we have derived both Op and Oq on the conditions
∆ and Θ respectively, we can apply RC to derive O(p ∧ q) on the condition
∆ ∪Θ ∪ {¬◇ (p ∧ q)}.

Before we introduce the marking definition for the reliability strategy, we
illustrate the ideas presented so far by means of a simple example. Let Γ1 =
{O(p ∧ q),Or,Os,¬ ◇ (p ∧ r) ∨ ¬ ◇ (q ∧ s)}. We start a Pr

◇-proof from Γ1 by
entering the premises:

1 O(p ∧ q) PREM ∅
2 Or PREM ∅
3 Os PREM ∅
4 ¬◇ (p ∧ r) ∨ ¬◇ (q ∧ s) PREM ∅

We can continue the proof as follows:

5 Op 1; RU ∅

Since O(p ∧ q) ⊢P◇ Op, we can use RU to derive Op from the formula at line
1. Since the condition of this line is empty, the condition of line 5 is empty too.
In an analogous fashion, we can apply RU to derive Oq:

6 Oq 1; RU ∅

Suppose now that we want to aggregate Op and Os via the rule (◇AND).
For this, we need to know that p and s are jointly possible (◇(p ∧ s)). Γ1 does
not provide us with that information, so we cannot derive the formula O(p ∧ s)
by means of the LLL P◇. However, we do know (by CL) that either p ∧ s is
possible, or that it is not:

7 ◇(p ∧ s) ∨ ¬◇ (p ∧ s) RU ∅

Since ¬◇ (p ∧ s) ∈ Ω, we can now move this formula to the condition set by
means of RC:

8 ◇(p ∧ s) 7; RC {¬◇ (p ∧ s)}

Given this information, we can apply (◇AND) to lines 3, 5 and 8, and derive
O(p ∧ s) as desired:

9 O(p ∧ s) 3,5,8; RU {¬◇ (p ∧ s)}

Note that the condition of line 8 gets carried over to line 9 in view of the
definition of RU. Suppose now that we continue the proof as follows:

10 O(p ∧ r) 2,5; RC {¬◇ (p ∧ r)}✓4

At line 10, we have derived O(p ∧ r) in a fashion analogous to the derivation
of O(p ∧ s) at line 9 (we skipped the intermediate step of deriving ◇(p ∧ r)). In
doing so we have assumed that ¬◇ (p ∧ r) is false. However, we know from line
4 that either ¬◇ (p ∧ r) holds, or ¬◇ (q ∧ s) does.
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In view of this information, our assumption at line 10 that ¬◇ (p∧ r) is false
was too hasty. In the logic Pr

◇, the presence of the condition of line 10 in the
disjunction of abnormalities at line 4 causes the withdrawal of line 10 from the
proof. This is taken care of by the marking definition, and is indicated by a
checkmark sign (“✓”) indexed by the number of the line in view of which line
10 is marked.

The marking definition for the reliability strategy proceeds in terms of the
minimal Dab-formulas and the unreliable formulas derived at a stage of the proof:

Definition 1. Dab(∆) is a minimal Dab-formula at stage s iff, at stage s,
Dab(∆) is derived on the condition ∅, and no Dab(∆′) with ∆′ ⊂ ∆ is derived
on the condition ∅.

Definition 2. Where Dab(∆1),Dab(∆2), . . . are the minimal Dab-formulas de-
rived at stage s, Us(Γ) = ∆1 ∪∆2 ∪ . . . is the set of formulas that are unreliable
at stage s.

Marking for reliability is defined as follows:

Definition 3. Where ∆ is the condition of line i, line i is marked at stage s iff
∆ ∩Us(Γ) ≠ ∅.

At stage 10 of our proof, a minimal Dab-formula was derived at line 4. By
Definition 2, U10(Γ1) = {¬◇(p∧r),¬◇(q∧s)}. Since the element in the condition
set of line 10 is a member of U10(Γ1), the line is marked due to Definition 3. Note
that lines 8 and 9 remain unmarked at this stage of the proof, since their condition
does not overlap with the set of unreliable formulas at stage 10.

The marking definition for the reliability strategy is further illustrated in the
following extension6 of the proof (we repeat the proof from line 8 on):

8 ◇(p ∧ s) RC {¬◇ (p ∧ s)}
9 O(p ∧ s) 3,5,8; RU {¬◇ (p ∧ s)}

10 O(p ∧ r) 2,5; RC {¬◇ (p ∧ r)}✓4

11 O(q ∧ s) 3,6; RC {¬◇ (q ∧ s)}✓4

12 O(q ∧ r) 2,6; RC {¬◇ (q ∧ r)}
13 O(r ∧ s) 2,3; RC {¬◇ (r ∧ s)}

At stage 13, no new minimal Dab-formulas have been derived. Hence U13(Γ1) =
U10(Γ1).

We can continue the proof as follows:

14 O(p ∧ q ∧ r) 1,2; RC {¬◇ (p ∧ q ∧ r)}✓20

15 O(p ∧ q ∧ s) 1,3; RC {¬◇ (p ∧ q ∧ s)}✓21

16 O(p ∧ r ∧ s) 2,3,5; RC {¬◇ (p ∧ r ∧ s)}✓19

17 O(q ∧ r ∧ s) 2,3,6; RC {¬◇ (q ∧ r ∧ s)}✓22

18 O(p ∧ q ∧ r ∧ s) 1,2,3; RC {¬◇ (p ∧ q ∧ r ∧ s)}✓25

19 ¬◇ (p ∧ r ∧ s) ∨ ¬◇ (q ∧ s) 4; RU ∅
20 ¬◇ (p ∧ q ∧ r) ∨ ¬◇ (q ∧ s) 4; RU ∅
21 ¬◇ (p ∧ r) ∨ ¬◇ (p ∧ q ∧ s) 4; RU ∅

6A stage s′ of an adaptive proof is an extension of a stage s iff every line in s occurs in s′.
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22 ¬◇ (p ∧ r) ∨ ¬◇ (q ∧ r ∧ s) 4; RU ∅
23 ¬◇ (p∧ q ∧ r)∨¬◇ (q ∧ r ∧ s) 4; RU ∅
24 ¬◇ (p∧ q ∧ r)∨¬◇ (p∧ q ∧ s) 4; RU ∅
25 ¬◇ (p ∧ q ∧ r ∧ s) 4; RU ∅

The formulas derived at lines 19-25 are K-consequences of the formula derived
at line 4. At stage 25 of the proof, U25(Γ1) = {¬◇ (p∧ r),¬◇ (q ∧ s),¬◇ (p∧ r ∧
s),¬◇ (p ∧ q ∧ r),¬◇ (p ∧ q ∧ s),¬◇ (q ∧ r ∧ s),¬◇ (p ∧ q ∧ r ∧ s)}. Hence, lines
10, 11 and 14-18 are marked in view of Definition 3.

Marking is a dynamic matter: marks may come and go in adaptive proofs.
Suppose, for instance, that we add the premise ¬◇(p∧r) to Γ1. Call the resulting
premise set Γ′1. Since lines 1-25 above form a valid Pr

◇-proof from Γ′1, we can
simply copy these lines to a proof for Γ′1, add the new premise at a new line and
continue as follows (we repeat the proof from line 8 on):

8 ◇(p ∧ s) RC {¬◇ (p ∧ s)}
9 O(p ∧ s) 3,5,8; RU {¬◇ (p ∧ s)}

10 O(p ∧ r) 2,5; RC {¬◇ (p ∧ r)}✓4

11 O(q ∧ s) 3,6; RC {¬◇ (q ∧ s)}
12 O(q ∧ r) 2,6; RC {¬◇ (q ∧ r)}
13 O(r ∧ s) 2,3; RC {¬◇ (r ∧ s)}
14 O(p ∧ q ∧ r) 1,2; RC {¬◇ (p ∧ q ∧ r)}✓28

15 O(p ∧ q ∧ s) 1,3; RC {¬◇ (p ∧ q ∧ s)}
16 O(p ∧ r ∧ s) 2,3,5; RC {¬◇ (p ∧ r ∧ s)}✓27

17 O(q ∧ r ∧ s) 2,3,6; RC {¬◇ (q ∧ r ∧ s)}
18 O(p ∧ q ∧ r ∧ s) 1,2,3; RC {¬◇ (p ∧ q ∧ r ∧ s)}✓25

19 ¬◇ (p ∧ r ∧ s) ∨ ¬◇ (q ∧ s) 4; RU ∅
20 ¬◇ (p ∧ q ∧ r) ∨ ¬◇ (q ∧ s) 4; RU ∅
21 ¬◇ (p ∧ r) ∨ ¬◇ (p ∧ q ∧ s) 4; RU ∅
22 ¬◇ (p ∧ r) ∨ ¬◇ (q ∧ r ∧ s) 4; RU ∅
23 ¬◇ (p∧ q ∧ r)∨¬◇ (q ∧ r ∧ s) 4; RU ∅
24 ¬◇ (p∧ q ∧ r)∨¬◇ (p∧ q ∧ s) 4; RU ∅
25 ¬◇ (p ∧ q ∧ r ∧ s) 4; RU ∅
26 ¬◇ (p ∧ r) PREM ∅
27 ¬◇ (p ∧ r ∧ s) 26; RU ∅
28 ¬◇ (p ∧ q ∧ r) 26; RU ∅

At stage 28 of the proof from Γ′1, the Dab-formulas at lines 4 and lines 19-
24 are no longer minimal in view of Definition 1. At this stage, U28(Γ′1) =
{¬◇ (p ∧ r),¬◇ (p ∧ q ∧ r),¬◇ (p ∧ r ∧ s),¬◇ (p ∧ q ∧ r ∧ s)}. Accordingly, lines
11, 15 and 17 are unmarked at stage 28.

Due to the stage-dependency of the marking criterion in adaptive proofs, we
can define a dynamic notion of derivation as follows:

Definition 4. A formula A has been derived at stage s of an adaptive proof iff,
at that stage, A is the second element of some unmarked line i.

Since we want to define a syntactic consequence relation for ALs, we also need
a static, stage-independent notion of derivability:
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Definition 5. A is finally derived from Γ at line i of a proof at a finite stage s iff
(i) A is the second element of line i, (ii) line i is not marked at stage s, and (iii)
every extension of the proof in which line i is marked may be further extended
in such a way that line i is unmarked.7

We can now define a syntactic consequence relation for an AL that makes use
of the reliability strategy:

Definition 6. Γ ⊢ALr A (A is finally ALr-derivable from Γ) iff A is finally
derived at a line of an ALr-proof from Γ.

Returning to our example, we can define a syntactic consequence relation
for the logic Pr

◇ by replacing “ALr” by “Pr
◇” in Definition 6. Applying this

definition to the example proof above, it can be shown that:

Γ1 ⊬Pr
◇

O(p ∧ r) Γ′1 ⊬Pr
◇

O(p ∧ r)
Γ1 ⊢Pr

◇

O(p ∧ s) Γ′1 ⊢Pr
◇

O(p ∧ s)
Γ1 ⊢Pr

◇

O(q ∧ r) Γ′1 ⊢Pr
◇

O(q ∧ r)
Γ1 ⊬Pr

◇

O(q ∧ s) Γ′1 ⊢Pr
◇

O(q ∧ s)
Γ1 ⊢Pr

◇

O(r ∧ s) Γ′1 ⊢Pr
◇

O(r ∧ s)
Γ1 ⊬Pr

◇

O(p ∧ q ∧ r) Γ′1 ⊬Pr
◇

O(p ∧ q ∧ r)
Γ1 ⊬Pr

◇

O(p ∧ q ∧ s) Γ′1 ⊢Pr
◇

O(p ∧ q ∧ s)
Γ1 ⊬Pr

◇

O(p ∧ r ∧ s) Γ′1 ⊬Pr
◇

O(p ∧ r ∧ s)
Γ1 ⊬Pr

◇

O(q ∧ r ∧ s) Γ′1 ⊢Pr
◇

O(q ∧ r ∧ s)
Γ1 ⊬Pr

◇

O(p ∧ q ∧ r ∧ s) Γ′1 ⊬Pr
◇

O(p ∧ q ∧ r ∧ s)

In the proofs from Γ1 and Γ′1 we could have derived even more minimal
Dab-formulas. Let us illustrate this point for the premise set Γ1. The follow-
ing inferences are P◇-valid, since ¬ ◇ A ⊢P◇ ¬ ◇ (A ∧ B1 ∧ . . . ∧ Bn) for all

A,B1, . . . ,Bn ∈W l:

Table 4.1: More disjunctions of abnormalities for Γ1.

¬◇ (p ∧ r) ⊢P◇ ¬◇ (p ∧ q ∧ r) ¬◇ (q ∧ s) ⊢P◇ ¬◇ (p ∧ q ∧ s)
¬◇ (p ∧ r) ⊢P◇ ¬◇ (p ∧ r ∧ s) ¬◇ (q ∧ s) ⊢P◇ ¬◇ (q ∧ r ∧ s)
¬◇ (p ∧ r) ⊢P◇ ¬◇ (p ∧ ¬q ∧ r) ¬◇ (q ∧ s) ⊢P◇ ¬◇ (¬p ∧ q ∧ s)
¬◇ (p ∧ r) ⊢P◇ ¬◇ (p ∧ r ∧ ¬s) ¬◇ (q ∧ s) ⊢P◇ ¬◇ (q ∧ ¬r ∧ s)
¬◇ (p ∧ r) ⊢P◇ ¬◇ (p ∧ ¬q ∧ r ∧ s) ¬◇ (q ∧ s) ⊢P◇ ¬◇ (¬p ∧ q ∧ r ∧ s)
¬◇ (p ∧ r) ⊢P◇ ¬◇ (p ∧ ¬q ∧ r ∧ ¬s) ¬◇ (q ∧ s) ⊢P◇ ¬◇ (¬p ∧ q ∧ ¬r ∧ s)
¬◇ (p ∧ r) ⊢P◇ ¬◇ (p ∧ q ∧ r ∧ ¬s) ¬◇ (q ∧ s) ⊢P◇ ¬◇ (p ∧ q ∧ ¬r ∧ s)

Each of the formulas occurring in the left column of Table 4.1 can be placed
in disjunction with a formula occurring in the right column in order to obtain a
minimal Dab-formula derivable from Γ1. For instance, all of the formulas ¬◇(p∧

7Definition 5 has a game-theoretic flavor to it. In [17], this definition is interpreted as a
two-player game in which the proponent has a winning strategy in case she has a reply to every
counterargument by her opponent.
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r)∨¬◇(¬p∧q∧s), ¬◇(p∧¬q∧r∧s)∨¬◇(q∧s), and ¬◇(p∧¬q∧r)∨¬◇(¬p∧q∧¬r∧s)
are P◇-derivable from Γ1, and each of them is minimal: none of their disjuncts
is P◇-derivable from Γ1.

Although each and every one of these disjunctions could be added to the
proof from Γ1, none of them would cause the unmarking of any of the formulas
derived at stage 25 of this proof. The reason is that all of the disjunctions
currently derived in the proof are already minimal in view of Γ1. Hence, whatever
happens at later stages in the proof, the members of these disjunctions will remain
in the set of unreliable formulas at these later stages. Moreover, adding these
disjunctions to the proof from Γ1 would not cause the marking of any of the lines
that are unmarked at stage 25 of the proof, since none of their disjuncts is a
member of the condition of any of the currently unmarked lines.

We return in more detail to the dynamics of adaptive proofs in Section 4.8,
but first we define and illustrate the semantics for ALr as well as the proof theory
and semantics for ALm.

4.4.2 Semantics

ALs employ a preferential semantics in the vein of Shoham [160] (see also [161,
162]). The idea is that an AL selects a ‘preferred’ subset of its LLL-models. In
ALs, this preferred subset is the set of LLL-models that verify “as few abnormal-
ities as possible” in view of the adaptive strategy. For the reliability strategy,
this preferred subset is often a proper superset of the one selected by the minimal
abnormality strategy.

We need to introduce some terminology first. Let a Dab-formula Dab(∆)
be a Dab-consequence of Γ if it is LLL-derivable from Γ; it is a minimal Dab-
consequence of Γ if there is no ∆′ ⊂ ∆ such that Dab(∆′) is a Dab-consequence
of Γ. The set of formulas that are unreliable with respect to Γ, denoted by U(Γ),
is defined by:

Definition 7. Where Dab(∆1),Dab(∆2), . . . are the minimal Dab-consequences
of Γ, U(Γ) = ∆1 ∪∆2 ∪ . . . is the set of formulas that are unreliable with respect
to Γ.

Let us illustrate the workings of the ALr-semantics by means of the logic Pr
◇

and the premise set Γ1 from Section 4.4.1. Recall that Γ1 = {O(p∧q),Or,Os,¬◇
(p ∧ r) ∨ ¬◇ (q ∧ s)}.

The minimal Dab-consequences derivable from Γ1 include the premise ¬ ◇
(p ∧ r) ∨ ¬◇ (q ∧ s) as well as its P◇-consequences ¬◇ (p ∧ r) ∨ ¬◇ (¬p ∧ q ∧ s),
¬ ◇ (p ∧ ¬q ∧ r ∧ s) ∨ ¬ ◇ (q ∧ s), ¬ ◇ (p ∧ ¬q ∧ r) ∨ ¬ ◇ (¬p ∧ q ∧ ¬r ∧ s), etc.
(cfr. supra). Thus, the set of minimal Dab-consequences of Γ1 is the infinite set
containing all P◇-contingent disjunctions of the form ¬◇⋀∆∨¬◇⋀∆′, where
∆,∆′ ⊂ W l and p, r ∈ ∆ and q, s ∈ ∆′. The set U(Γ1) of unreliable formulas of
Γ1 contains each disjunct occurring in a minimal Dab-consequence of Γ1.

We define the abnormal part Ab(M) of a model M as the set of abnormalities
verified by M :

Definition 8. Ab(M) = {A ∈ Ω ∣M ⊩ A}
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We can now split the set of P◇-models of Γ1 into a partition of three clauses
according to the abnormal parts of the models. Due to the minimal Dab-
consequence ¬ ◇ (p ∧ r) ∨ ¬ ◇ (q ∧ s), all P◇-models of Γ1 verify ¬ ◇ (p ∧ r)
or ¬ ◇ (q ∧ s) or both. P◇-models of Γ1 that verify ¬ ◇ (p ∧ r), also verify
¬◇ (p ∧ r ∧A1 . . . ∧An) for all A1, . . . ,An ∈W l. Analogously, P◇-models of Γ1

that verify ¬◇(q∧s) also verify ¬◇(q∧s∧B1∧ . . .∧Bm) for all B1, . . . ,Bm ∈W l.
Let M1 be a P◇-model of Γ1 that verifies ¬◇ (p ∧ r) but not ¬◇ (q ∧ s), M2 a
P◇-model of Γ1 that verifies ¬◇ (q ∧ s) but not ¬◇ (p∧ r), and M3 a P◇-model
of Γ1 that verifies both ¬ ◇ (p ∧ r) and ¬ ◇ (q ∧ s). Suppose further that M1

verifies no other abnormalities than ¬ ◇ (p ∧ r) and its Dab-consequences, that
M2 verifies no other abnormalities than ¬ ◇ (q ∧ s) and its Dab-consequences,
and that M3 verifies no other abnormalities than ¬◇ (p ∧ r),¬◇ (q ∧ s) and the
Dab-consequences of ¬◇ (p ∧ r) ∧ ¬◇ (q ∧ s). Then the abnormal parts of these
models look as displayed Table 4.2.

M1⊩ . . . M2⊩ . . . M3⊩ . . .

¬◇ (p ∧ r) ¬◇ (q ∧ s) ¬◇ (p ∧ r),¬◇ (q ∧ s)
¬◇ (p ∧ q ∧ r) ¬◇ (p ∧ q ∧ s) ¬◇ (p ∧ q ∧ r),¬◇ (p ∧ q ∧ s)
¬◇ (p ∧ r ∧ s) ¬◇ (q ∧ r ∧ s) ¬◇ (p ∧ r ∧ s),¬◇ (q ∧ r ∧ s)
¬◇ (p ∧ ¬q ∧ r) ¬◇ (¬p ∧ q ∧ s) ¬◇ (p ∧ ¬q ∧ r),¬◇ (¬p ∧ q ∧ s)
¬◇ (p ∧ r ∧ ¬s) ¬◇ (q ∧ ¬r ∧ s) ¬◇ (p ∧ r ∧ ¬s),¬◇ (q ∧ ¬r ∧ s)
¬◇ (p ∧ q ∧ r ∧ s) ¬◇ (p ∧ q ∧ r ∧ s) ¬◇ (p ∧ q ∧ r ∧ s)
¬◇ (p ∧ ¬q ∧ r ∧ s) ¬◇ (¬p ∧ q ∧ r ∧ s) ¬◇ (p ∧ ¬q ∧ r ∧ s),¬◇ (¬p ∧ q ∧ r ∧ s)
¬◇ (p ∧ ¬q ∧ r ∧ ¬s) ¬◇ (¬p ∧ q ∧ ¬r ∧ s) ¬◇ (p ∧ ¬q ∧ r ∧ ¬s),¬◇ (¬p ∧ q ∧ ¬r ∧ s)
¬◇ (p ∧ q ∧ r ∧ ¬s) ¬◇ (p ∧ q ∧ ¬r ∧ s) ¬◇ (p ∧ q ∧ r ∧ ¬s),¬◇ (p ∧ q ∧ ¬r ∧ s)

⋮ ⋮ ⋮
Table 4.2: Abnormal parts of M1,M2, and M3.

A reliable model of a given premise set is defined as follows:

Definition 9. A LLL-model M of Γ is reliable iff Ab(M) ⊆ U(Γ).

Note that, for all Pr
◇-abnormalities A displayed in the table above, A ∈ U(Γ1).

Thus M1-M3 are reliable P◇-models of Γ1.

Suppose that some P◇-model M4 of Γ1 verifies the abnormality ¬◇ (p ∧ s).
Then, since ¬◇ (p∧ s) /∈ U(Γ1), M4 is not a reliable P◇-model of Γ1. Hence, for
all reliable P◇-models M of Γ1, M⊮¬ ◇ (p ∧ s). Consequently, M⊩ ◇ (p ∧ s).
Since we also know that M⊩Op,Os, it follows that M⊩O(p ∧ s).

A semantic consequence relation of ALr is defined as follows:

Definition 10. Γ ⊧ALr A iff A is verified by all reliable models of Γ.

SinceM⊩O(p∧s) for all reliable modelsM of Γ1, it follows that Γ⊧Pr
◇

O(p∧s).
It is safely left to the reader to check that all of the following hold:
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Γ1⊭Pr
◇

O(p ∧ r) Γ′1⊭Pr
◇

O(p ∧ r)
Γ1 ⊧Pr

◇

O(p ∧ s) Γ′1 ⊧Pr
◇

O(p ∧ s)
Γ1 ⊧Pr

◇

O(q ∧ r) Γ′1 ⊧Pr
◇

O(q ∧ r)
Γ1⊭Pr

◇

O(q ∧ s) Γ′1 ⊧Pr
◇

O(q ∧ s)
Γ1 ⊧Pr

◇

O(r ∧ s) Γ′1 ⊧Pr
◇

O(r ∧ s)
Γ1⊭Pr

◇

O(p ∧ q ∧ r) Γ′1⊭Pr
◇

O(p ∧ q ∧ r)
Γ1⊭Pr

◇

O(p ∧ q ∧ s) Γ′1 ⊧Pr
◇

O(p ∧ q ∧ s)
Γ1⊭Pr

◇

O(p ∧ r ∧ s) Γ′1⊭Pr
◇

O(p ∧ r ∧ s)
Γ1⊭Pr

◇

O(q ∧ r ∧ s) Γ′1 ⊧Pr
◇

O(q ∧ r ∧ s)
Γ1⊭Pr

◇

O(p ∧ q ∧ r ∧ s) Γ′1⊭Pr
◇

O(p ∧ q ∧ r ∧ s)

4.5 The minimal abnormality strategy

The minimal abnormality strategy is a tad less ‘cautious’ than reliability. In this
section, we define and illustrate the proof theory and semantics for the minimal
abnormality strategy. In Section 4.6 we compare both strategies.

4.5.1 Proof theory

The proof theory for the minimal abnormality strategy differs from that for re-
liability only with respect to the marking definition. The marking definition for
minimal abnormality uses the notion of minimal choice sets. A choice set of
Σ = {∆1,∆2, . . .} is a set that contains one element out of each member of Σ.
A minimal choice set of Σ is a choice set of Σ of which no proper subset is a
choice set of Σ. Where Dab(∆1),Dab(∆2), . . . are the minimal Dab-formulas
that are derived at stage s of a proof, Φs(Γ) is the set of minimal choice sets of
{∆1,∆2, . . .}.

Marking for minimal abnormality is defined as follows:

Definition 11. Where A is derived at line i of a proof from Γ on a condition ∆,
line i is marked at stage s iff
(i) there is no ∆′ ∈ Φs(Γ) such that ∆′ ∩∆ = ∅, or
(ii) for some ∆′ ∈ Φs(Γ), there is no line at which A is derived on a condition Θ
for which ∆′ ∩Θ = ∅.

Alternatively, this definition can be understood in the following ‘dual’ way:
where A is derived on the condition ∆ on line i, line i is unmarked at stage s iff
(i) there is a ∆′ ∈ Φs(Γ) for which ∆′ ∪∆ = ∅ and (ii) for every ∆′ ∈ Φs(Γ) there
is a line at which A is derived on a condition Θ for which ∆′ ∩Θ = ∅.

We illustrate the marking mechanism for minimal abnormality by means of
our familiar example. Consider the following Pm

◇ -proof from Γ1:

1 O(p ∧ q) PREM ∅
2 Or PREM ∅
3 Os PREM ∅
4 ¬◇ (p ∧ r) ∨ ¬◇ (q ∧ s) PREM ∅
5 Op 1; RU ∅
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6 Oq 1; RU ∅
7 O(p ∧ s) 3,5; RC {¬◇ (p ∧ s)}
8 O(p ∧ r) 2,5; RC {¬◇ (p ∧ r)}✓4

9 O(q ∧ s) 3,6; RC {¬◇ (q ∧ s)}✓4

10 O(q ∧ r) 2,6; RC {¬◇ (q ∧ r)}
11 O(r ∧ s) 2,3; RC {¬◇ (r ∧ s)}
12 O(p ∧ q ∧ r) 2,5,6; RC {¬◇ (p ∧ q ∧ r)}✓17

13 O(p ∧ q ∧ s) 3,5,6; RC {¬◇ (p ∧ q ∧ s)}✓17

14 O(p ∧ q ∧ (r ∨ s)) 2,5,6; RC {¬◇ (p ∧ q ∧ r)}
15 O(p ∧ q ∧ (r ∨ s)) 3,5,6; RC {¬◇ (p ∧ q ∧ s)}
16 O(p ∧ q ∧ r ∧ s) 2,3,5,6; RC {¬◇ (p ∧ q ∧ r ∧ s)}✓18

17 ¬◇(p∧q∧r)∨¬◇(p∧q∧s) 4; RU ∅
18 ¬◇ (p ∧ q ∧ r ∧ s) 4; RU ∅

At stage 18, three minimal Dab-formulas were derived in the proof (at lines
4, 17 and 18). These formulas give rise to the following 4 minimal choice sets:

ϕ1 = {¬◇ (p ∧ r),¬◇ (p ∧ q ∧ r),¬◇ (p ∧ q ∧ r ∧ s)}
ϕ2 = {¬◇ (p ∧ r),¬◇ (p ∧ q ∧ s),¬◇ (p ∧ q ∧ r ∧ s)}
ϕ3 = {¬◇ (q ∧ s),¬◇ (p ∧ q ∧ r),¬◇ (p ∧ q ∧ r ∧ s)}
ϕ4 = {¬◇ (q ∧ s),¬◇ (p ∧ q ∧ s),¬◇ (p ∧ q ∧ r ∧ s)}

Thus, Φ18(Γ1) = {ϕ1, ϕ2, ϕ3, ϕ4}. Lines 7, 10 and 11 remain unmarked be-
cause their condition does not overlap with any of ϕ1 − ϕ4. Line 16 is marked
because of condition (i) in Definition 11: its condition overlaps with all minimal
choice sets in Φ18(Γ1). Lines 8, 9, 12, and 13 are marked because of condition
(ii) in Definition 11: the formulas derived at these lines are such that if their
condition intersects with a minimal choice set of Φ13(Γ1), there is no line in the
proof at which the formula was derived on a condition that does not intersect
with this minimal choice set.

The situation is different for the formula O(p ∧ q ∧ (r ∨ s)) derived at lines
14 and 15. Take line 14. Although the condition of this line intersects with the
minimal choice sets ϕ1 and ϕ3, we have also derived the formula O(p∧q∧(r∨s))
on a condition that does not intersect with any of these sets, namely the condition
{¬◇ (p ∧ q ∧ s)} of line 15. Analogously, the condition of line 15 intersects with
the minimal choice sets ϕ2 and ϕ4, yet this line remains unmarked because we
have derived O(p ∧ q ∧ (r ∨ s)) on the condition {¬◇ (p ∧ q ∧ r)} at line 14, and
this condition does not intersect with any of these minimal choice sets.

Note that if the above proof were a Pr
◇-proof from Γ1, then lines 14 and 15

would be marked in view of Definition 3.

As for the reliability strategy, we can use Definition 5 in order to establish final
derivability in an ALm-proof. Analogous to Definition 6, we define a syntactic
consequence relation for ALm as follows:

Definition 12. Γ ⊢ALm A (A is finally ALm-derivable from Γ) iff A is finally
derived at a line of an ALm-proof from Γ.

Returning to our example, we can define a syntactic consequence relation for
the logic Pm

◇ by replacing “ALm” by “Pm
◇ ” in Definition 12.
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Recall from Section 4.4.2 that each P◇-contingent formula of the form ¬ ◇
⋀∆ ∨ ¬◇⋀∆′, where ∆,∆′ ⊂W l and p, r ∈ ∆ and q, s ∈ ∆′, is a minimal Dab-
consequence of Γ1. Thus, there are infinitely many ways in which we could extend
the proof from Γ1 with new minimal Dab-formulas. Each time such a formula is
added to the proof, the set of minimal choice sets is updated.

We could, for instance, add each disjunction A ∨B to the proof, where A ∈
{¬◇(p∧r),¬◇(p∧q∧r),¬◇(p∧¬q∧r),¬◇(p∧r∧s),¬◇(p∧r∧¬s),¬◇(p∧¬q∧r∧
s),¬◇(p∧q∧r∧¬s),¬◇(p∧¬q∧r∧¬s)} andB ∈ {¬◇(q∧s),¬◇(p∧q∧s),¬◇(¬p∧q∧
s),¬◇(q∧r∧s),¬◇(q∧¬r∧s),¬◇(¬p∧q∧r∧s),¬◇(p∧q∧¬r∧s),¬◇(¬p∧q∧¬r∧s)}.
Since two of these disjunctions are already in the proof (lines 4 and 17), this would
result in the addition of 62 new minimal Dab-formulas. At stage 18 + 62 of the
proof, we would then obtain the following minimal choice sets of Γ1:8

ϕ1 = {¬ ◇ (p ∧ r),¬ ◇ (p ∧ q ∧ r),¬ ◇ (p ∧ ¬q ∧ r),¬ ◇ (p ∧ r ∧ s),¬ ◇
(p ∧ r ∧ ¬s),¬◇ (p ∧ q ∧ r ∧ s),¬◇ (p ∧ ¬q ∧ r ∧ s),¬◇ (p ∧ q ∧ r ∧
¬s),¬◇ (p ∧ ¬q ∧ r ∧ ¬s)}

ϕ2 = {¬◇ (q ∧ s),¬◇ (p∧ q ∧ s),¬◇ (¬p∧ q ∧ s),¬◇ (q ∧ r ∧ s),¬◇ (q ∧
¬r∧s),¬◇(p∧q∧r∧s),¬◇(¬p∧q∧r∧s),¬◇(p∧q∧¬r∧s),¬◇
(¬p ∧ q ∧ ¬r ∧ s)}

For the same reasons as before, lines 8 and 9 remain marked at stage 18 + 62
while lines 10 and 11 remain unmarked.

There are various ways in which we can even further extend the proof, but
none of these would cause the unmarking of any of lines 8, 9, 12, 13, or 16: the
formulas derived at lines 8 and 12 are not derivable on a condition that does not
intersect with ϕ1; the formulas derived at lines 9 and 13 are not derivable on a
condition that does not intersect with ϕ2; and the formula derived at line 16 is
not derivable on a condition that does not intersect with ϕ1 or ϕ2. Moreover,
any extension of the proof in which any of lines 7, 10, 11, 14 or 15 is marked
can be further extended so that these lines are unmarked again. There are no
minimal Dab-consequences of Γ1 containing any of the conditions of lines 7, 10
or 11. Thus, lines 7, 10 or 11 can never be marked in an extension of the proof.
Moreover, if the proof is extended in such a way that line 14 or line 15 is marked,
we can further extend it in a way that the lines are unmarked again. In view of
Definition 12:

Γ1 ⊬Pm
◇

O(p ∧ r) Γ1 ⊬Pm
◇

O(q ∧ s) Γ1 ⊬Pm
◇

O(p ∧ q ∧ s)
Γ1 ⊢Pm

◇

O(p ∧ s) Γ1 ⊢Pm
◇

O(r ∧ s) Γ1 ⊢Pm
◇

O(p ∧ q ∧ (r ∨ s))
Γ1 ⊢Pm

◇

O(q ∧ r) Γ1 ⊬Pm
◇

O(p ∧ q ∧ r) Γ1 ⊬Pm
◇

O(p ∧ q ∧ r ∧ s)

Note that Γ1 ⊢Pm
◇

O(p ∧ (q ∨ r)), whereas Γ1 ⊬Pr
◇

O(p ∧ (q ∨ r)). We return

in some detail to this difference between both strategies in Section 4.6.

4.5.2 Semantics

Semantically, the minimal abnormality strategy selects all LLL-models of a
premise set Γ which have a minimal abnormal part (with respect to set-inclusion).

8Calculating these choice sets is straightforward, but rather tedious. We leave it to the
skeptical reader to double-check our calculations.
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Definition 13. A LLL-model M of Γ is minimally abnormal iff there is no
LLL-model M ′ of Γ such that Ab(M ′) ⊂ Ab(M).

The semantic consequence relation of the logic ALm is defined by selecting
the minimally abnormal LLL-models:

Definition 14. Γ⊧ALm A iff A is verified by all minimally abnormal models of
Γ.

Reconsider Γ1 and its models M1,M2, and M3 from Section 4.4.2, the ab-
normal parts of which are displayed in Table 4.2. Clearly, Ab(M1) ⊂ Ab(M3)
and Ab(M2) ⊂ Ab(M3). By Definition 13, M3 cannot be a minimally abnormal
P◇-model of Γ1. Moreover, Ab(M1) /⊂ Ab(M2) and Ab(M2) /⊂ Ab(M1).

Consider again a model M4 that verifies the abnormality ¬◇(p∧s). Since M4

must also verify either the abnormality ¬◇(p∧r) or the abnormality ¬◇(q∧s),
and since neither M1 nor M2 verifies ¬◇ (p ∧ s), we know that either Ab(M1) ⊂
Ab(M4) or Ab(M2) ⊂ Ab(M4). By Definition 13, M4 cannot be a minimally
abnormal P◇-model of Γ1.

The only minimally abnormal P◇-models of Γ1 are models that have the same
abnormal part as M1 or M2. These models all verify either ¬ ◇ (p ∧ q ∧ r) or
¬◇(p∧q∧s), but not both. Consequently, these models all verify either ◇(p∧q∧r)
or ◇(p∧q∧s). Since ◇(p∧q∧r)⊧P◇◇(p∧q∧(r∨s)) and ◇(p∧q∧s)⊧P◇◇(p∧
q ∧ (r ∨ s)), all minimally abnormal P◇-models of Γ1 verify ◇(p ∧ q ∧ (r ∨ s)).
Moreover, Γ1 ⊧P◇ Op ∧Oq ∧O(r ∨ s). By (◇AND), all minimally abnormal P◇-
models of Γ1 verify O(p∧ q ∧ (r ∨ s)). By Definition 14, Γ1 ⊧Pm

◇

O(p∧ q ∧ (r ∨ s)).

4.6 Comparing the strategies

As our example from the previous sections illustrates, there are premise sets from
which some consequences are derivable by means of the minimal abnormality
strategy, while they are not derivable by means of the reliability strategy. In fact
we can prove a far stronger result. In [16] it is shown generically that ALx is
always at least as strong as LLL, and that ALm is always at least as strong as
ALr:9

Theorem 7. CnLLL(Γ) ⊆ CnALr(Γ) ⊆ CnALm(Γ).

It seems, then, that if we literally want to implement a certain standard of
normality ‘as much as possible’, we should always use the minimal abnormality
strategy. Indeed, ALm will often deliver more consequences than ALr. Should
we then abandon reliability?

Let us briefly recapitulate the rationale underlying both strategies. Suppose
that a formula A is derived in an adaptive proof on the condition ∆, and that
later in the proof A is also derived on the condition ∆′. Suppose further that, at
an even later stage, we derive the minimal Dab-formula Dab(∆)∨Dab(∆′), that
this is the only minimal Dab-formula derivable from the premise set, and that
there are no other conditions on which we can derive A.

9L is stronger than L′ (L′ is weaker than L) iff for every Γ ⊆WL,CnL′(Γ) ⊆ CnL(Γ).
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In this case, A is not derivable if the proof is an ALr-proof, since each condi-
tion on which A is derived overlaps with the set of unreliable formulas. However,
A is derivable if the proof is a ALm-proof, since for each of the two minimal
choice sets {∆} and {∆′} there is a condition on which A is derived that does
not intersect with the minimal choice set.

Conclusions such as A are instances of so-called floating conclusions. A con-
clusion is said to be floating if there is no single correct argument supporting
it; instead, it is supported only by conflicting arguments not all of which can be
jointly correct.10

Horty has argued that, since we do not know which of the conflicting argu-
ments is correct, and since the inference from each argument to the conclusion
is defeasible, it is in some cases recommended to opt for the skeptical approach
of ‘withholding judgment’ instead of a less cautious approach by which floating
conclusions are taken to be valid [94].

In Section 5.2.5 we discuss some examples in which it is not intuitively clear
which strategy we should adopt. We refer to the literature on floating conclusions
for more arguments pro and contra the use of a skeptical strategy like reliability.11

Since all ALs defined within the standard format can be equipped with either
strategy, we need not decide the matter here. We only aim to show that one
should not always blindly adopt the minimal abnormality strategy at the expense
of the more skeptical reliability strategy.

Let us conclude by briefly mentioning two more differences between both
strategies. First, the intuition behind the reliability strategy is easier to under-
stand from a proof theoretical perspective. According to this strategy, a line in
an adaptive proof is marked as soon as its condition intersects with ∆ for some
minimal Dab-formula Dab(∆) derived in the proof. The intuition underlying
minimal abnormality is easier to grasp from a semantical perspective. A LLL-
model M of some premise set Γ is minimally abnormal if its abnormal part is
minimal with respect to set-inclusion.

Second, the reliability strategy takes a lower place in the hierarchy of com-
putational complexity. Whereas ALs making use of reliability are Σ0

3-complex,
ALs that use minimal abnormality can be up to Π1

1-complex.12 We refer to
[21, 89, 187] for more details on the computational complexity of ALs.

4.7 Meta-theory of the standard format

The main advantage of formulating an AL within the standard format is that a
number of meta-theoretical properties come for free for the resulting logic. We
mention some of these properties below. In square brackets, we add the references
to the literature where the theorems were formulated and proven.

Theorem 8. [Soundness and completeness] Γ ⊢ALx A iff Γ ⊧ALx A. [16, Cor. 2,
Th. 9]

10The term ‘floating conclusion’ was coined by Makinson and Schlechta in [114].
11See [62, 114] for arguments pro, and [94] for arguments contra the acceptance of floating

conclusions.
12These are upper bounds. In concrete instances ALs are often less computationally complex.
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Theorem 9. [Reflexivity] Γ ⊆ CnALx(Γ). [16, Th. 11.2]

Theorem 10. [Fixed point/idempotence] CnALx(CnALx(Γ)) = CnALx(Γ). [16,
Th. 11.6, Th. 11.7]

In Sections 4.4.2 and 4.5.2 we explained how an AL selects a subset of its
LLL-models. It was proven generically for ALs in the standard format that if Γ
has LLL-models, then it has ALx-models. This property is called reassurance,
since it ‘reassures’ that, unless Γ is LLL-trivial, ALx will not trivialize Γ.

A slightly stronger result is that, if a LLL-model of Γ is not selected, then
there is a LLL-model M ′ of Γ that is selected and for which Ab(M ′) ⊂ Ab(M).
This property, which entails the reassurance property, is called strong reassur-
ance:

Theorem 11. [Strong reassurance] If M ∈MLLL(Γ) −MALx(Γ), then there is
a M ′ ∈MALx(Γ) such that Ab(M ′) ⊂ Ab(M). [16, Th. 4-5]

The following two theorems further clarify the relation between ALs and their
LLL:

Theorem 12. [LLL-closure] CnLLL(CnALx(Γ)) = CnALx(Γ). [16, Th. 11.8]

Theorem 13. [LLL-invariance] CnALx(CnLLL(Γ)) = CnALx(Γ). [16, Th. 15.2]

Theorem 14. [Cumulative indifference] If Γ′ ⊆ CnALx(Γ), then CnALx(Γ) =
CnALx(Γ ∪ Γ′). [16, Th. 11.10]

The cumulative indifference property warrants that whenever Γ ⊢ALx A, the
ALx-closure of Γ ∪ {A} is the same as the ALx-closure of Γ. Where Γ′ ⊆
CnALx(Γ), cumulative indifference is sometimes split up into the cumulative
monotonicity property (CnALx(Γ) ⊆ CnALx(Γ ∪ Γ′)) and the cumulative transi-
tivity property (CnALx(Γ) ⊇ CnALx(Γ ∪ Γ′)).

In [24] the authors argue that ALs have certain advantages over other formal
approaches to defeasible reasoning. The gist of their argument is that ALs are
more transparent in their treatment of equivalent premise sets. Where L is a
Tarski-logic if L is reflexive, monotonic and transitive, they specify three criteria
of ALx-equivalence:

Theorem 15. CnAL(Γ) = CnALx(Γ′) if one of the following holds:

(C1) Γ′ ⊆ CnALx(Γ) and Γ ⊆ CnALx(Γ′). [24, Th. 6]
(C2) Where L is a Tarksi-logic weaker than or identical to ALx:

CnL(Γ) = CnL(Γ′). [24, Th. 7]
(C3) Where L is a Tarski-logic and for every Θ ∈ WL, CnALx(Θ) =

CnL(CnALx(Θ)) ∶ CnL(Γ) = CnL(Γ′). [24, Th. 7]

In view of the following theorem:

Theorem 16 (Maximality of LLL). Every monotonic logic that is weaker than
or identical to ALx is weaker than or identical to LLL. [24, Th. 10]
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criterion (C2) can be strengthened to (C2’):
(C2’) Where L is a monotonic logic weaker than or identical to LLL: if Γ and

Γ′ are L-equivalent, then they are ALx-equivalent.
For a detailed discussion on the various criteria for equivalence, we refer to [24].

4.8 Internal and external dynamics of ALs

In adaptive proofs, inferences may be withdrawn for different reasons. First, a
formula derived in an adaptive proof may be withdrawn in view of the availability
of new information. Here, our reasoning process is non-monotonic: conclusions
derivable from a premise set may not be derivable anymore if further premises
are added. This non-monotonic aspect of our reasoning corresponds to what we
call the external dynamics of defeasible reasoning.

Second, a formula derived in an adaptive proof may be withdrawn in view
of an increased understanding of the premises. As we reason along, we may
gain new insights in the premises even without the addition of genuinely new
information in the form of new premises. This type of dynamics is called the
internal dynamics of defeasible reasoning.

The external dynamics concerns the consequence relation of a logic, and the
way it deals with the addition of new premises to those already present. The
internal dynamics concerns the actual reasoning steps displayed by an agent, and
how she stepwise obtains more insights in the premises.13

In order to model the internal dynamics, we use a proof theory. A unique
feature of adaptive proofs is that they nicely explicate the internal dynamics of
defeasible reasoning. We end this section with an illustration of this internal
dynamics in a concrete proof. Let Γ = {Op,Or,¬(◇(p∧q)∧◇(p∧r)),P¬(p∧r) ⊃
¬◇ (p ∧ q)}. Consider the following Px

◇-proof from Γ:

1 Op PREM ∅
2 Or PREM ∅
3 ¬(◇(p ∧ q) ∧◇(p ∧ r)) PREM ∅
4 P¬(p ∧ r) ⊃ ¬◇ (p ∧ q) PREM ∅
5 O(p ∧ r) 1,2; RC {¬◇ (p ∧ r)}

At stage 5 of the proof, line 5 is unmarked. However, at the next stage we
have derived a minimal Dab-formula containing its condition, which causes the
marking of line 5:

5 O(p ∧ r) 1,2; RC {¬◇ (p ∧ r)}✓6

6 ¬◇ (p ∧ q) ∨ ¬◇ (p ∧ r) 3; RU ∅

Suppose now that we continue the proof as follows:

5 O(p ∧ r) 1,2; RC {¬◇ (p ∧ r)}
6 ¬◇ (p ∧ q) ∨ ¬◇ (p ∧ r) 3; RU ∅
7 ¬◇ (p ∧ r) ⊃ ¬O(p ∧ r) RU ∅
8 ¬◇ (p ∧ r) ⊃ ¬◇ (p ∧ q) 4,7; RU ∅
9 ¬◇ (p ∧ q) 6,8; RU ∅

13Pollock uses the terms ‘synchronic defeasibility’ and ‘diachronic defeasibility’ for referring
to the external, respectively internal, dynamics of human defeasible reasoning [142].
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The P◇-valid formula derived at line 7 follows by contraposition from the
instance O(p ∧ r) ⊃ ◇(p ∧ r) of the schema (OIC). The formula derived at line
8 follows from those derived at lines 4 and 7 by CL and the definition of the
P-operator. Due to the derivation of a shorter Dab-formula at line 9, the Dab-
formula derived at line 6 is no longer minimal. As a result, line 5 is unmarked
again at stage 9.

Altogether, the example illustrates that, without the addition of new infor-
mation to the premise set Γ, a formula can be derivable at some stage in the
proof, not derivable at a later stage, and derivable again at an even later stage.

4.9 The upper limit logic

Above, we have talked extensively about ‘standards of normality’. The standard
format for ALs provides us with the formal machinery for making this standard
technically precise. The standard of normality of an AL is called its upper limit
logic (ULL).

The ULL of an AL is obtained by adding to the LLL one or more axiom
schemas and/or rules that trivialize exactly those formulas that are members of
Ω.

In case no Dab-formulas are derivable from a premise set by means of the
lower limit logic, it is safe to consider all abnormalities as false. As a consequence,
the adaptive logic will then yield the same consequence set as the ULL, i.e. the
logic that interprets all abnormalities as false (or equivalently, the logic that
unconditionally validates the inference rules whose application the adaptive logic
only allows conditionally). In general, the upper limit logic ULL of ALx is
related to LLL as set out by the Derivability Adjustment Theorem:

Theorem 17. Γ ⊢ULL A iff (there is a ∆ ⊆ Ω for which Γ ⊢LLL A ∨Dab(∆) or
Γ ⊢LLL A).

The set of Dab-consequences derivable from the premise set determines the
extent to which the ALx-consequence set resembles the ULL-consequence set.
This is why adaptive logicians say that ALx adapts itself to a premise set. ALx

is always at least as strong as LLL and maximally as strong as ULL:

Theorem 18. CnLLL(Γ) ⊆ CnALx(Γ) ⊆ CnULL(Γ).

Corollary 1. CnLLL(Γ) ⊆ CnALr(Γ) ⊆ CnALm(Γ) ⊆ CnULL(Γ).

Corollary 1 immediately follows from Theorems 7 and 18.
If Γ is normal, i.e. if U(Γ) = ∅, then we can even prove a stronger result:

Theorem 19. If Γ is normal, then CnALx(Γ) = CnULL(Γ).

For the proofs of Theorems 17-19, we refer to [16].
The upper limit logic UP◇ of P◇ is obtained by adding to the latter system

the axiom (U◇). Where ∆ ⊂W l and, for all A ∈Wa, {A,¬A} /⊆ ∆:

◇⋀∆ (U◇)
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It is easily checked that (U◇) trivializes exactly those formulas that are in the
set Ω of Px

◇-abnormalities. By Corollary 1,

Corollary 2. CnP◇(Γ) ⊆ CnPr
◇

(Γ) ⊆ CnPm
◇

(Γ) ⊆ CnUP◇(Γ)

Where ∆ ⊂ W l, the constraint that, for all A ∈ Wa, {A,¬A} /⊆ ∆ warrants
that UP◇ does not trivialize every premise set (including the empty set). For
suppose that we remove this constraint. Then, since it is valid in P◇, the formula
¬ ◇ (p ∧ ¬p) would be a member of Ω. Since UP◇ falsifies all members of Ω,
◇(p ∧ ¬p) would then be UP◇-valid. Since UP◇ extends P◇, both ◇(p ∧ ¬p)
and its negation would be theorems of this logic. Hence by CL every member of
WO

◻ would be UP◇-valid.

Fact 4. OA,OB ⊢UP◇ O(A ∧B).

Proof. Suppose OA and OB.
Case 1. {A,B} is CL-consistent. Then ⊬UP◇ ¬◇ (A ∧B). Let C1 ∨ . . . ∨Cn be
a disjunctive normal form of A∧B of which each Ci is CL-consistent. By (U◇),
it follows that ◇C1. By K-properties, it follows that ◇(C1 ∨ . . . ∨ Cn). By K
again, ◇(A ∧B). By (◇AND), O(A ∧B).
Case 2. {A,B} is CL-inconsistent. Then (�) ⊢CL ¬(A ∧B). By OA and (OIC),
◇A. By (�) and K-properties, (�) ◇(A ∧ ¬(A ∧B)).
By (�) and (NEC), ⊢UP◇ O¬(A ∧ B). Hence, by OA and (�), it follows by
(◇AND) that O(A ∧ ¬(A ∧B)). By (RM), it follows that (♯) O¬B.
By OB and (CONS), it follows that ¬O¬B, which contradicts (♯). Hence, by
(ECQ), O(A ∧B).

We can now prove the yet stronger result that SDL is a fragment of UP◇.
Where Γ ⊆WO and A ∈WO:

Theorem 20. If Γ ⊢SDL A, then Γ ⊢UP◇ A.

Proof. We show that all axiom schemas and rules of SDL are valid in UP◇.
Since UP◇ already contains CL and (NEC), we need only show that (K), (P)
and (D) are UP◇-valid. For (P), this is immediate in view of the definition of
the P-operator. For (D), this is immediate in view of (CONS) and the definition
of the P-operator.
Ad (K). Suppose O(A ⊃ B) and OA. By Fact 4, O(A ∧ (A ⊃ B)). By (RM),
OB.

4.10 Some other strategies

Apart from the reliability and minimal abnormality strategies, some other adap-
tive strategies have been proposed in the literature on ALs. We briefly discuss
three more proposals. Except for the simple strategy, these are not defined within
the standard format.

1. The simple strategy is suitable whenever we know that Γ ⊢LLL Dab(∆)
iff Γ ⊢LLL A for some A ∈ ∆. In this case, the reliability and minimal
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abnormality strategies come to the same. According to the simple strategy,
a line l in an adaptive proof is marked at stage s iff an element of the
condition of this line is derived at s on the empty condition.

Not surprisingly, the main interest of the simple strategy lies in its simplic-
ity. In contexts in which the strategy is suitable, employing its straight-
forward marking criterion leads to a far less complex adaptive logic as
compared to e.g. the reliability and minimal abnormality strategies. For
some concrete ALs that make use of the simple strategy, see e.g. [59, 176].

2. We already mentioned that reliability is a more ‘skeptical’ strategy than
minimal abnormality (cfr. Section 4.6). Scholars in artificial intelligence
often use the term ‘skeptical’ in a different way in the context of non-
monotonic reasoning. For any logic L, let a maximally L-consistent subset
be defined as follows:

Definition 15. Where Γ and ∆ are sets of L-formulas, ∆ is a maximally
L-consistent subset of Γ iff (i) ∆ ⊆ Γ, (ii) ∆ is L-consistent, and (iii) there
is no L-consistent set ∆′ such that ∆ ⊂ ∆′ and ∆′ ⊆ Γ.

Let A be a skeptical L-consequence of Γ iff A is an L-consequence of each
maximally L-consistent subset of Γ. A is a credulous L-consequence of Γ
iff A is an L-consequence of some maximally L-consistent subset of Γ.

The normal selections strategy is more in the spirit of ‘credulous’ conse-
quence relations. In adaptive proofs that make use of this strategy, a line l
with condition ∆ is marked at stage s iff Dab(∆) has been derived at s on
the empty condition. In [25], the normal selections strategy was used for
characterizing a credulous consequence relation by means of an adaptive
logic.

In Section 5.3, we provide an example of a skeptical and a credulous conse-
quence relation as defined in the AI-tradition, and compare its consequences
to those derivable by means of adaptive logics making use of the reliability
and minimal abnormality strategies.

3. So far, all adaptive strategies mentioned are qualitative. The counting
strategy is an example of a quantitative strategy. The idea behind the
counting strategy is that a LLL-modelM is selected iff no other LLL-model
M ′ verifies less abnormalities than M . As an application of this strategy,
we can think of a number of witnesses in a trial. If equally trustworthy
witnesses contradict each other, then according to the counting strategy a
statement could be plausible if the witnesses affirming it outnumber those
denying it. For an illustration of the counting strategy, see e.g. [147].

For a more detailed discussion on these strategies, and for some more examples
of adaptive strategies not in the standard format, see [19, Section 6.1].



Chapter 5

Non-aggregative adaptive logics
for normative conflicts

. Section 5.2 of this chapter is based on the paper Non-Adjunctive Deontic
Logics That Validate Aggregation as Much as Possible (Journal of Applied
Logic, conditionally accepted) [130], which is co-authored by Joke Meheus,
Frederik Van De Putte and Christian Straßer.

. I am indebted to Joke Meheus and Christian Straßer for valuable comments
on this chapter.

In developing formal systems capable of accommodating conflicting obliga-
tions, the historically dominant strategy is to restrict the aggregation principle
(AND). In this chapter, we present some adaptive systems that allow for ‘the
right amount’ of aggregation given their intended application contexts.

In Section 5.1, we assess the ‘Williams-style’ non-aggregative adaptive logic
Px
◇ defined in the previous chapter. In doing so, we make use of the desiderata

for CTDLs presented in Chapter 3.

We continue in Section 5.2 with the presentation and motivation of the logic
P2.2x which allows for the aggregation of obligations arising from different nor-
mative standards. Alternatively P2.2x can be interpreted as a logic that allows
us to derive all-things-considered obligations from a set of prima facie obligations.
In presenting this logic, we also discuss some pitfalls that one should watch out
for when constructing ALs. Moreover, we discuss at some length the treatment
of incompatible obligations by P2.2x.

We end this chapter with a comparison of the adaptive systems presented
here with their main non-monotonic competitor (Section 5.3).

5.1 Tolerating moral dilemmas

In Section 3.2.1.2 we discussed Williams’ claim that moral conflicts can be for-
malized as formulas of the form OA1 ∧ . . . ∧OAn ∧ ¬◇ (A1 ∧ . . . ∧An). We saw
how defenders of this claim seem to be caught between a rock and a hard place,

73
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since they are required to either give up one of (AND) and (OIC), or accept the
explosion principle (◇-EX).1

Williams’ own solution was to give up (AND). Although he does not claim
to have a knock-down disproof of this principle, he talks of abandoning [203,
p. 120], waiving [203, p. 122], and rejecting [203, p. 123] aggregation in order to
obtain a more realistic picture of moral thought. Logicians too have proposed
giving up the agglomeration principle in its entirety in order to make deontic
logic conflict-tolerant, e.g. [58, 65, 157]. However, as we saw in Section 3.2.2.1
there are some problems with this approach.

Even if Williams is correct in claiming that “no agent, conscious of the sit-
uation of conflict, in fact thinks that he ought to do both of the things” [203,
p. 120], we believe that the same agent will reason very differently in case the
ought’s in question do not conflict. This was already illustrated in Example 13.
Recalling Horty’s argument from Section 3.2.2.1, we seem to need an aggrega-
tion rule that allows for ‘exactly the right amount of aggregation’. Recalling the
design requirements from Section 3.3, the logic resulting after adding this rule
should be non-explosive and non-monotonic, and should not require that the user
needs to do some extra reasoning which is not supported by the formal logic in
order to aggregate two obligations.

Taking Williams’ formalization of moral conflicts as given, the logic Px
◇

defined in the previous chapter meets all requirements. First of all, where
⊬ ¬(A ∧B), (◇-EX) is invalid in Px

◇:

OA,OB,¬◇ (A ∧B) ⊬Px
◇

� (5.1)

So are its weaker variants:

OA,OB,¬◇ (A ∧B) ⊬Px
◇

OC (5.2)

OA,OB,¬◇ (A ∧B) ⊬Px
◇

PB ⊃ OC (5.3)

If ⊬ C, then OA,OB,¬◇ (A ∧B) ⊬Px
◇

PC ⊃ OC (5.4)

Similarly for the other variants of the explosion principles presented in Section
2.3.2.

Second, due to its non-monotonicity Px
◇ allows for the applicability of (AND)

wherever it is intuitive to aggregate obligations. For instance, the following
inferences are Px

◇-valid:

Op,Oq ⊢Px
◇

O(p ∧ q) (5.5)

Op,Oq,Or ⊢Px
◇

O(p ∧ q ∧ r) (5.6)

Op,Oq,Or,¬◇ (p ∧ q) ⊢Px
◇

O(p ∧ r) (5.7)

O(p ∧ q),Or,Os,¬◇ (q ∧ r) ⊢Px
◇

O(p ∧ s) (5.8)

The following inferences are Px
◇-invalid:

Op,Oq,¬◇ (p ∧ q) ⊬Px
◇

O(p ∧ q) (5.9)

1We refer to [26, 203] for further details on Williams’ characterization of moral conflict and
on his solution for accommodating moral conflicts in deontic logic.
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Op,Oq,Or,¬◇ (p ∧ q) ⊬Px
◇

O(p ∧ q ∧ r) (5.10)

In some cases, it depends on the adaptive strategy used whether a formula is
Px
◇-derivable or not. As we saw in the previous chapter:

O(p ∧ q),Or,Os,¬◇ (p ∧ r) ∨ ¬◇ (q ∧ s) ⊬Pr
◇

O(p ∧ q ∧ (r ∨ s)) (5.11)

O(p ∧ q),Or,Os,¬◇ (p ∧ r) ∨ ¬◇ (q ∧ s) ⊢Pm
◇

O(p ∧ q ∧ (r ∨ s)) (5.12)

Px
◇ also treats Horty’s Smith example (Example 13) the way it should:

1 O(f ∨ s) PREM ∅
2 O¬f PREM ∅
3 ◇(¬f ∧ s) RC {¬◇ (¬f ∧ s)}
4 ◇(¬f ∧ (f ∨ s)) 3; RU {¬◇ (¬f ∧ s)}
5 O(¬f ∧ (f ∨ s)) 1,2,4; RU {¬◇ (¬f ∧ s)}
6 Os 5; RU {¬◇ (¬f ∧ s)}

Finally, it is not required that the user add any extra information not con-
tained in the premise set in order to aggregate two obligations in Px

◇. If no
abnormality prevents one from doing so, two obligations can be aggregated with-
out the ‘manual’ addition of extra premises.

Before we conclude this section, we briefly return to Williams’ formalization of
moral conflicts. One may argue against Williams that moral conflicts are better
formalized by (or reduced to) conjunctions of the form OA∧O¬A. This appears
to be the approach of Goble in [69], where a conflict {OA,OB,¬ ◇ (A ∧ B)}
reduces to {OA,O¬A,OB,O¬B} in view of the principle (NM) introduced in
Section 1.6.2.

Williams’ formalization of conflicts within the richer language WO
◻ is more

informative. A key feature of his characterization of moral conflicts is that such
conflicts arise via the facts. In this sense, it is more natural to formalize moral
conflicts by making use of an alethic possibility operator. Moreover, when using
the formalization {OA,O¬A,OB,O¬B} instead of {OA,OB,¬ ◇ (A ∧ B)}, one
loses the information that there is a link between the fulfillment of OA and the
fulfillment of OB.

When formalized without the use of alethic modalities, we obtain a more
economical, simpler characterization of moral conflicts. When formalized with an
alethic possibility operator, we obtain a richer, more expressive characterization.
Which characterization is best depends on the context of application and need
not be decided here. In the next section, we will present a non-aggregative deontic
logic that allows for the formalization of normative conflicts as formulas of the
form OA ∧O¬A.

5.2 Aggregating over different normative standards

5.2.1 Introduction

In this section, we present the non-adjunctive adaptive deontic logics P2.2r and
P2.2m. Both P2.2r and P2.2m are based on Goble’s logic SDLaPe from [65],
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which we shall henceforth call P2. The system P2 is a bimodal extension of the
logic P from Section 3.2.2.1. The language of P2 contains two distinct obligation
operators: the operator Oe, which is the one from P, and the new operator Oa.
The duals Pe and Pa are defined in the usual way, i.e. PeA =df ¬Oe¬A and
PaA =df ¬Oa¬A. Goble’s motivation for this additional ought-operator is that
OeA expresses that, under some set of norms, A ought to be case, but cannot
express that A holds ‘universally’, under any standard. The Oa-operator gives
us exactly this. This results in a greater expressive power and also in different
ways for formalizing conflicts (see Section 5.2.2).

The logic P2 behaves exactly like SDL for the Oa-operator and like P for the
Oe-operator. This seems to give the logic some advantages over P. Given the
proper formalization, one can make sure that for all non-conflicting ‘parts’ of the
premises, the same results are obtained as with SDL. For instance, in the Smith
example, formalizing the premises as Oa(f ∨ s) and Oa¬f ensures that Oas is
derivable. This solution presupposes, however, that one knows in advance which
premises can be safely formalized with the Oa-operator. As such, it presupposes
that one knows in advance which ‘parts’ of the premises are problematic. This
requires additional reasoning and is at odds with the user-friendliness requirement
from Section 3.3.3.

Using the terminology from Section 1.4.1, we can also let the Oe-operator
denote prima facie obligations and let the Oa-operator denote actual (“all-things-
considered”) obligations. The logics P2.2r and P2.2m as well as their LLL P2
accept the first main distinguishing feature of prima facie obligations: at this
level, conflicts may arise between duties. Formulas of the form OeA ∧ Oe¬A
behave consistently in the systems P2, P2.2r and P2.2m.

The second distinguishing feature of prima facie obligations is that, in case
no conflict arises, a prima facie obligation becomes actual. This feature is not
caught by the logic P2, but is modeled in an intuitive way by P2.2r and P2.2m.
The latter logics allow for the defeasible application of the rule “if OeA, then
OaA”.

The basic idea behind the two new logics is that Oe-obligations are interpreted
“as much as possible” as Oa-obligations (that is, unless and until the premises
explicitly prevent this). As is clear from the above, all classical operations can
be applied to Oa-obligations (aggregation, disjunctive syllogism, ...). Which Oe-
obligations are interpreted as Oa-obligations and which not is solely dependent on
formal grounds. The logics adapt themselves to the set of premises and localize
the conflicts. No interference of the user is required for this.

The systems P2.2r and P2.2m are not the first adaptive logics that are based
on P. In [129], the logic P2.1r was presented. This system too was constructed
to apply the schema OeA ⊃ OaA ‘as much as possible’. At first sight, P2.1r is a
very satisfactory system. It has all the nice properties of P, it leads to the same
consequence set as SDL for conflict-free premise sets, and it allows one to deal
with some well-known toy examples in their original formulation.

However, it turns out that P2.1r does not entirely live up to its expectations.
For simple examples it works fine. However, it breaks down for specific sets of
more complex premises. Consider, for instance, the following premise set

Oe(p ∨ q) (5.13)
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Oe(r ∨ s) (5.14)

¬Oa((p ∨ q) ∧ (r ∨ s)) (5.15)

Oet (5.16)

There is clearly an incompatibility between (5.13) and (5.14) in view of (5.15).
However, there is nothing wrong with (5.16). Hence one expects to be able to
derive Oat from this premise set, but P2.1r does not allow for this inference. The
logics P2.2r and P2.2m solve this problem, while retaining all the nice properties
of P2.1r.

In Section 5.2.2, we present Lou Goble’s P2. Readers interested in the logic
P2.1r and the problems that it faces, can have a look at Section 5.2.3. In Section
5.2.4 we continue with the presentation of the systems P2.2r and P2.2m which
overcome the problems faced by P2.1r. We discuss the treatment of incompatible
obligations in P2.2x in Section 5.2.5, and state some further properties of P2.2x

in Section 5.2.6.

5.2.2 The logic P2

The set WP2 of wffs of P2 is defined as:

WP2 ∶= W ∣ Oe⟨W⟩ ∣ Oa⟨W⟩ ∣ ¬⟨WP2⟩ ∣ ⟨WP2⟩∨ ⟨WP2⟩ ∣ ⟨WP2⟩∧ ⟨WP2⟩ ∣
⟨WP2⟩ ⊃ ⟨WP2⟩ ∣ ⟨WP2⟩ ≡ ⟨WP2⟩

The formal characterization of P2 is exactly that of Goble’s SDLaPe from
[65], except for one minor aspect. Goble is only interested in the theorems of
his logic, not in a consequence relation. As we are mainly interested in the
consequence relation, and as we want to talk about the models of premise sets,
we shall modify his characterization in such a way that we introduce an actual
world in the models.

The idea behind P2 is simple: in a Kripke-like semantics, aggregation is
invalidated by considering a set of accessibility relations instead of only one.
Intuitively, each accessibility relation can be thought of as corresponding to one
of the normative systems an agent adheres to.

A P2-model M is a quadruple ⟨W,R, v,w0⟩ where W is a set of possible
worlds, R is a non-empty set of serial accessibility relations R on W , v ∶Wa×W →
{0,1} is an assignment function, and w0 ∈W is the actual world. The valuation
vM defined by the model M is characterized by:

(Ca) where A ∈Wa, vM(A,w) = v(A,w)
(C¬) vM(¬A,w) = 1 iff vM(A,w) = 0
(C∨) vM(A ∨B,w) = 1 iff vM(A,w) = 1 or vM(B,w) = 1
(C∧) vM(A ∧B,w) = 1 iff vM(A,w) = 1 and vM(B,w) = 1
(C⊃) vM(A ⊃ B,w) = 1 iff vM(A,w) = 0 or vM(B,w) = 1
(C≡) vM(A ≡ B,w) = 1 iff vM(A,w) = vM(B,w)
(COe) vM(OeA,w) = 1 iff, for some R ∈R, vM(A,w′) = 1 for all w′ such

that Rww′

(COa) vM(OaA,w) = 1 iff, for every R ∈ R, vM(A,w′) = 1 for all w′

such that Rww′

A P2-model M verifies A (M ⊩ A) iff vM(A,w0) = 1.
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P2 is axiomatized by adding to CL the following axiom schemas and rules:

Oa(A ⊃ B) ⊃ (OaA ⊃ OaB) (Ka)

OaA ⊃ ¬Oa¬A (Da)

If ⊢ A then ⊢ OaA (Na)

If ⊢ A ⊃ B then ⊢ OeA ⊃ OeB (RMe)

If ⊢ A then ⊢ OeA (Ne)

If ⊢ A then ⊢ ¬Oe¬A (Pe)

Oa(A ⊃ B) ⊃ (OeA ⊃ OeB) (Kae)

The first three postulates deliver SDL for Oa and the next three deliver P
for Oe. The last axiom links the two operators.

Where Γ ⊂WP2 is finite and A ∈WP2, we define Γ ⊢P2 A iff A is derivable
from Γ by the axiom schemas and rules of P2, and ⊢P2 A iff A is derivable by
the axiom schemas and rules of P2 from the empty premise set.

In [65], Goble proved soundness and (weak) completeness for P2.

Theorem 21. For any finite Γ ⊂WP2, Γ ⊢P2 A iff Γ ⊧P2 A.

The Oa-operator of P2 is stronger than the Oe-operator:

OaA ⊢P2 OeA (5.17)

OeA ⊬P2 OaA (5.18)

OeA ⊢P2 ¬Oa¬A (5.19)

OaA ⊢P2 ¬Oe¬A (5.20)

Proof. Ad (5.17). Suppose OaA. By the CL-theorem A ⊃ ((((A ⊃ A) ⊃ A) ⊃
A) ⊃ A), (Na), (Ka) and modus ponens, it follows that (�) Oa((((A ⊃ A) ⊃ A) ⊃
A) ⊃ A). Moreover, by the CL-theorem ((A ⊃ A) ⊃ A) ⊃ A and (Ne), we know
that ⊢P2 Oe(((A ⊃ A) ⊃ A) ⊃ A). By (�) and (Kae), it follows that OeA.

The proofs for (5.18)-(5.20) are safely left to the reader.

P2 tolerates OO-conflicts arising from different normative standards, but does
not tolerate single-standard conflicts or conflicts between an Oe- and an Oa-
obligation:

OeA,Oe¬A ⊬P2 OeB (5.21)

OaA,Oa¬A ⊢P2 OaB (5.22)

OeA,Oa¬A ⊢P2 OaB (5.23)

Aggregation holds for Oa-obligations, but not for Oe-obligations. Moreover, from
an Oa-obligation to do A and an Oe-obligation to do B, we can derive the Oe-
obligation to do A and B, but not the Oa-obligation to do A and B:

OeA,OeB ⊬P2 Oe(A ∧B) (5.24)

OaA,OaB ⊢P2 Oa(A ∧B) (5.25)

OaA,OeB ⊢P2 Oe(A ∧B) (5.26)
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OaA,OeB ⊬P2 Oa(A ∧B) (5.27)

All of these inferences are intuitive in view of the interpretation of the Oe- and
Oa-operators. We will now extend P2 so as to account for the intuition that
Oe-obligations are interpreted “as much as possible” as Oa-obligations. A first
attempt is made in Section 5.2.3. Although this attempt is ultimately unsuc-
cessful, the discussion of it provides some insights concerning the problems that
logicians are typically faced with when devising ALs. Readers not interested
in these problems can safely skip this section and move immediately to Section
5.2.4, where a more successful solution is provided.

5.2.3 Excursion: the system P2.1r

In [129], we presented the adaptive logic P2.1r, which is defined by the LLL P2,
the reliability strategy, and the set of abnormalities Ω = Ω1 ∪Ω2, where

� Ω1 = {OeA ∧ ¬OaA ∣ A ∈W l},

� Ω2 = {Oe(A1 ∨ . . . ∨ An) ∧ ¬(OeA1 ∧ ¬OaA1) ∧ . . . ∧ ¬(OeAn ∧ ¬OaAn) ∧
¬Oa(A1 ∨ . . . ∨An) ∣ A1, . . . ,An ∈W l, n ≥ 2}.

Note that, by CL, for any A ∈WP2,

OeA ⊢P2 OaA ∨ (OeA ∧ ¬OaA) (5.28)

Thus, if Ω were to contain all formulas of the form OeA ∧ ¬OaA, then in any
P2.1r-proof we could derive OaA from OeA on the condition that OeA ∧ ¬OaA
is false.

However, as is clear from the definition of Ω, things are not that simple.
First, the set Ω1 contains a restriction to members of W l. The reason for this
is easily demonstrated by means of an example. Consider the premise set Γ1 =
{Oep,Oe¬p,Oeq}. In view of these premises, it seems natural to derive the all-
things-considered obligation Oaq, whereas we do not want to derive the all-things-
considered obligations Oap or Oa¬p (since the latter are involved in a conflict).
Let �(A) abbreviate OeA∧¬OaA. Consider now the following P2.1r-proof from
Γ1:

1 Oep PREM ∅
2 Oe¬p PREM ∅
3 Oeq PREM ∅
4 �(p) 1,2; RU ∅
5 �(¬p) 1,2; RU ∅
6 Oaq 3; RC {�(q)}
7 Oe(¬p ∨ ¬q) 2; RU ∅
8 �(q) ∨ �(¬p ∨ ¬q) 1,3,7; RU ∅

If Ω were to contain all formulas of the form �(A) where A ∈WP2, then line
6 in the proof would be marked at stage 8 in view of the minimal Dab-formula
�(q) ∨ �(¬p ∨ ¬q). In fact, the logic resulting from defining Ω as the set of all
formulas of the form �(A) would be a so-called flip-flop logic. An adaptive logic
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ALx (with lower limit logic LLL and upper limit logic ULL) is a flip-flop logic
if, for all premise sets Γ ⊆WLLL, (i) if no Dab-formulas are LLL-derivable from
Γ, then CnALx(Γ) = CnULL(Γ), and (ii) if at least one Dab-formula is LLL-
derivable from Γ, then CnALx(Γ) = CnLLL(Γ). Thus, if ALx is a flip-flop logic,
then either CnALx(Γ) = CnLLL(Γ) or CnALx(Γ) = CnULL(Γ).2

When trying to accommodate normative conflicts by means of adaptive logics,
we clearly do not want these logics to be flip-flop logics. In case (ii), we usually
want our logic to deliver a consequence set that is strictly stronger than that
delivered by the LLL. Thus, we cannot simply define Ω as the set of all formulas
of the form �(A). Let us now return to the actual definition of Ω for the logic
P2.1r.

For conflicts relating to more complex obligations Ω2 requires that none of
the literals contained in such obligations is ‘tainted’ by a conflict. Note that the
formula �(¬p ∨ ¬q) does not meet this requirement, since we already know that
�(¬p) is P2-derivable from Γ1 (see line 5). Thus, �(q) ∨ �(¬p ∨ ¬q) does not
give rise to a Dab-formula and line 6 remains unmarked. Moreover, there is no
extension of the proof that would cause the marking of this line. Hence Oaq is
finally P2.1r-derivable from Γ1, as desired.

Unfortunately, the requirement that Ω2-abnormalities be untainted by con-
flicts of the form �(A) for any of its subformulas A ∈W l is still insufficient. We
illustrate this by means of the premise set Γ2 = {Oe(p ∨ q),Oe(r ∨ s),¬Oa((p ∨
q) ∧ (r ∨ s)),Oet}:

1 Oe(p ∨ q) PREM ∅
2 Oe(r ∨ s) PREM ∅
3 ¬Oa((p ∨ q) ∧ (r ∨ s)) PREM ∅
4 Oet PREM ∅

The formulas at lines 1 and 2 are clearly incompatible in view of the formula
at line 3. However, there is nothing wrong with the formula at line 4, so we would
expect Oat to be P2.1r-derivable from Γ2.

Let �(A1 ∨ . . . ∨ An) abbreviate Oe(A1 ∨ . . . ∨ An) ∧ ¬�(A1) ∧ . . . ∧ ¬�(An) ∧
¬Oa(A1 ∨ . . . ∨ An). Consider the following extension of the P2.1r-proof from
Γ2:

5 Oat 4; RC {�(t)}✓6

6 �(p∨q∨¬t)∨�(r∨s∨¬t)∨�(p)∨
�(q)∨�(r)∨�(s)∨�(t)∨�(¬t)

1-4; RU ∅

It is left to the reader to check that line 6 is indeed P2-derivable from Γ2.
Since the disjunction cannot be shortened in such a way that the result is still
P2-derivable from the premises, the Dab-formula derived at line 6 is a minimal
Dab-consequence of Γ2. Hence, line 5 will remain marked in any extension of the
proof, and Γ2 ⊬P2.1r Oat.

Since there is no other condition on which the formula Oat is derivable in
a proof from Γ2, switching strategies will not help us to derive this formula:
Γ2 ⊬P2.1m Oat.

2See [14, 22] for more information on flip-flop logics.
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The reason why P2.1x breaks down when faced with complex sets of obliga-
tions has to do with the definition of the set Ω2. The logics P2.2r and P2.2m

overcome these problems by means of a more comprehensive definition of the set
of abnormalities.

5.2.4 The logic P2.2x

Where x ∈ {r,m}, the logic P2.2x, like P2.1r, has Goble’s P2 as its LLL. How-
ever, it makes use of a different set Ω of abnormalities. Despite the relatively
simple intuition behind it, the definition of this set needs some preparation.
Where Θ ⊂W l is finite and non-empty, and where

σ(Θ) = {Oe(⋁Θ′) ∧ ¬Oa(⋁Θ′) ∣ Θ′ ⊆ Θ and Θ′ ≠ ∅}

the form of the abnormalities of P2.2x is ⋁(σ(Θ)).
If Θ = {p}, then ⋁(σ(Θ)) is simply the formula Oep ∧ ¬Oap. As a more

complex example, consider the set Θ = {p, q, ¬r}. In that case, ⋁(σ(Θ)) stands
for the formula (Oe(p∨q∨¬r)∧¬Oa(p∨q∨¬r))∨(Oe(p∨q)∧¬Oa(p∨q))∨(Oe(p∨
¬r)∧¬Oa(p∨¬r))∨(Oe(q∨¬r)∧¬Oa(q∨¬r))∨(Oep∧¬Oap)∨(Oeq∧¬Oaq)∨(Oe¬r∧
¬Oa¬r). For reasons of transparency, we shall in the remainder use ♯(p∨ q ∨¬r)
instead of ⋁(σ({p, q,¬r})). More generally, we shall use ♯(A1 ∨ . . . ∨An) (where
n ≥ 1) instead of ⋁(σ({A1, . . . ,An})).

The set Ω of P2.2x-abnormalities is defined as follows:

Ω = {⋁(σ(Θ)) ∣ Θ ⊂W l,Θ /= ∅,Θ is finite}

The intuition behind the definition of Ω is that whenever a formula OeA ∈
WP2 or any of its subformulas is involved in a conflict, then OeA gives rise to a
P2.2x-abnormality or to a disjunction of P2.2x-abnormalities.

As mentioned above, the idea behind P2.2x is that Oe-obligations are inter-
preted “as much as possible” as Oa-obligations. In an adaptive proof, we can
derive Oa-obligations from Oe-obligations via the conditional rule RC. Where
A ∈W l, we can derive OaA∨(OeA∧¬OaA) from OeA by CL (since OaA∨¬OaA
is P2-valid). Since OeA ∧ ¬OaA ∈ Ω, this means that we can derive OaA from
OeA by RC on the condition �(A).

Where A /∈W l, the application of RC is slightly more involving. Suppose, for
instance, that Oe(p ∨ q). Then, as above, Oe(p ∨ q) ⊢P2 Oa(p ∨ q) ∨ (Oe(p ∨ q) ∧
¬Oa(p ∨ q). By CL, Oe(p ∨ q) ⊢P2 Oa(p ∨ q) ∨ ((Oe(p ∨ q) ∧ ¬Oa(p ∨ q) ∨ (Oep ∧
¬Oap)∨ (Oeq∨¬Oaq)). In other words, Oe(p∨ q) ⊢P2 Oa(p∨ q)∨♯(p∨ q). Hence
Oa(p∨ q) is derivable from Oe(p∨ q) by means of RC on the condition {♯(p∨ q)}

Let us further illustrate the workings of P2.2x by means of some examples.

Example 15. Suppose that Johnson faces the following three obligations:

O1 he ought to pay taxes, and fight in the army or perform alternative service
to his country — Oe(t ∧ (f ∨ s))

O2 he ought not to pay taxes and not fight in the army — Oe(¬t ∧ ¬f)
O3 he ought to pay taxes or donate to charity — Oe(t ∨ c)
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In view of (O1)-(O3), it seems intuitively clear that we want to derive Oes and
even Oas from Oe(f ∨ s) and Oe¬f , but that we do not want to derive Oat or
Oa¬t, since Johnson faces both the obligation to pay taxes and the obligation
not to pay taxes. Moreover, it seems dubious to derive an all-things-considered
obligation for Johnson to donate to charity, since in view of (O3) it seems that
Johnson need only donate to charity if he does not pay taxes.

Let Γ3 be the set of Johnson’s obligations, i.e. Γ3 = {Oe(t ∧ (f ∨ s)),Oe(¬t ∧
¬f),Oe(t ∨ c)}. Consider the following P2.2r-proof from Γ3:

1 Oe(t ∧ (f ∨ s)) PREM ∅
2 Oe(¬t ∧ ¬f) PREM ∅
3 Oe(t ∨ c) PREM ∅
4 Oe(f ∨ s) 1; RU ∅
5 Oe¬f 2; RU ∅
6 Oet 1; RU ∅
7 Oe¬t 2; RU ∅
8 Oa¬f 5; RC {♯(¬f)}
9 Oa(f ∨ s) 4; RC {♯(f ∨ s)}

10 Oas 8,9; RU {♯(¬f), ♯(f ∨ s)}
11 Oat 6; RC {♯(t)}✓16

12 Oa¬t 7; RC {♯(¬t)}✓15

13 Oa(t ∨ c) 3; RC {♯(t ∨ c)}✓17

14 Oac 12,13; RU {♯(¬t), ♯(t ∨ c)}✓15

15 ♯(¬t) 6,7; RU ∅
16 ♯(t) 6,7; RU ∅
17 ♯(t ∨ c) 16; RU ∅

As desired, Γ3 ⊢P2.2r Oa¬f and Γ3 ⊢P2.2r Oas, yet Γ3 ⊬P2.2r Oat, Γ3 ⊬P2.2r

Oa¬t and Γ3 ⊬P2.2r Oac.

As a further illustration, consider the following P2.2x-proof for the premise
set Γ2 from Section 5.2.3:

1 Oe(p ∨ q) PREM ∅
2 Oe(r ∨ s) PREM ∅
3 ¬Oa((p ∨ q) ∧ (r ∨ s)) PREM ∅
4 Oet PREM ∅
5 Oa(p ∨ q) 1; RC {♯(p ∨ q)}✓8

6 Oa(r ∨ s) 2; RC {♯(r ∨ s)}✓8

7 Oat 4; RC {♯(t)}
8 ♯(p ∨ q) ∨ ♯(r ∨ s) 1-3; RU ∅
9 ♯(p ∨ q ∨ ¬t) ∨ ♯(r ∨ s ∨ ¬t) 8; RU ∅

The formula derived at line 8 abbreviates the long Dab-formula (Oe(p ∨ q) ∧
¬Oa(p ∨ q)) ∨ (Oep ∧ ¬Oap) ∨ (Oeq ∧ ¬Oaq) ∨ (Oe(r ∨ s) ∧ ¬Oa(r ∨ s)) ∨ (Oer ∧
¬Oar) ∨ (Oes ∧ ¬Oas). To see how this formula follows from the premises, note
that ¬Oa((p ∨ q) ∧ (r ∨ s)) ⊢P2 ¬Oa(p ∨ q) ∨ ¬Oa(r ∨ s) (remember that the Oa-
operator has all properties of the obligation operator of SDL). Thus, by CL and
lines 1 and 2, (Oe(p ∨ q) ∧ ¬Oa(p ∨ q)) ∨ (Oe(r ∨ s) ∧ ¬Oa(r ∨ s)). By CL again
the longer disjunction ♯(p ∨ q) ∨ ♯(r ∨ s) follows immediately.
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The formula derived at line 6 of the P2.1r-proof from Γ2 in Section 5.2.3
is of course still P2-derivable from Γ2, but it no longer constitutes a minimal
Dab-formula in a P2.2x-proof from Γ2 due to the entirely different definition of
the set of abnormalities. Although the P2.2x-abnormality ♯(p∨ q ∨¬t)∨♯(r∨ s∨
¬t) ∨ ♯(p) ∨ ♯(q) ∨ ♯(r) ∨ ♯(s) ∨ ♯(t) ∨ ♯(¬t) is derivable from the premise set, it is
no longer minimal in view of the formula derived at line 9. Hence Γ2 ⊢P2.2x Oat
as desired.

5.2.5 P2.2x and incompatible obligations

In the language WP2, incompatible obligations can be formalized in one of two
ways, depending on the type of ‘incompatibility’ that is at stake. In what follows,
we distinguish between two such types: incompatibility due to prohibition, and
physical incompatibility.

5.2.5.1 Incompatibility due to prohibition

In this type of conflict, a number of propositionsA1, . . . ,An is mandatory, whereas
their conjunction is forbidden. A1, . . . , An can be jointly fulfilled, but there is
an additional obligation not to fulfill all of them. Consider the following simple
example of this type.

Example 16. Bob, at different moments in time, promised his two best friends,
John and Peter, to invite them to his birthday party. However, he also promised
his girlfriend not to invite them both. (John and Peter are known to quarrel over
almost anything and Bob’s girlfriend is afraid that this may put a damper on the
party).

As there is no reason in this case to prefer one obligation over the other, we
formalize all obligations involved as Oe-obligations:

(1) Bob has an obligation to invite John — Oej
(2) Bob has an obligation to invite Peter — Oep
(3) Bob has an obligation not to invite both Peter and John — Oe¬(j ∧ p)

Let Γ4 = {Oej,Oep,Oe¬(j∧p)}, and consider the following P2.2x-proof from Γ4:

1 Oej PREM ∅
2 Oep PREM ∅
3 Oe¬(j ∧ p) PREM ∅
4 Oaj 1; RC {♯(j)}✓10

5 Oap 2; RC {♯(p)}✓10

6 Oa¬(j ∧ p) 3; RC {♯(¬j ∨ ¬p)}✓16

7 Oa(j ∨ p) 4; RU {♯(j)}✓10

8 Oa(j ∨ p) 5; RU {♯(p)}✓10

9 Oa(j ∨ p) 1; RC {♯(j ∨ p)}✓13

10 ♯(j) ∨ ♯(p) 1-3; RU ∅
11 ♯(¬j) ∨ ♯(p) 1-3; RU ∅
12 ♯(j) ∨ ♯(¬p) 1-3; RU ∅
13 ♯(j ∨ p) 10; RU ∅
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14 ♯(¬j ∨ p) 1-3; RU ∅
15 ♯(j ∨ ¬p) 1-3; RU ∅
16 ♯(¬j ∨ ¬p) 1-3; RU ∅

If the above proof is a P2.2r-proof, then U16(Γ4) = {♯(j), ♯(p), ♯(¬j), ♯(¬p), ♯(j∨
p), ♯(¬j ∨ p), ♯(j ∨ ¬p), ♯(¬j ∨ ¬p)}. Since none of these Dab-consequences of Γ4

can be shortened in any way, the abnormalities in U16(Γ4) are all members of
U(Γ4). Thus, lines 4-9 remain marked in any extension of the proof, and neither
Oaj, Oap, nor Oa¬(j ∧ p) is P2.2r-derivable from Γ4.

If the above proof is a P2.2m-proof, then Φ16(Γ4) = {ϕ1, ϕ2, ϕ3}, where:

ϕ1 = {♯(j), ♯(¬j), ♯(j ∨ p), ♯(¬j ∨ p), ♯(j ∨ ¬p), ♯(¬j ∨ ¬p)}
ϕ2 = {♯(p), ♯(¬p), ♯(j ∨ p), ♯(¬j ∨ p), ♯(j ∨ ¬p), ♯(¬j ∨ ¬p)}
ϕ3 = {♯(j), ♯(p), ♯(j ∨ p), ♯(¬j ∨ p), ♯(j ∨ ¬p), ♯(¬j ∨ ¬p)}

By the marking definition for minimal abnormality, lines 4-9 are marked at
stage 16 of the proof. In view of the final derivability criterion, Oaj, Oap, nor
Oa¬(j∧p) is P2.2m-derivable from Γ4. Thus, P2.2r and P2.2m deliver the same
results for Γ4.

5.2.5.2 Physical incompatibility

In this second type of conflict, the joint fulfillment of a certain series of obligations
is not merely forbidden; it is simply impossible to fulfill them all. As an example,
one may think of a typical Buridan’s ass dilemma, e.g.

Example 17. Imagine a situation where two identical twins are drowning some
distance apart from each other, and the situation is such that you can save either
of them, but you cannot save both.

Example 18. Suppose that someone, Charlotte, ought to visit her daughter Abby
at a certain time and in preparation for that, notify her she is coming. But it
could also be that Charlotte ought also to visit her daughter Beth at that same
time and notify her she is coming. However, since Abby and Beth live on opposite
sides of the country, it is impossible for Charlotte to visit both daughters at that
time ([69, p. 468], [95, p. 581]).

Given the language of P2 – which lacks alethic operators for representing
(im)possibility – there are different ways to formalize incompatible obligations
of this second type. We shall concentrate on two of them. A formalization that
immediately comes to mind is to express the impossibility to fulfill a certain
number of obligations by the universal obligation not to fulfill them all. This
would give us the following formalization in the drowning twin case:

(1) I have an obligation to save the first twin — Oet1
(2) I have an obligation to save the second twin — Oet2
(3) I have the universal obligation not to save both — Oa¬(t1 ∧ t2)

At first sight, this formalization seems appealing: the universal obligation seems
to capture the idea that it is impossible to save both twins (that is, that there is
no accessible world in which both twins are saved).
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However, there are several objections possible. The first is that it is too strong
since, given (1)–(3), one is able to infer that one has the obligation not to save
the first twin and also the obligation not to save the second twin:

Oet1,Oet2,Oa¬(t1 ∧ t2) ⊢P2 Oe¬t1 (5.29)

Oet1,Oet2,Oa¬(t1 ∧ t2) ⊢P2 Oe¬t2 (5.30)

The second objection concerns the notion of a ‘deontically perfect world’. The
above formalization leads to a very strong restriction on what counts as a de-
ontically perfect alternative for our world. One not only has to assume that a
deontically perfect world has at least the same natural laws as our world (which is
a reasonable requirement), but also that its past history is exactly as our world’s
history up to the point where at least one of the twins is actually drowning.

Here lies the difficulty. It is a reasonable requirement that a deontically
perfect world has the same past, but possibly a different future than our world.
But where shall we draw the line? After all, falling in the water and drowning
is not an instantaneous process. If we allow that the histories of the accessible
worlds diverge from one another at an earlier point in time than the actual
drowning of the twins (in our world), things are different. In that case, there are
accessible worlds in which both twins are saved (for instance, the world where at
the crucial moment one of my friends passes by and each of us saves one of the
twins).

In view of this, we favor a weaker formalization of the twin example: we only
require that it is not a universal obligation to save both. Thus, instead of (3),
we obtain

(4) I do not have the universal obligation to save both — ¬Oa(t1 ∧ t2)

This formalization has several advantages. One is that the link between the two
incompatible obligations is preserved: there is no reduction to a series of direct
conflicts (i.e. conflicts of the form OeA ∧Oe¬A), since Oe¬t1 and Oe¬t2 are not
P2-derivable from (1), (2) and (4). As we shall see below, this allows us to follow
different ‘strategies’ when dealing with incompatible obligations of the second
type. It also nicely agrees with a certain interpretation of the ‘ought implies can’
principle. An obligation that is impossible to fulfill should not be a universal
obligation, which is captured by (4).

Let now Γ5 = {Oet1,Oet2,¬Oa(t1 ∧ t2)}, and consider the following P2.2m-
proof from Γ5:

1 Oet1 PREM ∅
2 Oet2 PREM ∅
3 ¬Oa(t1 ∧ t2) PREM ∅
4 Oat1 1; RC {♯(t1)}✓6

5 Oat2 2; RC {♯(t2)}✓6

6 ♯(t1) ∨ ♯(t2) 1-3; RU ∅
7 Oa(t1 ∨ t2) 4; RU {♯(t1)}
8 Oa(t1 ∨ t2) 5; RU {♯(t2)}

The disjunctive universal obligation Oa(t1 ∨ t2) is derivable on the condition
{♯(t1)} and on the condition {♯(t2)}. According to the reliability strategy, both
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of these conditions are considered unreliable. This causes the marking of lines 7
and 8 (in view of line 6) in a P2.2r-proof.

However, not so in a P2.2m-proof. According to the minimal abnormality
strategy, we need not assume that both obligations in the minimal Dab-formula
on line 6 behave abnormally. As only one of the disjuncts has to be true (in order
for the premises to be true), we can assume either one of the two obligations to
behave normally. This means that if, on the one hand, the formula ♯(t1) in the
condition of line 7 were true, then we can still assume the formula in the condition
of line 8 to be false. This in turn means that we can still take Oa(t1 ∨ t2) to be
a P2.2m-consequence of our premises. If, on the other hand, the formula ♯(t2)
in the condition of line 8 were true, then we can still assume the formula in the
condition of line 7 to be false. Again, we can take Oa(t1 ∨ t2) to be a P2.2m-
consequence of our premises. So, whichever disjunct of the Dab-formula on line
6 turns out to be true, we can still take Oa(t1 ∨ t2) to be a P2.2m-consequence
of our premises.

In our example, this outcome is a very desirable one: whichever one of the
twins we eventually decide not to save, we will face an all-things-considered obli-
gation to save the other one. Hence even though we cannot save both twins, we
still face the obligation to save at least one of them.3 However, in other situations
this outcome may not be as desirable. Consider the following formalization of
Example 18:

(1) Charlotte has an obligation to visit Abby — Oea
(2) Charlotte has an obligation to visit Beth — Oeb
(3) Charlotte cannot visit both Abby and Beth — ¬Oa(a ∧ b)

For a more tragic effect, we might add that the reason for Charlotte’s visit is the
wedding of Abby and Beth respectively. The dates of the weddings are fixed,
and as things are Charlotte cannot attend both weddings. Analogously to the
drowning twins example, we can derive the disjunctive obligation Oa(a ∨ b) by
means of the minimal abnormality strategy, but not by means of reliability.

In this case, do we really want to derive Charlotte’s obligation to either visit
Abby’s wedding or visit Beth’s wedding? There might be good reasons for Char-
lotte not to visit any of the weddings. For instance, she might want to treat
her daughters equally and avoid arguments as to why she visited one wedding
instead of the other. As pointed out in Section 4.6, we need not decide the matter
here. Instead, we leave it to the intuitions of the reader to decide which adaptive
strategy is best suited for modeling these examples.

In conclusion of this aside on the formalization of incompatible obligations, let
us recapitulate our two main findings. First, different formalizations are prefer-
able depending on whether the incompatibility arises due to a prohibition or due
to the physical structure of the world. Second, depending on the formalization
used different adaptive strategies may lead to different conclusions. This is not
a drawback of the logic P2.2x, nor is it a cue for favoring one strategy over the
other. Rather, it points to the different rationales that may underly our reasoning
in specific situations.

3Several authors have argued that, in case of a conflict between two obligations OeA and
OeB, the obligation Oa(A ∨B) should be derivable. See, for instance, [38], [50], [95].



5.3. MAXIMALLY CONSISTENT SUBSETS 87

5.2.6 Further properties of P2.2x

Due to its definition within the standard format for adaptive logics, P2.2x auto-
matically inherits all properties discussed in Section 4.7.

Theorem 22. Where Γ ⊆WP2 and A ∈WP2:
(i) Γ ⊢P2.2x A iff Γ ⊧P2.2x A (Soundness & completeness)
(ii) Γ ⊆ CnP2.2x(Γ) (Reflexivity)
(iii) CnP2.2x(CnP2.2x(Γ)) = CnP2.2x(Γ) (Fixed point/idempotence)
(iv) If M ∈ MP2(Γ) −MP2.2x(Γ), then there is a M ′ ∈ MP2.2x(Γ)

such that Ab(M ′) ⊂ Ab(M) (Strong reassurance)
(v) CnP2(CnP2.2x(Γ)) = CnP2.2x(Γ) (LLL-closure)
(vi) CnP2.2x(CnP2(Γ)) = CnP2.2x(Γ) (LLL-invariance)
(vii) If Γ′ ⊆ CnP2.2x(Γ), then CnP2.2x(Γ) = CnP2.2x(Γ∪Γ′) (Cautious

indifference/Cumulativity)

The ULL of P2.2x is the logic obtained by adding to P2 the axiom schema
(Uσ). Where Θ ⊂W l,Θ /= ∅,Θ is finite:

¬⋁(σ(Θ)) (Uσ)

The logic resulting from adding (Uσ) to P2 is the logic SDLae, i.e. the logic in
which both the Oe- and the Oa-operator behave exactly like the O-operator of
SDL. Let π(Γ) be obtained by replacing every occurrence of “Oe” and “Oa” in
Γ with “O”.

Theorem 23. Where Γ ⊆WP2 and A ∈WP2, Γ ⊢SDLae A iff π(Γ) ⊢SDL π(A).

Proof. Since the Oa-operator of P2 is characterized exactly like the O-operator
of SDL, the theorem follows immediately as soon as we can show that the Oe-
operator of SDLae inherits all properties of the Oa-operator. Thus, we need to
show that (♮) holds in SDLae:

OeA ≡ OaA (♮)

Left-Right. Suppose OeA. By (RMe), Oe(A1 ∧ . . . ∧An), where A1 ∧ . . . ∧An is
a conjunctive normal form of A. By (RMe) again, OeAi for each i ∈ {1, . . . , n}.
By (Uσ), it follows that ¬(OeAi ∧ ¬OaAi) for each i ∈ {1, . . . , n}. By CL, OaAi

for each i ∈ {1, . . . , n}. Since the Oa-operator is an SDL-operator, it follows that
OaA.
Right-Left. Immediate in view of (5.17).

5.3 A non-adaptive alternative: maximally consistent
subsets

In Section 3.2.2.1 we already discussed some proposals made in the literature
that reject or restrict (AND). However, the discussion was restricted to monotonic
approaches. Here, we pick up the discussion and assess a non-monotonic strategy
for restricting the aggregation rule of SDL.
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The most important alternative to our adaptive approach from this chapter
makes use of the notion of maximally consistent subsets of a set of obligations (cfr.
Definition 15). The champion of this alternative approach is John Horty.4 In
his [90, 92], Horty defines two consequence relations ⊢F and ⊢S for modeling
credulous deontic consequence (inspired by Van Fraassen’s [58]), respectively
skeptical deontic consequence. In [91, 95], he defines these relations for a ‘two-
faced’ account where {OPA ∣ A ∈W} constitutes a set of prima facie obligations
from which we try to derive a distinct set {OAA ∣ A ∈W} of all-things-considered
obligations. Here, we follow the latter account.

Where Γ is a set of prima facie obligations and ΓO = {A ∣ OPA ∈ Γ}, the
credulous and skeptical deontic consequence relations are defined as follows:

Definition 16 (Credulous deontic consequence). Γ ⊢F OAA iff A ∈ CnCL(∆)
for some CL-maximally consistent subset ∆ of ΓO.

Definition 17 (Skeptical deontic consequence). Γ ⊢S OAA iff A ∈ CnCL(∆) for
each CL-maximally consistent subset ∆ of ΓO.

The following example illustrates the difference between the credulous and
skeptical consequence relations:

OP (p ∧ ¬q),OP q ⊢F OAp (5.31)

OP (p ∧ ¬q),OP q ⊬S OAp (5.32)

The set {p ∧ ¬q, q} has two CL-maximally consistent subsets, {p ∧ ¬q} and {q}.
Since p is a CL-consequence of the first of these CL-maximally consistent subsets,
it follows by Definition 16 that OAp is a credulous consequence of the premise
set. Since p is not a CL-consequence of the second CL-maximally consistent
subset, it follows by Definition 17 that OAp is not a skeptical consequence of the
premise set.

An immediate difference between Horty’s systems and the logics defined ear-
lier on in this chapter is that Horty only takes into account a set of obligations,
i.e. a set of formulas of the form OPA. His approach is restricted in the sense
that premises cannot contain negated obligations (e.g. ¬OP p) or disjunctions of
obligations (e.g. OP p∨OP q). Moreover, permissions are not explicitly dealt with
in Horty’s framework.

Apart from this restriction, the main difference between the maximally consis-
tent subset-approach and the adaptive systems defined in this chapter is that dur-
ing the process of devising the CL-maximally consistent subsets of our premises,
prima facie obligations are not further analyzed into shorter logical constituents.
As a result, the maximally consistent subset-approach often delivers a rather weak
consequence set. Consider, for instance, the premise set {OP (p∧q),OP (¬p∧r)},
respectively the set {Oe(p ∧ q),Oe(¬p ∧ r)} of P2.2x-wffs.

OP (p ∧ q),OP (¬p ∧ r) ⊬F OA(q ∧ r) (5.33)

OP (p ∧ q),OP (¬p ∧ r) ⊬S OA(q ∧ r) (5.34)

Oe(p ∧ q),Oe(¬p ∧ r) ⊢P2.2x Oa(q ∧ r) (5.35)

4Horty’s account is inspired by Reiter’s default logic [150].
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There is no CL-maximally consistent subset of {p ∧ q,¬p ∧ r} of which q ∧ r is a
CL-consequence. However, the following P2.2x-proof illustrates that Oa(q ∧ r)
is a P2.2x-consequence of {Oe(p ∧ q),Oe(¬p ∧ r)}.

1 Oe(p ∧ q) PREM ∅
2 Oe(¬p ∧ r) PREM ∅
3 Oep 1; RU ∅
4 Oeq 1; RU ∅
5 Oe¬p 2; RU ∅
6 Oer 2; RU ∅
7 Oaq 4; RC {♯(q)}
8 Oar 6; RC {♯(r)}
9 Oa(q ∧ r) 7,8; RU {♯(q), ♯(r)}

10 ♯(p) 3,5; RU ∅
11 ♯(¬p) 3,5; RU ∅

Since no minimal Dab-consequence of {Oe(p ∧ q),Oe(¬p ∧ r)} contains ♯(q)
or ♯(r) as one of its disjuncts, there is no extension of this proof in which line
9 is marked, and for which there is no further extension in which this line is
unmarked again. Hence Oe(p ∧ q),Oe(¬p ∧ r) ⊢P2.2x Oa(q ∧ r).

As another illustration of the differences between the logics defined here and
the maximally consistent subset-approach, consider Example 15. Translated to
the grammar used by Horty, Johnson faces the set of obligations Γ3′ = {OP (t ∧
(f ∨ s)),OP (¬t ∧ ¬f),OP (t ∨ c)}. ΓO

3′ gives rise to two CL-maximally consistent
subsets: the sets {t∧ (f ∨ s), t∨ c} and {¬t∧¬f, t∨ c}. By Definitions 16 and 17:

Γ3′ ⊬F OAs Γ3′ ⊬S OAs

Γ3′ ⊢F OA¬f Γ3′ ⊬S OA¬f
Γ3′ ⊢F OAt Γ3′ ⊬S OAt

Γ3′ ⊢F OA¬t Γ3′ ⊬S OA¬t

Neither the skeptical nor the credulous consequence relations allow us to derive
the intuitive OAs. Although the credulous consequence relation does deliver the
intuitive OA¬f , it also allows us to derive the all-things-considered obligations
OAt and OA¬t.

The maximally consistent subset-approach was also used by Makinson and
van der Torre in their input/output (I/O) framework. I/O-logics thus face the
same problems as Horty. We discuss the I/O-logics in more detail in Section
6.2.7.2.

Altogether, the maximally consistent subset-approach is suboptimal in its
treatment of various toy examples from the literature. Moreover, it is restricted
to premise sets containing only prima facie obligations.





Chapter 6

Inconsistency-adaptive logics for
normative conflicts

. Section 6.1 is based on the paper An Inconsistency-Adaptive Deontic Logic
for Normative Conflicts (Journal of Philosophical Logic, in print) [31], which
is co-authored by Christian Straßer and Joke Meheus.

. Section 6.2 is based on the paper Two Adaptive Logics of Norm-Propositions
(Journal of Applied Logic, in print) [29], which is co-authored by Christian
Straßer.

. I am indebted to Joke Meheus and Christian Straßer for valuable comments
on this chapter.

In this chapter, we present two adaptive CTDLs that adopt the strategy of
weakening CL to a paraconsistent logic (cfr. Section 3.2.2.3). ALs that are built
on top of a paraconsistent logic are usually called inconsistency-adaptive logics.

In Section 6.1 we define the inconsistency-adaptive deontic logic DPx. This
logic makes use of a paraconsistent negation connective instead of the classical
one. As a result, it safely accommodates not only OO- and OP-conflicts, but also
contradictory obligations and permissions. DPx is especially suited for reasoning
with conflicting commands or imperatives, or in other settings in which we may
face inconsistent prescriptions.

In Section 6.2 we present the logic LNPx. LNPx is a semi-paraconsistent
and semi-paracomplete deontic logic [125]: outside the scope of its deontic opera-
tors, it makes use of classical negation; inside the scope of its deontic operators, it
uses a negation connective that is not only paraconsistent but also paracomplete
(i.e. it invalidates the excluded middle principle). As a result, LNPx accommo-
dates OO- and OP-conflicts as well as normative gaps, i.e. propositions that are
neither positively permitted nor forbidden nor obligatory. This makes LNPx

very suitable for reasoning about norm-propositions.
To the best of our knowledge, the logics presented in this chapter are the

first non-monotonic paraconsistent deontic logics. Hence the discussion of related
approaches in this chapter is rather limited (although in Section 6.2.7 we compare
the logic LNPx to other logics of norm-propositions presented in the literature).
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A discussion of some alternative ways of devising inconsistency-adaptive logics is
postponed until Section 7.5.1 in the next chapter.

The systems DP and LNP are deontic extensions of the paraconsistent logic
CLuNs� and the paraconsistent and paracomplete logic CLoNs respectively.
The latter systems were devised by Diderik Batens for reasoning in the presence of
possibly inconsistent information. In this chapter we will characterize CLuNs�

and CLoNs only informally. However, a full formal characterization of these
logics is contained in Appendix C.

6.1 Reasoning with contradictory obligations and
permissions

In Section 3.2.2.3, we already provided some good reasons for weakening CL
to a paraconsistent logic when devising CTDLs. In doing so, we can tolerate
OO-conflicts, OP-conflicts as well as contradictory obligations and permissions.
Moreover, we need not weaken any of the principles (D), (P), (AND) or (RM).

In Section 6.1.1 we present the paraconsistent deontic logic DP. DP is rather
strong for a paraconsistent logic. It validates de Morgan’s laws for negation,
inheritance and necessitation for the deontic operators, and all of positive CL (i.e.
CL without a negation connective). Nonetheless, it suffers from some weaknesses
inherent to many paraconsistent logics (cfr. Section 3.2.2.3). For instance, the
intuitive contraposition and disjunctive syllogism rules are invalidated both inside
and outside the scope of its deontic operators.

The weaknesses that bother the logic DP are overcome by its inconsistency-
adaptive extension DPx, which we present in Section 6.1.2. Like its LLL DP,
DPx safely accommodates OO-conflicts, OP-conflicts as well as contradictory
obligations and permissions. Unlike DP however, DPx allows for the conditional
application of all SDL-valid inferences.

6.1.1 The logic DP

6.1.1.1 Semantics

DP is a proper extension of the (propositional fragment of the) non-modal para-
consistent logic CLuNs�. The set W∼

� of wffs of CLuNs� is defined as:

W∼
� ∶= Wa ∣ ∼⟨W∼

� ⟩ ∣ ⟨W∼
� ⟩ ∨ ⟨W∼

� ⟩ ∣ ⟨W∼
� ⟩ ∧ ⟨W∼

� ⟩ ∣ ⟨W∼
� ⟩ ⊃ ⟨W∼

� ⟩ ∣ ⟨W∼
� ⟩ ≡

⟨W∼
� ⟩ ∣ �

We also define the set W∼
l =df {A,∼A ∣ A ∈ Wa} of CLuNs�-literals. CLuNs�

makes use of a paraconsistent negation. In CL, both (D∼1) and (D∼2) are valid
for all atomic propositions:

(D∼1) If A is true, then ∼A is false
(D∼2) If A is false, then ∼A is true

CLuNs� validates only (D∼2), thereby allowing for both A and ∼A to be
true. The CLuNs�-negation is fully characterized by (D∼2) and de Morgan’s
laws. In fact, adding (D∼2), the falsum constant and de Morgan’s laws to the
semantics of full positive CL (in the remainder, we abbreviate this fragment by
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CLpos) is all that is needed in order to obtain the CLuNs�-semantics. For a
full formal characterization of the logic CLuNs�, see Appendix C.

The set WDP of wffs of DP is defined as:

WDP ∶= W∼
� ∣ O⟨W∼

� ⟩ ∣ ∼⟨WDP⟩ ∣ ⟨WDP⟩ ∨ ⟨WDP⟩ ∣ ⟨WDP⟩ ∧ ⟨WDP⟩ ∣
⟨WDP⟩ ⊃ ⟨WDP⟩ ∣ ⟨WDP⟩ ≡ ⟨WDP⟩

We also define the set W /∼ of wffs of DP that are not of the form ∼A. DP
is a modal extension of CLuNs� that differs semantically from SDL only in
the characterization of its negation.1 A DP-model is a quadruple ⟨W,w0,R, v⟩,
where W is a set of worlds, w0 ∈W is the actual world, R is a serial accessibility
relation on W and v ∶W∼

l ×W → {0,1} is an assignment function. The valuation
vM ∶WDP ×W → {0,1}, associated with the model M , is defined by:

(Ca) where A ∈Wa, vM(A,w) = 1 iff v(A,w) = 1
(C∼1’) where A ∈Wa, vM(∼A,w) = 1 iff (vM(A,w) = 0 or v(∼A,w) = 1)
(C∨) vM(A ∨B,w) = 1 iff (vM(A,w) = 1 or vM(B,w) = 1)
(C∧) vM(A ∧B,w) = 1 iff vM(A,w) = vM(B,w) = 1
(C⊃) vM(A ⊃ B,w) = 1 iff (vM(A,w) = 0 or vM(B,w) = 1)
(C≡) vM(A ≡ B,w) = 1 iff vM(A,w) = vM(B,w)
(CO) vM(OA,w) = 1 iff vM(A,w′) = 1 for every w′ such that Rww′

(C∼∼) vM(∼∼A,w) = vM(A,w)
(C∼⊃) vM(∼(A ⊃ B),w) = vM(A ∧ ∼B,w)
(C∼∧) vM(∼(A ∧B),w) = vM(∼A ∨ ∼B,w)
(C∼∨) vM(∼(A ∨B),w) = vM(∼A ∧ ∼B,w)
(C∼≡) vM(∼(A ≡ B)) = vM((A ∨B) ∧ (∼A ∨ ∼B))
(C∼O) where A ∈W∼

l ∪W /∼, vM(∼OA,w) = 1 iff there is a w′ such that
Rww′ and vM(∼A,w′) = 1

(C∼∼′) vM(∼O∼∼A,w) = vM(∼OA,w)
(C∼⊃′) vM(∼O∼(A ⊃ B),w) = vM(∼O(A ∧ ∼B),w)
(C∼∧′) vM(∼O∼(A ∧B),w) = vM(∼O(∼A ∨ ∼B),w)
(C∼∨′) vM(∼O∼(A ∨B),w) = vM(∼O(∼A ∧ ∼B),w)
(C∼≡′) vM(∼O∼(A ≡ B)) = vM(∼O((A ∨B) ∧ (∼A ∨ ∼B)))
(C�) vM(�,w) = 0

The permission operator P is defined by PA =df ∼O∼A. Clauses (Ca) and
(C∨)-(CO) are as in the usual Kripke semantics for SDL. Where A ∈Wa, (C∼1’)
makes it possible for both A and ∼A to be true at a world. (C∼∼)-(C∼≡) guarantee
that de Morgan’s laws are valid outside the scope of a deontic operator. (C∼O)-
(C∼≡′) guarantee that de Morgan’s laws are valid inside the scope of a deontic
operator, and that O and P are interdefinable as in SDL, e.g. ∼OA ≡ P∼A.

A DP-model M = ⟨W,w0,R, v⟩ verifies A, M ⊩ A, iff vM(A,w0) = 1.

6.1.1.2 Syntactic characterization of DP

Syntactically, CLuNs� is obtained by adding to CLpos the following axiom
schemas:

(A∼1) (A ⊃ ∼A) ⊃ ∼A
1For some other modal extensions of CLuNs, see [111].
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(A∼∼) ∼∼A ≡ A
(A∼⊃) ∼(A ⊃ B) ≡ (A ∧ ∼B)
(A∼∧) ∼(A ∧B) ≡ (∼A ∨ ∼B)
(A∼∨) ∼(A ∨B) ≡ (∼A ∧ ∼B)
(A∼≡) ∼(A ≡ B) ≡ ((A ∨B) ∧ (∼A ∨ ∼B))
(A�1) � ⊃ A

DP is fully axiomatized by adding to CLuNs� the principles (K), (NEC),
and the following axiom schemas and rules, all of which are also valid in SDL:

(A∼∼′) ∼O∼∼A ≡ ∼OA
(A∼⊃′′) ∼O(A ∧ ∼B) ⊃ ∼O∼(A ⊃ B)
(A∼≡′′) ∼O((A ∨B) ∧ (∼A ∨ ∼B)) ⊃ ∼O∼(A ≡ B)
(A�2) ∼O∼� ⊃ A
(CONS∼) OA ⊃ ∼O∼A
(KP) O(A ⊃ B) ⊃ (∼O∼A ⊃ ∼O∼B)
(OD) O(A ∨B) ⊃ (OA ∨ ∼O∼B)
(PD) ∼O∼(A ∨B) ⊃ (∼O∼A ∨ ∼O∼B)

(A∼∼), (A∼⊃′′) and (A∼≡′′) are necessary in order to ensure that de Mor-
gan’s laws hold inside and outside the scope of a deontic operator. Similarly,
(A�2) ensures that (A�1) holds inside the scope of a permission. (CONS∼) is
DP-equivalent to the principle (D), OA ⊃ PA. (KP), (OD), and (PD) further
characterize permissions in DP.

6.1.1.3 Meta-theory of DP

Theorem 24. DP is reflexive, transitive and monotonic.

Theorem 25. DP is compact (if Γ ⊢DP A then Γ′ ⊢DP A for some finite Γ′ ⊆ Γ).

Theorem 26. If Γ ⊢DP B and A ∈ Γ, then Γ − {A} ⊢DP A ⊃ B (Generalized
Deduction Theorem for DP).

For the proofs of the reflexivity, transitivity, monotonicity, compactness of
CLuNs and the validity of the Generalized Deduction Theorem for CLuNs, see
[20]. Since DP adds only some standard axioms and rules to CLuNs, the proofs
of Theorems 24-26 are straightforward.

Theorem 27. If Γ ⊢DP A, then Γ ⊧DP A. (Soundness of DP)

Theorem 28. If Γ ⊧DP A, then Γ ⊢DP A. (Strong Completeness of DP)

Proofs for Theorem 27 and Theorem 28 are contained in Appendix E.

6.1.1.4 Further properties and discussion

It is easy to see (and proven in Lemma 1 in Appendix E) that all instances of
the following axiom schemas are valid in DP:

(A∼⊃′) ∼O∼(A ⊃ B) ≡ ∼O(A ∧ ∼B)
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(A∼∧′) ∼O∼(A ∧B) ≡ ∼O(∼A ∨ ∼B)
(A∼∨′) ∼O∼(A ∨B) ≡ ∼O(∼A ∧ ∼B)
(A∼≡′) ∼O∼(A ≡ B) ≡ ∼O((A ∨B) ∧ (∼A ∨ ∼B))

All of the following inferences are DP-valid:

(OA ∧OB) ⊢DP O(A ∧B) (6.1)

(OA ∧ PB) ⊢DP P(A ∧B) (6.2)

⊢DP P(A ⊃ A) (6.3)

PA ⊢DP ∼O∼A (6.4)

∼PA ⊢DP O∼A (6.5)

OA ⊢DP ∼P∼A (6.6)

∼OA ⊢DP P∼A (6.7)

(6.1) and (6.2) are shown to hold in Fact 5 in Appendix E. It is safely left to the
reader to check that (6.3)-(6.7) are DP-valid.

DP is fully conflict-tolerant: (OO-DEX) and (OP-DEX) are invalidated, and
contradictory obligations and permissions do not lead to explosion either:

OA ∧O∼A ⊬DP OB (6.8)

OA ∧ P∼A ⊬DP OB (6.9)

OA ∧ ∼OA ⊬DP OB (6.10)

PA ∧ ∼PA ⊬DP OB (6.11)

Moreover, DP verifies all of (D), (P), (AND), (K), and (NEC). However, as
compared to SDL, DP is still rather weak. Although modus ponens holds,
intuitive inferences such as disjunctive syllogism and contraposition are invalid
in DP:

A,∼A ∨B ⊬DP B (6.12)

A ⊃ B,∼B ⊬DP ∼A (6.13)

Like the paraconsistent systems discussed in Section 3.2.2.3, DP also invalidates
the deontic disjunctive syllogism principle (from O(A ∨ B) and O∼A to derive
OB). Consequently, DP cannot account for Horty’s Smith example (i.e. O(f ∨
s),O∼f /⊢DP Os).

These weaknesses make it hard for DP to model our everyday normative
reasoning. We will now address and solve this problem by extending DP within
the adaptive logics framework, and by demonstrating how the resulting extensions
DPr and DPm resolve the inferential weaknesses that bother the basic logic DP.

6.1.2 The logics DPr and DPm

6.1.2.1 Definition and illustration

Where W∼
O = {OA ∣ A ∈W∼

l }, DPx is defined as a triple:
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(1) Lower limit logic: DP.2

(2) Set of abnormalities: Ω = {A ∧ ∼A ∣ A ∈Wa ∪W∼
O}.

(3) Adaptive strategy: x ∈ {r,m}.

Since the lower limit logic of DPx is DP, we know that CnDP(Γ) ⊆ CnDPx(Γ)
for any premise set Γ.

Any inconsistency in the language is DP-equivalent to a member of Ω, or
to a disjunction of members of Ω. For instance, (Pq ∧ ∼Pq) ≡ (∼O∼q ∧ O∼q),
and ((p ∧ q) ∧ ∼(p ∧ q)) ≡ ((p ∧ ∼p) ∨ (q ∧ ∼q)). Ω is constructed in such a way
that every normative conflict gives rise to an abnormality in DPx in view of
the LLL. For instance, from an OO-conflict Oq ∧ O∼q, the abnormality O∼q ∧
∼O∼q is DP-derivable. Similarly, Op ∧ P∼p ⊢DP Op ∧ ∼Op. Moreover, complex
normative conflicts are always reducible to a disjunction of abnormalities, e.g.
O(p∨q)∧O(∼p∧∼q) ⊢DP (O∼p∧∼O∼p)∨(O∼q∧∼O∼q), O(r∧s)∧∼O(r∧s) ⊢DP

(Or ∧ ∼Or) ∨ (Os ∧ ∼Os).
DPx is an inconsistency-adaptive logic, i.e. a logic that interprets (possi-

bly) inconsistent sets of premises ‘as consistently as possible’. DPx is the first
inconsistency-adaptive logic that aims to explicate normative reasoning. Other
inconsistency-adaptive logics have been presented, for instance, in [19, 22, 111].

We now illustrate the workings of the logic DPx by means of an example.

Consider the set of formulas Γ = {O(p∨q),O(∼r∨∼s),O∼q,Or,Ot ⊃ ∼Op,P(t∧
s)}. We start a DPx-proof from Γ by introducing the premises:

1 O(p ∨ q) PREM ∅
2 O(∼r ∨ ∼s) PREM ∅
3 O∼q PREM ∅
4 Or PREM ∅
5 Ot ⊃ ∼Op PREM ∅
6 P(t ∧ s) PREM ∅

From the formulas on lines 1 and 3 in the proof, the formula Op∨(O∼q∧∼O∼q)
is DP-derivable.3 Since O∼q ∧ ∼O∼q is a Dab-formula, we can introduce the
following line using the conditional rule RC:

7 Op 1,3; RC {O∼q ∧ ∼O∼q}

At stage 7 of the proof, we have derived the obligation Op on the assumption
that the abnormality O∼q ∧ ∼O∼q is false. In a similar fashion, we can apply RC
to lines 2 and 4 as follows:

8 O∼s 2,4; RC {Or ∧ ∼Or}

2In Chapter 4, footnote 1 we stated that the lower limit logic of an adaptive logic in standard
format should contain CL. As defined here, the DP-connectives ∨,∧,⊃, and ≡ already behave
classically. Moreover, DP features a classical negation in the sense that the classical negation
¬A of a formula A is definable as ¬A =df A ⊃ �. The implicit definability of all CL-connectives
in DP is sufficient for DPr to be in the standard format.

We formalize negations in a DPr-premise set by means of ∼ and not by means of ¬. Otherwise
normative conflicts would be rendered trivial all over again.

3From O(p ∨ q) it follows by (OD) that Op ∨ ∼O∼q. From Op ∨ ∼O∼q and O∼q it follows by
CLpos that Op ∨ (O∼q ∧ ∼O∼q).
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Since (AND) is valid in DP, we can apply it unconditionally by means of
RU:

9 O(p ∧ ∼s) 7,8; RU {O∼q ∧ ∼O∼q,
Or ∧ ∼Or}

Consider now the following extension of the proof (we repeat the proof from
line 7 on):

7 Op 1,3; RC {O∼q ∧ ∼O∼q}
8 O∼s 2,4; RC {Or ∧ ∼Or}✓11

9 O(p ∧ ∼s) 7,8; RU {O∼q ∧ ∼O∼q,
Or ∧ ∼Or}✓11

10 Ps 6; RU ∅
11 (Or ∧ ∼Or) ∨ (O∼s ∧ ∼O∼s) 2,4,10; RU ∅

In order to infer the formulas O∼s and O(p ∧ ∼s) at lines 8 and 9, we have
relied on the consistent behavior of Or, viz. on the falsity of Or ∧ ∼Or. However,
at line 11 it has become clear that either Or behaves inconsistently, or O∼s does.4

In view of this new information, it is appropriate to withdraw our conclusions
drawn at lines 8 and 9.

We can now further extend the proof as follows:

12 Op ⊃ ∼Ot 5; RC {Op ∧ ∼Op}
13 ∼Ot 7,12; RU {O∼q ∧ ∼O∼q,Op ∧ ∼Op}
14 P∼t 13; RU {O∼q ∧ ∼O∼q,Op ∧ ∼Op}

Line 12 illustrates the conditional applicability of the contraposition rule in
a DPx-proof.

There are various ways in which we can further extend the proof from Γ, but
in no such extension will any of lines 8 or 9 ever be unmarked. The reason for
this is that Γ /⊢DP O∼s ∧ ∼O∼s. If the formula O∼s ∧ ∼O∼s were DP-derivable
from Γ, lines 8 or 9 could become unmarked in an extension of the proof.

All of the formulas derived at unmarked lines at this stage of the proof are
finally derivable from Γ. The formulas O∼q∧∼O∼q and Op∧∼Op, which were used
as conditions in the illustration, are not members of any minimal disjunction of
abnormalities derivable from Γ. Consequently, Γ ⊢DPx Op, Γ ⊢DPx ∼Ot, and
Γ ⊢DPx P∼t, whereas Γ /⊢DPx O∼s, and Γ /⊢DPx O(p ∧ ∼s). It is safely left to the
reader to check that for the derivability of these consequences it does not make
a difference whether we use the reliability or minimal abnormality strategy.

In Section 4.8 we mentioned that marking is a dynamic matter. Lines that are
marked at a stage of a proof, may be unmarked again at a later stage. Suppose,
for instance, that the premise set Γ were extended with a new premise O∼s. Call
this extended premise set Γ′. Then Γ′ ⊢DP O∼s ∧ ∼O∼s. If we would extend

4From the CLuNs�-theorem (t∧s) ⊃ s it follows by (NEC) and (KP) that ⊢DP P(t∧s) ⊃ Ps.
Hence the formula Ps at line 10 follows from the formula P(t∧s) at line 6 by a simple application
of modus ponens.

From the formula O(∼r ∨ ∼s) at line 2 it follows by (OD) and CLpos that O∼s ∨P∼r. Since
P∼r is equivalent to ∼Or (by (P) and (A∼∼′)), and since we know that Or (line 4) and ∼O∼s
(by (P) and line 10), it follows by CLpos that (Or ∧ ∼Or) ∨ (O∼s ∧ ∼O∼s).
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the proof above with the formula O∼s ∧ ∼O∼s, the formula on line 11 would no
longer be a minimal Dab-formula. Consequently, lines 8 and 9 would no longer
be marked.

Above it was illustrated how DPx interprets a given premise set ‘as normally
as possible’. Whenever a line is inferred in a DPx-proof, whether or not this
inference is considered to be reliable depends on whether or not its condition
‘behaves normally’. According to the reliability strategy, a condition behaves
normally as long as it does not contain a member of the set of unreliable formulas
of the premise set. As we have seen, this requirement is loosened a bit for the
minimal abnormality strategy. The behavior of a condition of a line in a DPx-
proof is independent of the rule that was applied at this line. This explains why
in a DPx-proof some applications of a rule are marked whereas other applications
of the same rule remain unmarked throughout the proof and any of its extensions.

The illustration above already shows how rules like deontic disjunctive syllo-
gism (line 7) and contraposition (line 12) are conditionally applicable in DPx.
But we can prove a far stronger result. Next, we show that all inferences valid
in SDL are either unconditionally or conditionally applicable in DPx. Conse-
quently, for premise sets from which no abnormalities are derivable, the logic
DPx is just as strong as SDL.

6.1.2.2 DPx and SDL

In interpreting a set of premises ‘as normally as possible’, we implicitly make use
of a certain standard of normality. In this section we make clear that for DPx

this standard of normality is SDL.
In Section 4.9 we stated that the upper limit logic ULL of an adaptive logic

ALx is obtained by adding to its lower limit logic one or more axiom schemas
that trivialize all ALx-abnormalities.

The upper limit logic UDP of DPx is obtained by adding to DP the axiom
schema (UDP), which trivializes all abnormalities in Ω. Where A ∈ Wa ∪W∼

O,
B ∈WDP:

(A ∧ ∼A) ⊃ B (UDP)

UDP trivializes contradictions, thus promoting “∼” to a fully classical negation
connective. In fact, UDP is just SDL in disguise. Where Γ ⊆WDP, define Γ¬

by replacing every A ∈ Γ by π(A), where π(A) is the result of replacing every
occurrence of “∼” in A by “¬”. Then:

Theorem 29. Γ ⊢UDP A iff Γ¬ ⊢SDL π(A).

A proof outline of Theorem 29 is contained in Appendix E.3.
DPx interprets a given premise set in terms of SDL ‘whenever possible’. The

negation connective ∼ of DPx is hence strengthened to a fully classical negation
connective ‘as much as possible’. Moreover, all SDL-rules can be applied either
conditionally or unconditionally in a DPx-proof. Those applications of SDL-
rules that are considered safe according to the adaptive logic constitute the final
DPx-consequences of the premise set.

Corollary 3. Where Γ is normal and A,B ∈WDP, C,D ∈W∼
� :
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(i) If Γ ⊢DPx A ∨B and Γ ⊢DPx ∼A, then Γ ⊢DPx B
(ii) If Γ ⊢DPx O(C ∨D) and Γ ⊢DPx O∼C, then Γ ⊢DPx OD
(iii) If Γ ⊢DPx A ⊃ B, then Γ ⊢DPx ∼B ⊃ ∼A

Corollary 3 follows immediately in view of Theorem 29. Remember that a
premise set Γ is normal iff no Dab-formulas are derivable from it, or, equivalently,
if U(Γ) = ∅. (i) and (iii) illustrate that, for normal premise sets, DPx validates
all instances of disjunctive syllogism and contraposition. (ii) illustrates that, for
normal premise sets, DPx validates all instances of deontic disjunctive syllogism.
Note that Horty’s Smith example is an instance of (ii).

Not only normal premise sets, but also non-normal premise sets usually have
more DPx-consequences than DP-consequences (cfr. the example proof in the
previous section). Note that by Theorem 17 and Theorem 29:

Corollary 4. Γ¬ ⊢SDL π(A) iff there is a ∆ ⊆ Ω for which Γ ⊢DP A ∨Dab(∆).

Hence whenever a formula π(A) is an SDL-consequence of some premise set
Γ¬, we can construct a DPx-proof from Γ such that, at some line i of this proof,
A is the second element and ∆ the fourth.

6.2 Reasoning about norms

In this section, we present the logic of norm-propositions LNPx. In sections 6.2.1
and 6.2.2, we introduce in an informal way some of the key concepts that feature
in this normative context, and that are studied in more detail later on. In Section
6.2.3 we introduce the logic LNP, a semi-paraconsistent and semi-paracomplete
deontic logic that serves as the LLL of LNPx. The latter system is defined in
Section 6.2.4.

We further illustrate the workings of LNPx in Section 6.2.5, and discuss its
meta-theory and its relation to SDL in Section 6.2.6. In Section 6.2.7 we compare
LNP to some other logics of norm-propositions presented in the literature.

6.2.1 Normative conflicts and normative gaps

Ideally, sets of norms issued by agents, authorities, legislators, etc. are both
consistent and complete. In our everyday practice, however, such sets often
contain normative conflicts and normative gaps.

In legal contexts, existence of normative conflicts is nicely motivated by a
passage written by Alchourrón and Bulygin which we already cited in Section
3.2.1.1:

Even one and the same authority may command that p and that not p
at the same time, especially when a great number of norms are enacted
on the same occasion. This happens when the legislature enacts a very
extensive statute, e.g. a Civil Code, that usually contains four to six
thousand dispositions. All of them are regarded as promulgated at
the same time, by the same authority, so that there is no wonder
that they sometimes contain a certain amount of explicit or implicit
contradictions. [3, pp. 112-113]
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Normative conflicts also arise where both an obligation to do something and a
(positive) permission not to do it are promulgated [1, 3, 35, 194].

The adaptive logics to be presented in this section deal in an adequate way
with both normative conflicts and normative gaps. We say that a set of norms
contains a normative gap with respect to a formula A if A is neither positively
permitted nor forbidden nor obliged. For a defense of the existence of normative
gaps, see e.g. [2, Chapters 7,8], [41].

Note that the formulation refers to positive permissions (also, strong permis-
sions), i.e. permissions that are either explicitly stated as such, or permissions
that are derivable from other explicitly stated permissions or obligations. This
is to be distinguished from so-called weak or negative permissions: A is weakly
permitted in case A is not forbidden. Would we replace “positive permission” by
“weak permission” in the definition of normative gaps then the concept would
be vacuous since each A is either forbidden or not forbidden (and hence, weakly
permitted).

The practical use of the distinction between positive and negative permis-
sion can be illustrated by means of the legal principle nullum crimen sine lege.
According to this principle anything which is not forbidden is permitted.5 Alter-
natively, the principle states that a negative permission to do A implies a positive
permission to do A. Typically, the nullum crimen principle is understood as a rule
of closure permitting all the actions not prohibited by penal law [2, pp. 142-143].
We return to this principle in Section 6.2.3.1.

We will in the remainder tacitly assume that in case A is obligatory then A
is positively permitted. In this case, there is a normative gap with respect to A
iff A is neither positively permitted nor forbidden.

Another way to think about normative gaps is in terms of normative determi-
nation: A is normatively determined if and only if A is either positively permitted
or forbidden, which is to say that there is no normative gap with respect to A.6

We say that a set of norms is normatively complete if all of its norms are norma-
tively determined, i.e. if there are no gaps with respect to any of its norms. From
the existence of incomplete legal systems, Bulygin concludes that legal gaps are
perfectly possible:

It is not true that all legal systems are necessarily complete. The
problem of completeness is an empirical, contingent, question, whose
truth depends on the contents of the system. So legal gaps due to the
silence of the law [. . .] are perfectly possible. [41, p. 28]

6.2.2 Norm-propositions and their formal representation

As pointed out in Section 1.2.2, it is important to distinguish between norms
and norm-propositions in deontic logic. As a norm, a formula of the form ⌜OA⌝
means something like “you ought to do ⌜A⌝”, or “it is obligatory that ⌜A⌝”,
and a formula of the form ⌜PA⌝ means something like “you may do ⌜A⌝”, or “it

5Legal philosophers also refer to this principle as the sealing legal principle. We thank an
anonymous referee for pointing this out.

6The notion of normative determination is adopted from [193].
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is permitted that ⌜A⌝”.7 As a norm-proposition, a formula of the form ⌜OA⌝
[⌜PA⌝] means something like “there is a norm to the effect that ⌜A⌝ is obligatory
[permitted]”. Thus, in our descriptive reading a formula ⌜PA⌝ always denotes a
strong permission.

According to Alchourrón and Bulygin [1, 2, 3], any perceived harmony be-
tween norms and norm-propositions in deontic logic is merely apparent. Instead
of using the same calculus of deontic logic for reasoning with both norms and
norm-propositions, we need two separate logics: a logic of norms and a logic of
norm-propositions. In this section we are concerned with the characterization of
a logic of norm-propositions.

OO- and OP-conflicts between norm-propositions are expressed as before by
formulas such as ⌜OA ∧ O not A⌝ in case two obligations conflict, and ⌜OA ∧
P not A⌝ in case an obligation conflicts with a permission.

Normative gaps occur if neither ⌜PA⌝ nor ⌜O not A⌝ is the case. A full
formal characterization of normative gaps is presented after the definition of
our formal language. As pointed out above, the permission in question is a
strong permission. Weak permissions may be defined as the modal duals to O
by ⌜not O not A⌝. The latter expresses that “there is no norm to the effect that
⌜not A⌝ is obligatory” and hence it expresses the descriptive meaning of a weak
permission. However, we need an independent permission operator P in order
to express strong permissions. From ⌜PA⌝ we cannot infer ⌜not O not A⌝ due to
the possible existence of an OP-conflict. Similarly we cannot, vice versa, infer
⌜PA⌝ from ⌜not O not A⌝ since, despite the absence of a norm that expresses that
⌜not A⌝ is obliged, ⌜A⌝ may not be positively permitted.8

In the remainder we show how each of the concepts presented in this introduc-
tory section is formalized and treated by the logics defined later on. In Section
6.2.3 we define the Logic of Norm-Propositions LNP. This logic is sufficiently ex-
pressive to formalize both normative conflicts and normative gaps without having
to resort to the meta-language. Inside the scope of its deontic operators, LNP
makes use of a paraconsistent and paracomplete negation connective for dealing
with normative conflicts and normative gaps.

As a result of the weakness of this negation connective, LNP is not powerful
enough for capturing many intuitive normative inferences. We deal with this
problem in Section 6.2.4, where we strengthen LNP within the adaptive logics
framework. This results in two adaptive logics which interpret a given premise
set ‘as consistently and as completely as possible’.

Next, we further illustrate the workings of these logics (Section 6.2.5) and
provide some meta-theoretical properties (Section 6.2.6). In Section 6.2.7, we
compare the logics defined here to other approaches taken up in the literature on
norm-propositions.

7Until our formal language is defined, we use brackets “⌜” and “⌝” for denoting formulas in
order to avoid possible confusions.

8See [2, 192] for further arguments against the equivalence of ⌜PA⌝ and ⌜not O not A⌝ in a
descriptive setting.
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6.2.3 The logic LNP

6.2.3.1 Syntax

In the setting of norm-propositions, negation behaves differently depending on
whether it occurs inside or outside the scope of an operator O or P. Outside the
scope of a deontic operator, negation behaves classically. A formula ⌜not Op⌝ is
read as “it is not the case that there is a norm to the effect that p is obligatory”.
Under this reading, ⌜not Op⌝ is incompatible with ⌜Op⌝: ⌜Op⌝ and ⌜not Op⌝
cannot both be the case. Moreover, one of ⌜Op⌝ or ⌜not Op⌝ must hold: either
there is a norm to the effect that p is obligatory, or there is not.

Things change when we turn to negations inside the scope of O or P. Here,
both ⌜Op⌝ and ⌜O not p⌝ are verified by the same set of norm-propositions if
this set contains an OO-conflict with respect to p. Moreover, neither ⌜Pp⌝ nor
⌜O not p⌝ are verified by a given set of norm-propositions that contains a nor-
mative gap with respect to p. Given the standard characterizations of O and
P, this means that – inside the scope of O or P– both the consistency and the
completeness constraint for negation fail in some instances: ⌜P(p∧ not p)⌝ is true
in case of a normative conflict, and ⌜O(p∨ not p)⌝ is false in case of a normative
gap.

The logic LNP is defined in such a way that it respects this distinction: out-
side the scope of a deontic operator, only the classical negation connective “¬”
occurs. Inside the scope of a deontic operator, LNP makes use of the connec-
tive “∼”, which is a paraconsistent and paracomplete “negation” connective, i.e.
it invalidates both ⌜(A ∧ ∼A) ⊃ B⌝ (ex contradictione quodlibet) and ⌜A ∨ ∼A⌝
(excluded middle).9

Let W∼ be the ⟨∼,∨,∧,⊃,≡⟩-closure of Wa, and:

W¬
O ∶= O⟨W∼⟩ ∣ P⟨W∼⟩ ∣ ¬⟨W¬

O⟩ ∣ ⟨W¬
O⟩ ∨ ⟨W¬

O⟩ ∣ ⟨W¬
O⟩ ∧ ⟨W¬

O⟩ ∣ ⟨W¬
O⟩ ⊃

⟨W¬
O⟩ ∣ ⟨W¬

O⟩ ≡ ⟨W¬
O⟩

We do not allow for nested occurrences of the modal operators in our language.
The set WLNP of well-formed formulas of LNP is defined as the ⟨¬,∨,∧,⊃,≡⟩-
closure of W ∪W¬

O.
Since the denotation of formulas is no longer ambiguous now that our language
WLNP is defined, we skip the ⌜⌝-marks in the remainder.

Both normative conflicts and normative gaps are expressible in the object
language WLNP. A normative conflict occurs relating to a formula A ∈ W∼

whenever we can derive one of OA∧O∼A or OA∧P∼A. A normative gap occurs
relating to A whenever we can derive ¬PA∧¬O∼A, i.e. whenever there is no norm
to the effect that A is permitted or forbidden.

The P-operator functions as an operator for positive permission. A proposi-
tion A is said to be negatively permitted if there is no obligation to the contrary,
i.e. if ¬O∼A. The nullum crimen principle can be formalized as an axiom schema:

¬O∼A ⊃ PA (NC)

9“∼” as defined below is actually a “dummy” connective rather than a negation connective:
it has no properties at all, except that it validates de Morgan’s laws. However, below we show
that “∼” functions as a negation connective in the adaptive strengthenings of the logic LNP.
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Clearly, (NC) a priori excludes the possibility of normative gaps. That is why it
is not validated by any gap-tolerant logic of norm-propositions, including LNP.

6.2.3.2 Semantics

LNP is characterizable within a Kripke-style semantics with a set of worlds or
points W and a designated or ‘actual’ world w0 ∈W . In w0, negation is defined
classically by means of the connective “¬”. In the other worlds, negation is
defined by the paraconsistent and paracomplete connective “∼”.10

An LNP-model is a tuple ⟨W,w0,R, v0, v⟩, where R = {w0} × (W ∖ {w0}) is
a non-empty accessibility relation, and v0 ∶ Wa × {w0} → {0,1} and v ∶ W∼

l ×
(W ∖ {w0})→ {0,1} are assignment functions. v0 assigns truth-values to atomic
propositions at the actual world w0. Since all logical connectives (including
negation) behave classically at this world, truth values for complex formulas can
be defined in terms of a valuation function in the usual way. The situation
is slightly different for other worlds. In the latter, the ∼-connective does not
behave classically and truth values are assigned to all ∼-literals, i.e. all atomic
propositions p and their ∼-negation ∼p.

Let w ∈W,w′ ∈W ∖ {w0}. Then the valuation vM ∶ (WLNP × {w0}) ∪ (W∼ ×
W ∖ {w0})→ {0,1}, associated with the model M , is defined by:

(C0) where A ∈Wa, vM(A,w0) = 1 iff v0(A,w0) = 1
(Cl) where A ∈W∼

l , vM(A,w′) = 1 iff v(A,w′) = 1
(C¬) vM(¬A,w0) = 1 iff vM(A,w0) = 0
(C∼∼) vM(∼∼A,w′) = 1 iff vM(A,w′) = 1
(C∼⊃) vM(∼(A ⊃ B),w′) = 1 iff vM(A ∧ ∼B,w′) = 1
(C∼∧) vM(∼(A ∧B),w′) = 1 iff vM(∼A ∨ ∼B,w′) = 1
(C∼∨) vM(∼(A ∨B),w′) = 1 iff vM(∼A ∧ ∼B,w′) = 1
(C∼≡) vM(∼(A ≡ B),w′) = 1 iff vM((A ∨B) ∧ (∼A ∨ ∼B),w′) = 1
(C⊃) vM(A ⊃ B,w) = 1 iff vM(A,w) = 0 or vM(B,w) = 1
(C∧) vM(A ∧B,w) = 1 iff vM(A,w) = vM(B,w) = 1
(C∨) vM(A ∨B,w) = 1 iff vM(A,w) = 1 or vM(B,w) = 1
(C≡) vM(A ≡ B,w) = 1 iff vM(A,w) = vM(B,w)
(CO) vM(OA,w0) = 1 iff vM(A,w′) = 1 for every w′ such that Rw0w

′

(CP) vM(PA,w0) = 1 iff vM(A,w′) = 1 for some w′ such that Rw0w
′

(C0) and (Cl) simply take over the values of the assignment functions v0 and
v respectively. (C¬) determines truth values for the classical negation connective
“¬” in w0. (C∼∼)-(C∼≡) guarantee that de Morgan’s laws hold for “∼” in acces-
sible worlds. Where A ∈ Wa, the interpretation of ∼A is provided directly by
the assignment function v. Where A is a complex formula, its negation ∼A can
be reduced to simpler constituents in view of (C∼∼)-(C∼≡). (C⊃)-(C≡) determine
truth values for the other classical connectives ⊃,∧,∨, and ≡ in all worlds, and
(CO) and (CP) define the deontic operators O and P in the usual way.

A semantic consequence relation for LNP is defined in terms of truth preser-
vation at the actual world: an LNP-model M verifies A (M ⊩ A) iff vM(A,w0) =

10The semantic clauses for accessible worlds are inspired by those for (the propositional
fragment of) Batens’ paraconsistent and paracomplete logic CLoNs, a variation on the para-
consistent logic CLuNs as found in e.g. [20]. CLoNs is defined in Appendix C.
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1. In Section 6.2.3.4, we discuss the workings of LNP in more detail and provide
some illustrations. But first we define its syntactic consequence relation.

6.2.3.3 Axiomatization and meta-theory

Inside the scope of O and P, we want to allow for the consistent possibility of
contradictions and gaps. In order to do so, we make use of the propositional
fragment of the logic CLoNs (cfr. footnote 10). CLoNs is defined by adding de
Morgan’s laws for “∼” to CLpos:11

∼∼A ≡ A (A∼∼)

∼(A ⊃ B) ≡ (A ∧ ∼B) (A∼⊃)

∼(A ∧B) ≡ (∼A ∨ ∼B) (A∼∧)

∼(A ∨B) ≡ (∼A ∧ ∼B) (A∼∨)

∼(A ≡ B) ≡ ((A ∨B) ∧ (∼A ∨ ∼B)) (A∼≡)

Except for de Morgan’s laws, “∼” has no properties at all. The logic LNP is
fully axiomatized by CL (with the classical negation connective “¬”) plus:

O(A ⊃ B) ⊃ (OA ⊃ OB) (K)

OA ⊃ PA (D)

If ⊢CLoNs A then ⊢ OA (NEC∼)

O(A ⊃ B) ⊃ (PA ⊃ PB) (KP)

O(A ∨B) ⊃ (OA ∨ PB) (OD)

P(A ∨B) ⊃ (PA ∨ PB) (PD)

LNP resembles SDL in the sense that it contains (K), (D), and a necessi-
tation rule. However, it is non-standard in the sense that its necessitation rule
(NEC∼) is defined in terms of theoremhood in CLoNs instead of theoremhood
in CL. Moreover, in LNP the permission operator P is not definable in terms of
the obligation operator O. Instead, the P-operator is characterized by the axiom
schemas (KP), (OD), and (PD), all of which also hold in SDL.
The axiom schemas (O-AND) and (P-AND) are derivable in LNP (their deriv-
ability is shown in Fact 7 in Section F.1 of the Appendix):

OA,OB ⊢LNP O(A ∧B) (O-AND)

OA,PB ⊢LNP P(A ∧B) (P-AND)

Theorem 30. If Γ ⊢LNP A, then Γ ⊧LNP A. (Soundness of LNP)

Theorem 31. If Γ ⊧LNP A, then Γ ⊢LNP A. (Strong Completeness of LNP)

Proofs for Theorem 30 and Theorem 31 are contained in Section F.2 of the
Appendix.

11Remember that axiomatizations of CLpos and CLoNs are contained in Appendix C.
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6.2.3.4 Discussion

LNP allows for the consistent possibility of normative conflicts and normative
gaps, and invalidates deontic explosion:

Op ∧O∼p /⊢LNP Oq (6.14)

Op ∧ P∼p /⊢LNP Oq (6.15)

¬Pp ∧ ¬O∼p /⊢LNP Oq (6.16)

In accordance with the discussion in Section 6.2.2, the following interdependencies
between the O- and P-operators are invalid in LNP:

Pp /⊢LNP ¬O∼p (6.17)

¬Pp /⊢LNP O∼p (6.18)

Op /⊢LNP ¬P∼p (6.19)

¬Op /⊢LNP P∼p (6.20)

(6.17)-(6.20) correspond to the characterization of the P-operator as an operator
for positive permission. (6.17) fails in the presence of an OP-conflict Pp ∧ O∼p.
(6.18) fails in the presence of a gap ¬Pp ∧ ¬O∼p. (6.19) fails in the presence of a
conflict Op ∧ P∼p, and (6.20) fails in the presence of a gap ¬P∼p ∧ ¬Op.

The conflict- and gap-tolerance of LNP, as well as the non-interdefinability
of its O- and P-operators, all depend crucially on the paraconsistency and para-
completeness of the “∼”-connective. However, the very weak characterization of
“∼”also causes the LNP-invalidity of the following inferences:

O(p ∨ q),O∼q /⊢LNP Op (6.21)

O(p ∨ q),O(∼p ∨ q) /⊢LNP Oq (6.22)

O(p ⊃ q),O∼q /⊢LNP O∼p (6.23)

Indeed, except for de Morgan’s laws LNP invalidates all classically valid in-
ferences that somehow depend on the properties of the ∼-connective, e.g. the
disjunctive syllogism or contraposition rules. (6.21) is invalid because the possi-
bility of an OO-conflict Oq ∧O∼q cannot be excluded. In that case, Op need not
follow from the premises O(p ∨ q) and O∼q. Likewise, (6.22) is invalid since Oq
need not follow from O(p ∨ q) and O(∼p ∨ q) in the presence of an OO-conflict
Op ∧O∼p.

(6.23) fails (i) in case of a normative conflict relating to q or (ii) in case of
a normative gap relating to p. Suppose that O(p ⊃ q) and O∼q are true at the
actual world. Then p ⊃ q and ∼q are true at all accessible worlds. In case (i),
both q and ∼q are true in at least one accessible world. In this world, p ⊃ q is
true in view of (C⊃), and ∼p need not be true. In case ∼p is false at an accessible
world, we have a model in which O∼p is false at the actual world. In case (ii),
both p and ∼p are false in at least one accessible world. Again we have a model
in which O∼p is false at the actual world.

For similar reasons all of the following ‘variants’ of (6.21)-(6.23) are invalid
in LNP:

O(p ∨ q),P∼q /⊢LNP Pp (6.24)
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P(p ∨ q),O∼q /⊢LNP Pp (6.25)

O(p ∨ q),P(∼p ∨ q) /⊢LNP Pq (6.26)

P(p ∨ q),O(∼p ∨ q) /⊢LNP Pq (6.27)

O(p ⊃ q),P∼q /⊢LNP P∼p (6.28)

P(p ⊃ q),O∼q /⊢LNP P∼p (6.29)

O(p ⊃ q) /⊢LNP O(∼q ⊃ ∼p) (6.30)

P(p ⊃ q) /⊢LNP P(∼q ⊃ ∼p) (6.31)

In spite of the rationale behind their invalidity (i.e. the possibility of normative
conflicts/gaps), all of (6.21)-(6.31) have some intuitive appeal. In real life, we
tend to assume that norms behave consistently and that propositions are nor-
matively regulated. Normative conflicts and normative gaps are anomalies. We
rely on inferences like (6.21)-(6.31) in our everyday reasoning processes, albeit in
a defeasible way.

It seems then, that LNP is too weak to account for our normative reason-
ing. Inferences like (6.21)-(6.31) should only be blocked once we can reasonably
assume that one of the norm-propositions needed in the inference behaves abnor-
mally, i.e. that there might be a conflict or gap relating to this norm-proposition.
Note that this reasoning process is non-monotonic: new premises may provide the
information that there is a conflict or gap relating to some norm-proposition that
was previously deemed to behave normally. Consider, for instance, the inference
from O(p∨q) and O∼p to Oq. This inference is intuitive assuming that there is no
normative conflict relating to p. If, however, we obtain the new information that
there is a normative conflict relating to p, then the inference should be blocked,
since we do not want to rely on conflicted norm-propositions in deriving new
information.

In the next section, we strengthen LNP in a non-monotonic fashion in order
to overcome the problems mentioned here, and to make formally precise the idea
of ‘assuming’ norm-propositions to behave ‘normally’.

6.2.4 The logics LNPr and LPNm

For any LNP-model M and A ∈Wa, the classical negation connective “¬” sat-
isfies the following semantic conditions at the actual world:

(�) If vM(A,w0) = 1, then vM(¬A,w0) = 0,
(�) If vM(A,w0) = 0, then vM(¬A,w0) = 1.

(�) guarantees the consistency of A: A and ¬A cannot both be true at w0. (�)
imposes a completeness condition on A: at least one of A and ¬A is true at w0.

As is clear from the LNP-semantics, (�) and (�) fail for “∼” at accessible
worlds. Instead of (�) and (�), only the weaker conditions (�’) and (�’) hold for
“∼” at a world w ∈W ∖ {w0}:

(�’) If vM(A,w) = 1, then either vM(∼A,w) = 0 or vM(A ∧ ∼A,w) = 1,
(�’) If vM(A,w) = 0, then either vM(∼A,w) = 1 or vM(A ∨ ∼A,w) = 0.
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In view of the semantic clauses for LNP it is easily checked that whenever a
normative conflict occurs relating to a proposition p, the formula p ∧ ∼p is true
at some accessible world. In case of an OP-conflict Op ∧ P∼p or O∼p ∧ Pp, this
follows in view of (CO), (CP), and (C∧). In case of an OO-conflict Op ∧O∼p, it
follows in view of (CO), (C∧) and the non-emptiness of the accessibility relation.

In a similar fashion, we can check that whenever a normative gap occurs
relating to p, the formula p ∨ ∼p is false at some accessible world. Suppose, for
instance, that ¬Op ∧ ¬P∼p is true at w0. Then by (C¬), both Op and P∼p are
false at w0. By (CO), there is a world w such that Rw0w and vM(p,w) = 0. By
(CP), ∼p too is false at this world: vM(∼p,w) = 0. By (C∨), vM(p ∨ ∼p,w) = 0.

Normative conflicts create truth-value gluts, whereas normative gaps create
truth-value gaps at accessible worlds.12 Suppose now that we label such gluts and
gaps as abnormal, and that we try to interpret our worlds as normally as possible.
Then, in view of (�’) and (�’), normal behavior corresponds to the satisfaction
of the consistency and completeness demands (�) and (�) for “∼” at accessible
worlds.

The adaptive logic LNPx exploits the above idea in making the assumption
that norm-propositions behave ‘normally’ unless and until we find out that they
are involved in some normative conflict or gap. LNPx is defined as a triple:

(1) Lower limit logic: LNP.
(2) Set of abnormalities: Ω = Ω1 ∪Ω2, where Ω1 = {P(A ∧ ∼A) ∣ A ∈Wa}

and Ω2 = {¬O(A ∨ ∼A) ∣ A ∈Wa}.
(3) Adaptive strategy: x ∈ {r,m}.

Ω1 is the set of atomic gluts true at some accessible world. Note that, in view
of the validity of de Morgan’s laws for “∼”, more complex gluts can be reduced
to (disjunctions of) atomic gluts by the LLL, e.g. if vM((p∨ q)∧ ∼(p∨ q),w) = 1,
then vM((p ∧ ∼p) ∨ (q ∧ ∼q),w) = 1. Consequently, whenever some LNP-model
verifies an OO- or OP-conflict, it also validates an abnormality in the set Ω1.

In view of the LNP-semantics, p∨∼p is false at some accessible world whenever
¬O(p ∨ ∼p) is true at the actual world. Thus Ω2 is the set of atomic gaps true
at some accessible world. Again, complex instances of gaps are LNP-reducible
to a (disjunction of) atomic gap(s), e.g. if vM((p ∨ q) ∨ ∼(p ∨ q),w) = 0, then
vM((p ∨ ∼p) ∧ (q ∨ ∼q),w) = 0. Hence whenever some LNP-model verifies a
normative gap, it also validates an abnormality in the set Ω2.

For any atomic proposition p, the Ω2-abnormality ¬O(p ∨ ∼p) expresses that
there is an accessible world in which neither p nor ∼p is verified, whereas the
Ω1-abnormality P(p ∧ ∼p) expresses that there is an accessible world in which
both p and ∼p are verified. Thus, in LNP both gluts and gaps in accessible
worlds constitute abnormalities. In view of the discussion at the beginning of this
section, this means that both normative conflicts and normative gaps constitute
abnormalities in LNP.

12A truth-value glut for p occurs when both p and ∼p are assigned the value 1; a truth-value
gap for p occurs when both p and ∼p are assigned the value 0.
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6.2.5 Some illustrations

6.2.5.1 Semantics

Example 19. Let Γ1 = {Op,O(∼p ∨ q)}. Then, for all LNP-models M of Γ1,
M,w0 ⊧ Op and M,w0 ⊧ O(∼p ∨ q). By (CO), M,w ⊧ p and M,w ⊧ ∼p ∨ q for
all worlds w such that Rw0w. The possible truth values for p,∼p, q, and ∼q at
accessible worlds in M are depicted in Table 6.1a. Let R(w0) abbreviate the set
of worlds w ∈W ∖{w0} such that Rw0w. Then each w ∈ R(w0) is of one of types
(1)-(6).

Table 6.1: Accessible worlds for Γ1 and Γ3. Grey cells indicate propositions that
behave abnormally in w.

(a) Accessible worlds for Γ1

w p ∼p q ∼q
(1) 1 0 1 0
(2) 1 0 1 1
(3) 1 1 0 0
(4) 1 1 0 1
(5) 1 1 1 0
(6) 1 1 1 1

(b) Accessible worlds for Γ3

w p ∼p q ∼q
(1) 0 0 0 1
(2) 0 0 1 1
(3) 0 1 0 1
(4) 0 1 1 1
(5) 1 0 1 1
(6) 1 1 1 1

If at least one w ∈ R(w0) is of one of types (3)-(6), then, by (C∧) and (CP),
M,w0 ⊧ P(p∧∼p), and P(p∧∼p) ∈ Ab(M). Similarly, if at least one w ∈ R(w0) is
of type (2) or type (6), then P(q ∧ ∼q) ∈ Ab(M). Moreover, if some w ∈ R(w0) is
of type (3), then, by (C∨), (CO) and (C¬), M,w0 ⊧ ¬O(q∨∼q), and ¬O(q∨∼q) ∈
Ab(M).

If, however, all worlds w ∈ R(w0) are of type (1), then M verifies no abnormal-
ities relating to p or q. In view of Definition 13, only models for which all worlds
w ∈ R(w0) are of type (1) qualify as minimally abnormal LNP-models of Γ1.
Note that, for all type (1)-worlds w ∈ R(w0), M,w ⊧ q. By (CO), M,w0 ⊧ Oq.
By Definition 14, Γ1 ⊧LNPm Oq.

Since Γ1 has LNP-models M of which all accessible worlds w ∈ R(w0) are
such that, for all A ∈ Wa, M,w /⊧ A ∧ ∼A and M,w ⊧ A ∨ ∼A, we can conclude
that Γ1 has LNP-models M such that Ab(M) = ∅. It follows that Γ1 has no
minimal Dab-consequences. In view of Definition 7, U(Γ1) = ∅. By Definition 9,
Ab(M) = ∅ for all reliable LNP-models M of Γ1. Again, only models for which
all worlds w ∈ R(w0) are of type (1) qualify as reliable LNP-models of Γ1. By
Definition 10, Γ1 ⊧LNPr Oq.

Example 20. Let Γ2 = {Op,O(∼p ∨ q),O∼p}. It is easily checked that Γ2 ⊧LNP

P(p ∧ ∼p). Consequently, all LNP-models verify this abnormality, including the
minimally abnormal and reliable ones. Hence all accessible worlds in all LNP-
models of Γ2 are of one of types (3)-(6) in Table 6.1a. Since P(p ∧ ∼p) is the
only Dab-consequence of Γ2, the selected LNPx-models for both strategies are
those which verify exactly this abnormality, i.e. models of which all accessible
worlds are of type (4) or (5). In all of these models, p,∼p ∨ q, and ∼p are true at



6.2. REASONING ABOUT NORMS 109

all accessible worlds. Since q need not be true at some of these worlds, Γ2 has
LNPx-models in which Oq is false. Hence Γ2 /⊧LNPx Oq.

Note that Examples 19 and 20 illustrate the non-monotonicity of LNPx:
adding the premise O∼p to Γ1 blocks the derivation of Oq.

Example 21. Let Γ3 = {O(p ⊃ q),O∼q}, and let M be an LNP-model of Γ3. The
possible truth values for p,∼p, q, and ∼q at accessible worlds in M are depicted
in Table 6.1b.

If at least one w ∈ R(w0) is of one of types (1) or (2), then ¬O(p ∨ ∼p) ∈
Ab(M). If at least one w ∈ R(w0) is of one of types (2), (4), (5) or (6), then
P(q ∧ ∼q) ∈ Ab(M). Only if all w ∈ R(w0) are of type (3) it is possible that
Ab(M) = ∅. In view of Definition 13, only models of which all w ∈ R(w0) are
of type (3) qualify as minimally abnormal models. But then M,w0 ⊧ O∼p, and,
by Definition 14, Γ3 ⊧LNPm O∼p. It is safely left to the reader to check that, in
view of Definitions 9 and 10, Γ3 ⊧LNPr O∼p.
Example 22. Let Γ4 = {O(p ∧ q),O(∼(p ∨ q) ∨ r),P(∼p ∨ ∼q)}, and let M be an
LNP-model of Γ4. By (CO) we know that, for all w ∈ R(w0) in M , M,w ⊧ p∧ q
and M,w ⊧ ∼(p∨q)∨r. Hence every w ∈ R(w0) is of one of types (1)-(10) depicted
in Table 6.2.

w p ∼p q ∼q r ∼r
(1) 1 0 1 0 1 0
(2) 1 0 1 0 1 1
(3) 1 0 1 1 1 0
(4) 1 0 1 1 1 1
(5) 1 1 1 0 1 0
(6) 1 1 1 0 1 1
(7) 1 1 1 1 0 0
(8) 1 1 1 1 0 1
(9) 1 1 1 1 1 0
(10) 1 1 1 1 1 1

Table 6.2: Accessible worlds for Γ4.

By (CP), we also know that there is at least one world w such that w ∈ R(w0)
and M,w ⊧ ∼p∨∼q. Thus, w cannot be of type (1) or type (2). If w is of type (3),
then P(q ∧ ∼q) ∈ Ab(M). If w is of type (5), then P(p ∧ ∼p) ∈ Ab(M). It is easily
checked that if w is of type (4), (6), (7), (8), (9), or (10), then M validates more
than one abnormality, i.e. either {P(p ∧ ∼p)} ⊂ Ab(M) or {P(q ∧ ∼q)} ⊂ Ab(M).

In general, it follows by Definition 13 that M only qualifies as a minimally
abnormal LNP-model of Γ4 if either w is of type (3) and all w′ ∈ R(w0)∖{w} are
of type (1) or type (3), or w is of type (5) and all w′ ∈ R(w0) ∖ {w} are of type
(1) or type (5). Hence if M is minimally abnormal, then all accessible worlds in
M are of type (1), type (3), or type (5). But then, by (CO), M,w0 ⊧ Or and, by
Definition 14, Γ4 ⊧LNPm Or.

Since at least one accessible world w in M is of types (3)-(10), it follows by
(C∧), (CP), and (C∨) that M,w0 ⊧ P(p ∧ ∼p) ∨ P(q ∧ ∼q) (for any model M of
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Γ4). On the other hand, there exist models M of Γ4 such that M,w0 /⊧ P(p∧∼p),
and there exist models M of Γ4 such that M,w0 /⊧ P(q ∧ ∼q). Thus, it follows
that P(p ∧ ∼p) ∨ P(q ∧ ∼q) is a minimal Dab-consequence of Γ4. By Definition 7,
P(p ∧ ∼p),P(q ∧ ∼q) ∈ U(Γ4).

Suppose now that all w ∈ R(w0) are of type (8), and that, for all A ∈ Wa ∖
{p, q, r}, M,w /⊧ A∧∼A and M,w ⊧ A∨∼A. Then it is easily verified that the only
abnormalities verified by M are P(p∧∼p) and P(q ∧∼q). Thus, Ab(M) ⊆ U(Γ4).
By Definition 9, M is reliable. However, M,w0 /⊧ Or. Thus, by Definition 10,
Γ4 /⊧LNPr Or.

Example 22 illustrates that there are premise sets Γ ⊆ WLNP and formulas
A ∈WLNP such that Γ /⊧LNPr A and Γ ⊧LNPm A.

6.2.5.2 Proof theory

By now, readers are familiar with the workings of the adaptive proof theory.
For this reason, the adaptive proofs in this section are provided without any
extra information concerning the derivations made at each stage. However, the
following table containing some LNP-valid inferences of the form Γ ⊢LNP A ∨
Dab(∆) is helpful in figuring out which moves can be made in a proof by means
of the conditional rule RC:

Op ⊢LNP ¬P∼p ∨ P(p ∧ ∼p) (6.32)

Pp ⊢LNP ¬O∼p ∨ P(p ∧ ∼p) (6.33)

¬Op ⊢LNP P∼p ∨ ¬O(p ∨ ∼p) (6.34)

¬Pp ⊢LNP O∼p ∨ ¬O(p ∨ ∼p) (6.35)

O(p ∨ q),O∼q ⊢LNP Op ∨ P(q ∧ ∼q) (6.36)

O(p ∨ q),P∼q ⊢LNP Pp ∨ P(q ∧ ∼q) (6.37)

P(p ∨ q),O∼q ⊢LNP Pp ∨ P(q ∧ ∼q) (6.38)

O(p ⊃ q),O∼q ⊢LNP O∼p ∨ ¬O(p ∨ ∼p) ∨ P(q ∧ ∼q) (6.39)

O(p ⊃ q),P∼q ⊢LNP P∼p ∨ ¬O(p ∨ ∼p) ∨ P(q ∧ ∼q) (6.40)

P(p ⊃ q),O∼q ⊢LNP P∼p ∨ ¬O(p ∨ ∼p) ∨ P(q ∧ ∼q) (6.41)

O(p ∨ q),O(∼p ∨ q) ⊢LNP Oq ∨ P(p ∧ ∼p) (6.42)

O(p ∨ q),P(∼p ∨ q) ⊢LNP Pq ∨ P(p ∧ ∼p) (6.43)

P(p ∨ q),O(∼p ∨ q) ⊢LNP Pq ∨ P(p ∧ ∼p) (6.44)

As a first illustration, consider the following LNPx-proof from the premise set
Γ5 = {O∼p,P(∼q ∧ (∼r ∨ s)),O(r ∨ s),O(∼q ⊃ p)}:

2cm 1 O∼p PREM ∅
2 P(∼q ∧ (∼r ∨ s)) PREM ∅
3 O(r ∨ s) PREM ∅
4 O(∼q ⊃ p) PREM ∅
5 P∼q 2; RU ∅
6 P(∼r ∨ s) 2; RU ∅
7 ¬Oq 5; RC {P(q ∧ ∼q)}
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8 Ps 3,6; RC {P(r ∧ ∼r)}
9 Oq 1,4; RC {¬O(q ∨ ∼q),P(p ∧ ∼p)}✓11

10 Pp 4,5; RU ∅
11 P(p ∧ ∼p) 1,10; RU ∅

Since no other minimal Dab-formulas are LNP-derivable from Γ5, it follows
that Γ5 ⊢LNPx ¬Oq, Γ5 ⊢LNPx Ps and Γ5 ⊬LNPx Oq.

The following proof illustrates that ¬O(∼p ∨ ∼q),O(∼q ∨ r),¬Pp ⊢LNPr Pr:

1 ¬O(∼p ∨ ∼q) PREM ∅
2 O(∼q ∨ r) PREM ∅
3 ¬Pp PREM ∅
4 ¬O∼p 1; RU ∅
5 ¬O∼q 1; RU ∅
6 Pp 4; RC {¬O(p ∨ ∼p)}✓8

7 Pq 5; RC {¬O(q ∨ ∼q)}
8 ¬O(p ∨ ∼p) 3,4; RU ∅
9 Pr 2,7; RC {¬O(q ∨ ∼q),P(q ∧ ∼q)}

At this point, it is useful to come back to the nullum crimen principle (NC)
as defined in Section 6.2.3.1. As is illustrated in the derivation of lines 6 and
7 in the proof above, LNPx allows for the conditional application of (NC). In
general, if A is not prohibited, then we can derive PA on the condition that there
is no normative gap relating to A.

Finally, here is a LNPm-proof for the premise set Γ4 from Section 6.2.5.1:

1 O(p ∧ q) PREM ∅
2 O(∼(p ∨ q) ∨ r) PREM ∅
3 P(∼p ∨ ∼q) PREM ∅
4 Op 1; RU ∅
5 O((∼(p ∨ q) ∨ r) ∧ p) 2,4; RU ∅
6 O(r ∨ (p ∧ ∼p)) 5; RU ∅
7 Or ∨ P(p ∧ ∼p) 6; RU ∅
8 Or 7; RC {P(p ∧ ∼p)}
9 Or 1,2; RC {P(q ∧ ∼q)}

10 P(p ∧ ∼p) ∨ P(q ∧ ∼q) 1,3; RU ∅

In the LNPm-proof from Γ4, the set Φ10(Γ4) of minimal choice sets of Γ4 at
stage 10 consists of the sets {P(p∧∼p)} and {P(q ∧∼q)}. In view of the marking
definition for the minimal abnormality strategy, lines 8 and 9 remain unmarked.
Since there is no way to extend the proof in such a way that these lines become
marked, it follows that Γ4 ⊢LNPm Or. Note that, if the above proof were a LNPr-
proof from Γ4, lines 8 and 9 would be marked due to the minimal Dab-formula
derived at line 10.

6.2.6 Meta-theoretical properties of LNPx

Due to Theorem 8 and its definition within the standard format for ALs, LNPx

is sound and complete with respect to its semantics:
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Corollary 5. Γ ⊢LNPx A iff Γ ⊧LNPx A.

The upper limit ULNP of LNPx is obtained by adding to LNP the axiom
schemas (ULNP1) and (ULNP2), which trivialize all members of Ω1 and Ω2

respectively. Where A ∈Wa and B ∈WLNP:

P(A ∧ ∼A) ⊃ B (ULNP1)

¬O(A ∨ ∼A) ⊃ B (ULNP2)

ULNP is related to LNP as set out by Theorem 17:

Corollary 6. Γ ⊢ULNP A iff (there is a ∆ ⊆ Ω for which Γ ⊢LNP A ∨ Dab(∆)
or Γ ⊢LNP A).

The set of Dab-consequences derivable from the premise set determines the
amount to which the LNPx-consequence set will resemble the ULNP-consequence
set. This is why adaptive logicians say that LNPx adapts itself to a premise set.
By Theorem 18, LNPx will always be at least as strong as LNP and maximally
as strong as ULNP:

Corollary 7. CnLNP(Γ) ⊆ CnLNPx(Γ) ⊆ CnULNP(Γ).

In view of Theorem 7, it follows immediately that:

Corollary 8. CnLNP(Γ) ⊆ CnLNPr(Γ) ⊆ CnLNPm(Γ) ⊆ CnULNP(Γ).

If Γ is normal, i.e. if Γ has no Dab-consequences, then, by Theorem 19:

Corollary 9. If Γ is normal, then CnLNPx(Γ) = CnULNP(Γ).

The reader may have noticed that ULNP trivializes both gluts and gaps at
accessible worlds, thus promoting “∼” to a fully classical negation connective. It
should come as no surprise then, that ULNP is just SDL in disguise. Where
Γ ⊆WLNP, define Γ¬ by replacing every A ∈ Γ by π(A), where π(A) is the result
of replacing every occurrence of “∼” in A by “¬”. Then:

Theorem 32. Γ ⊢ULNP A iff Γ¬ ⊢SDL π(A).

A proof outline for Theorem 32 is contained in Section F.3 of the Appendix.

6.2.7 Related work

6.2.7.1 Alchourrón and Bulygin

In [1, 2, 3, 4], Alchourrón and Bulygin present a logic of norm-propositions that
is built ‘on top’ of a logic of norms.13 A norm-proposition “there exists a norm
to the effect that A is permitted” is formalized as NPA, where the operator N
behaves like a quantifier over the norm PA. The latter formula (without N) is
read simply as “A is permitted”. Only obligations and permissions can occur

13Alchourrón and Bulygin’s logic of norm-propositions is inspired by Rescher’s assertion
logic from [151].
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inside the scope of the N-operator; formulas of the form NA where A is not of
the form OB or PB are not well-formed.

Alchourrón and Bulygin’s logic of norms is just SDL. Their logic of norm-
propositions NL extends SDL by adding to it the axiom schema (NK) and the
rule (NRM):

N(A ⊃ B) ⊃ (NA ⊃ NB) (NK)

If ⊢ A ⊃ B then ⊢ NA ⊃ NB (NRM)

In NL, OO-conflicts are formulas of the form NOA ∧ NO¬A. Similarly, OP-
conflicts are formulas of the form NOA ∧ NP¬A. As opposed to normative con-
flicts, normative gaps cannot be expressed in the object language of NL. Instead,
Alchourrón and Bulygin define a normative gap as a situation in which, for some
CL-formula A, we cannot derive NPA nor NO¬A, i.e. /⊢NL NPA ∨ NO¬A. Nor-
mative conflicts and gaps do not cause full explosion in NL. Where A and B are
well-formed NL-formulas:14

NOA ∧NO¬A /⊢NL B (6.45)

NOA ∧NP¬A /⊢NL B (6.46)

/⊢NL NPA ∨NO¬A (6.47)

However, the following variants of deontic explosion are valid in NL:

NOA ∧NO¬A ⊢NL NOB (6.48)

NOA ∧NP¬A ⊢NL NOB (6.49)

With Alchourrón, Bulygin, and von Wright, we agree that “experience seems
to testify that mutually contradictory norms may co-exist within one and the
same legal order – and also that there are a good many “gaps” in any such
order” [194, p. 32]. But if conflicting normative propositions indeed often coexist
within a normative order, then deontic explosion should be avoided by any logic
of normative propositions. No judge will agree that a normative order containing
one or more conflicts contains norms to the effect that anything whatsoever is
obligatory. Hence (6.48) and (6.49) cause serious problems for NL.

(6.48) and (6.49) follow by applications of (NRM) and (NK) to the SDL-
theorems ⊢ OA ⊃ (O∼A ⊃ OB) and ⊢ OA ⊃ (P∼A ⊃ OB) respectively. This led
von Wright to questioning the presupposition of SDL by NL [194, footnote 2].

As opposed to NL, LNPx is not built ‘on top’ of the CL-based logic SDL.
Although LNP contains full CL, its ‘deontic’ formulas make use of the much
weaker logic CLoNs inside the scope of the O- and P-operator. This way, LNPx

avoids deontic explosion.
Interestingly, Alchourrón and Bulygin point out that under the assumptions

of consistency and completeness, the logic of norm-propositions is ‘isomorphic’ to

14Alchourrón and Bulygin allow for iterated/nested deontic and normative operators. Noth-
ing in principle prevents the occurrence of such nestings in LNPx. This requires some mod-
ifications of the language WLNP and of the sets Ω1 and Ω2 such that e.g. PP(p ∧ ∼p) is also
considered an abnormality.
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SDL: if we dismiss the possibility of normative conflicts and normative gaps, the
differences between both logics disappear [1, 4]. In Section F.3 of the Appendix
we prove this isomorphism for LNPx by showing that for normal (consistent and
complete) premise sets, LNPx is just as strong as SDL.

6.2.7.2 Input/output logic

In Section 5.3 we already mentioned that input/output-logics (I/O logics) employ
a technique similar to that used by Horty for obtaining a set of output obligations
from a set of input obligations. As such, they suffer from the same problems
concerning their treatment of normative conflicts (see Section 5.3). Since I/O
logics were originally motivated as logics of norm-propositions, this is the right
place for discussing their further properties in more detail.

In I/O logic, norms are represented as ordered pairs of formulas (a, x), where
each coordinate of a pair is a CL-formula.15 The body of such a pair constitutes
an input consisting of some condition or factual situation. The head constitutes
an output representing what the norm tells us to be desirable, obligatory or per-
mitted in that situation. A normative order or system is a set G of input/output
pairs. G is seen as a ‘transformation device’ in which CL functions as its ‘secre-
tarial assistant’ [118, p. 2].

In [115], Makinson and van der Torre define various operations of the form
out(G,A) for making up the output of G given a set A containing factual infor-
mation (input). In [116], the authors add constraints to these systems for dealing
with contrary-to-duty scenarios and conflicting norms. In [117], the framework
is extended for dealing with permissions. Constrained I/O logics make use of
maximally consistent subsets. In doing so, they avoid explosion when dealing
with conflicting conditional obligations, even if e.g. the norms (a, x) and (a,¬x)
tell us that both x and ¬x are obligatory under the same circumstances.

The treatment of obligation-permission conflicts by constrained I/O logics is
less straightforward. In [169], Stolpe noted that the constrained systems deonti-
cally explode when facing a conflict between an obligation (a, x) and a positive
permission (a,¬x).16 Stolpe’s solution to this problem is to treat positive per-
missions as derogations: “a positive permission suspends, annuls or obstructs a
covering prohibition, thereby generating a corresponding set of liberties” [169,
p. 99].

Stolpe’s solution creates an asymmetry between obligations and permissions.
In obligation-obligation conflicts, both norms may still be of equal importance.
In obligation-permission conflicts however, the permission always overrides the
obligations it is in conflict with. Although certainly of interest in legal contexts,
where the concept of derogation is a very important one, we doubt that all
obligation-permission conflicts can be dealt with in this way.

15The framework of I/O logic was initially developed for dealing with conditional norms.
We do not discuss its merits as a conditional logic here. Instead, we focus on issues related to
conflict- and gap-tolerance. For a discussion of the representation of conditional norms in I/O
logic, see [201].

16Translated to the I/O setting, deontic explosion ensues from a given input if – under
certain circumstances invoked by the input – everything becomes obligatory in the output.
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In the literature on I/O logic, normative gaps are left unmentioned. However,
it seems possible to model gaps in this framework. For instance, we could say that
there is a normative gap relating to proposition x in circumstances a if neither
the obligations to do x or ¬x, nor the positive permissions to do x or ¬x are in the
output of a given set of norms. One drawback seems to be that, whichever I/O
operation we pick, both the obligation to do x ∨ ¬x and the positive permission
to do x ∨ ¬x will always be in the output set. This is due to the closure of the
output set under CL. Furthermore, as with Alchourrón and Bulygin’s approach,
normative gaps cannot be modeled at the object level in I/O logic.

Another difference between I/O logic and LNPx is that for I/O operations
the input is restricted to simple norm-bases, i.e. sets of input-output pairs. More
complex formulas such as disjunctions between norms or negated norms cannot
be fed into the system. LNPx is more flexible in this sense, since it can easily
deal with premise sets containing formulas such as ¬Op, Oq ∨ Pr, etc.





Chapter 7

Multi-agent adaptive logics for
normative conflicts

. The content of this chapter is based on the paper Nonmonotonic Reason-
ing with Normative Conflicts in Multi-Agent Deontic Logic [28], which is co-
authored by Christian Straßer.

. I am indebted to Joke Meheus and Christian Straßer for valuable comments
on this chapter.

By now, the reader is familiar with the inconsistency-adaptive approach from
the previous chapter. In this chapter, we use the inconsistency-adaptive approach
for modeling interactions in a multi-agent normative setting. We start off with the
presentation of a simple and elegant multi-agent logic of action, the logic ML
(Section 7.1). Next, we extend ML to the deontic multi-agent logic of action
MDL. The latter adds deontic operators to the language of ML and allows us
to model multi-agent normative reasoning.

The logics ML and MDL are conflict-intolerant. They trivialize all premise
sets containing normative conflicts, be they conflicts between (groups of) agents
or conflicting directives faced by one and the same agent or group. We deal
with this problem by (i) weakening MDL to the paraconsistent deontic multi-
agent logic PMDL, and (ii) strengthening PMDL within the adaptive logics
framework.

In realizing (i), we ‘reconstruct’ our logic on top of the paraconsistent logic
LP, resulting in the logic PMDL (Section 7.3).1 Like the monotonic paracon-
sistent (deontic) logics encountered before, PMDL is too weak to account for
many intuitive and classically valid inference patterns. Hence, we use it as the
LLL of a stronger adaptive extension: the logic PMDLx defined and illustrated
in Section 7.4.

The research presented in this chapter builds on earlier work on agentive
adaptive logics from [30]. There too, we presented an inconsistency-adaptive
multi-agent deontic logic. However, the system PMDLx defined here improves

1LP abbreviates ‘Logic of Paradox’. It was devised by Priest [143]. See [145] for more
information.

117
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on this earlier work in various ways. In Section 7.5, we compare the present
approach to this earlier alternative and make some general remarks on para-
consistent and inconsistency-adaptive (deontic) logics. Moreover, we discuss its
relation to some of the main paradigms in the logical study of agency.

7.1 ML, a multi-agent logic of action

7.1.1 Definition

7.1.1.1 Language and conventions

We use a finite non-empty set I = {i1, . . . , in} of agents. Since we will in the
remainder often refer to groups of agents J in I, i.e. non-empty subsets of I, the
following notation is useful for this: J ⊆∅ I iff J ≠ ∅ and J ⊆ I. We also introduce
the notation J ⊂∅ I for denoting proper non-empty subsets J of I: J ⊂∅ I iff
J ≠ ∅ and J ⊂ I. Where J ⊆∅ I, the setWML of wffs of ML is defined recursively
as follows:

WML ∶= ⟨Wa⟩ ∣ ¬⟨WML⟩ ∣ ⟨WML⟩∨⟨WML⟩ ∣ ⟨WML⟩∧⟨WML⟩ ∣ ◻J⟨WML⟩ ∣
◇J⟨WML⟩

Note that we do not define the ◇J -operators in terms of their dual ◻J -
operators. Instead, the diamond operators are primitive in our language. The
reason for this will become clear in Section 7.3. Where A,B ∈ WML, we de-
fine the implication by A ⊃ B =df ¬A ∨ B and the equivalence relation by
A ≡ B =df (A ⊃ B) ∧ (B ⊃ A). A formula ◻JA is interpreted as “group or
agent J brings about A by a joint effort”. A formula ◇JA is interpreted (rather
weakly) as “A is compatible with the (joint) actions of group or agent J” (cfr.
Section 7.1.2). Where i ∈ I, we abbreviate ◻{i}A by ◻iA.

Unless stated differently, we presuppose throughout this section that A,B ∈
WML, Γ ⊆WML, and J,K ⊆∅ I.

7.1.1.2 Axiomatization

ML is axiomatized by adding the following axiom schemas and rules to CL:

◻J(A ⊃ B) ⊃ (◻JA ⊃ ◻JB) (AK◻J)

◻JA ⊃ ◻J ◻J A (A4◻J)

◻JA ⊃ A (AT◻J)

◇JA ≡ ¬ ◻J ¬A (ADf◇J)

If ⊢ A, then ⊢ ◻JA (NEC◻J)

The modal operators of ML are S4-operators. In agreement with the charac-
terization of the ◇J -operators as separate modal operators not defined in terms
of their duals (cfr. supra), we also need (ADf◇J) in order to obtain the usual
properties for the diamond operators.
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7.1.1.3 Semantics

An ML-model is a tuple ⟨W, ⟨RJ⟩J⊆∅I , v,w0⟩, where W is a set of points referred
to as ‘worlds’, each RJ ⊆W×W is a transitive and reflexive accessibility relation2,
v ∶Wa → ℘(W ) is an assignment function, and w0 ∈W is the ‘home’ or ‘actual’
world.

Truth at a world w is defined as follows:

(Ca) where A ∈Wa, M,w ⊧ A iff w ∈ v(A)
(C∧) M,w ⊧ A ∧B iff M,w ⊧ A and M,w ⊧ B
(C∨) M,w ⊧ A ∨B iff M,w ⊧ A or M,w ⊧ B
(C¬) M,w ⊧ ¬A iff M,w /⊧ A

(C◻J) M,w ⊧ ◻JA iff for all w′ such that RJww
′, M,w′ ⊧ A

(C◇J) M,w ⊧◇JA iff there is a w′ such that RJww
′ and M,w′ ⊧ A

An ML-model M verifies A (M ⊧ML A) iff M,w0 ⊧ A.

7.1.2 Further discussion

As mentioned above, we read ◻JA as “group or agent J brings about A by a joint
effort”. ◇JA is read as “A is compatible with J ’s actions”, instead of the stronger
“J has the ability to bring about A”.3 The reason for this weaker reading has to
do with the following inferences:

◇J(A ∨B) ⊢ML ◇JA ∨◇JB (7.1)

A ⊢ML ◇JA (7.2)

Kenny noted in [103] that (7.1) and (7.2) are too strong for formalizing the ‘can’
of ability. (7.1) is violated by anyone who has the ability to pick a card from a
pack of cards without having the ability to pick a red card or the ability to pick
a black one. (7.2) is violated by any hopeless darts player who – by accident –
hits the bull’s eye but lacks the ability to repeat his deed [103, 159]. For this
reason, we prefer our weaker reading of the ◇J -operators.

As the modal operators of ML are S4-modalities, we can aggregate over
actions:

◻JA ∧ ◻JB ⊢ML ◻J(A ∧B) (7.3)

The opposite direction of (7.3) also holds:

◻J(A ∧B) ⊢ML ◻JA ∧ ◻JB (7.4)

ML invalidates the stronger axiom schemas (A5◻J) and (AB◻J):

◇JA ⊃ ◻J ◇J A (A5◻J)

A ⊃ ◻J ◇J A (AB◻J)

2R is transitive iff, for each w,w′, and w′′, whenever Rww′ and Rw′w′′, also Rww′′; R is
reflexive iff, for each w, Rww.

3Note that due to (NEC◻J ) we have ◻JA for all ML-theorems A, for every J ⊆∅ I. This
adds a non-deliberative flavor to our ◻J operator similar to the non-deliberative character of
the Chellas-stit (see e.g., [93]), cfr. infra. In view of this a more refined reading of ◻JA is
“group or agent J brings about A or A is logically necessary”.
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A’s being compatible with J ’s actions need not imply that J brings it about that
A is compatible with his/her/its actions. Moreover, A’s being the case need not
imply that – for all agents and groups J – J takes care (or brings it about) that
A is compatible with J ’s actions.

As indicated in Section 7.1.1.1, group actions are joint actions in ML. A
formula ◻JA is true only if all members of J bring about A together. Where
J ⊆∅ K:

◻JA ⊬ML ◻KA (7.5)

◇JA ⊬ML ◇KA (7.6)

◻KA ⊬ML ◻JA (7.7)

◇KA ⊬ML ◇JA (7.8)

Thus, ML’s agency operators do not allow for the inclusion of ‘free riders’ in
their actions: for each action ◻JA, each member of the group J is essential to
J ’s bringing about A.4 In the ML-semantics, individual agents and groups of
agents each have their own (possibly disjoint) accessibility relations. From an
individual’s acting so-and-so, we do not gain any information about the group
actions this individual takes part in.

The only constraints present on the actions of individuals and groups in ML
is that they need to be compatible with the actions of other agents and groups,
and with the facts. For all J,K:

A ⊢ML ◇JA (7.9)

A ⊢ML ¬ ◻J ¬A (7.10)

◻JA ⊢ML ◇KA (7.11)

◻JA ⊢ML ¬ ◻K ¬A (7.12)

Following [93], we define an agent or group’s refraining from A as ◻J¬ ◻J A.
Refrainment is stronger than simple non-action:

◻J¬ ◻J A ⊢ML ¬ ◻J A (7.13)

(7.13) follows immediately by (AT◻J). Its converse, however, does not hold in
ML:

¬ ◻J A ⊬ML ◻J¬ ◻J A (7.14)

This is as it should be: in not bringing about a state of affairs, we need not
‘actively’ do so. Von Wright notes, for instance, that this is especially true in
situations in which acting so-and-so is beyond our capacity. For example, while
it may be true that an agent does not alter the course of a tornado, it seems
incorrect to say that she refrains from doing so [192].

The ◻J -operator is not a ‘deliberative’ action operator in the sense of [96],
since for instance the following not so intuitive formulas are ML-theorems:

⊢ML ◻J(A ∨ ¬A) (7.15)

4The concept of free riders is borrowed from [33].
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⊢ML ◻J(◻JA ∨ ¬ ◻J A) (7.16)

If we were to add to ML a normal modal operator “◻” for representing (physical)
necessity and call the resulting logic ML′, then, in line with the literature on
deliberative agency, a deliberative agency-operator △J can be defined in ML′ by
△JA =df (◻JA ∧ ¬ ◻A). The analogues to (7.15) and (7.16) are invalid for this
new operator:

⊬ML′ △J(A ∨ ¬A) (7.17)

⊬ML′ △J(△JA ∨ ¬△J A) (7.18)

For convenience, we will in the remainder continue to use the ◻J -operators instead
of the more involving △J -operators.

7.2 Adding deontic modalities: the logic MDL

7.2.1 Definition

The language WMDL of MDL is obtained by adding the deontic operators O
and P to the language of ML:

WMDL ∶= ⟨WML⟩ ∣ ¬⟨WMDL⟩ ∣ ⟨WMDL⟩ ∨ ⟨WMDL⟩ ∣ ⟨WMDL⟩ ∧ ⟨WMDL⟩ ∣
◻J⟨WMDL⟩ ∣◇J⟨WMDL⟩ ∣ O⟨WMDL⟩ ∣ P⟨WMDL⟩

As for ML, we do not define the P-operator as the dual of the O-operator,
but add it separately to the language of MDL.

Where A ∈WMDL, a formula OA is read as “it is obligatory that A”. PA is
read as “it is permitted that A”.

Unless stated differently, we presuppose throughout this section that A,B ∈
WMDL, Γ ⊆WMDL, and J,K ⊆∅ I.

MDL is axiomatized by adding to ML the axiom schemas (K), (D), (P), and
the rule (NEC). In other words, MDL is obtained by adding to ML all axioms
and rules of SDL from Section 2.2.1.

A semantical characterization of MDL is obtained just as easily. An MDL-
model is a tuple ⟨W, ⟨RJ⟩J⊆∅I ,RO, v,w0⟩, where W , ⟨RJ⟩J⊆∅I , v and w0 are as
before, and where RO ⊆W ×W is a serial accessibility relation. Truth at a world
w is defined by adding to clauses (Ca)-(C◇J) from Section 7.1.1.3 the clauses
(CO) and (CP):

(CO) M,w ⊧ OA iff for all w′ such that ROww
′, M,w′ ⊧ A

(CP) M,w ⊧ PA iff for some w′ such that ROww
′, M,w′ ⊧ A

As before, an MDL-model M verifies A (M ⊧MDL A) iff M,w0 ⊧ A.

7.2.2 Discussion

As the O-operator is a normal modal operator, we can aggregate over obligations:

OA ∧OB ⊢MDL O(A ∧B) (7.19)

O ◻J A ∧O ◻K B ⊢MDL O(◻JA ∧ ◻KB) (7.20)

O ◻J A ∧O ◻J B ⊢MDL O ◻J (A ∧B) (7.21)
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The deontic analogues of (7.5)-(7.8) remain invalid in MDL:

O ◻J A ⊬ML O ◻K A (7.22)

O◇J A ⊬ML O◇K A (7.23)

O ◻K A ⊬ML O ◻J A (7.24)

O◇K A ⊬ML O◇J A (7.25)

And similarly for permissions. Thus, obligations and permissions are not closed
under weakening or strengthening via the addition or subtraction of agents to the
group. Collective obligations of the kind interpreted by MDL are called strict
collective obligations by Dignum & Royakkers [49]. A strict collective obligation
to bring about A is satisfied only if all agents in the collective bring about A
together.

Next to strict collective obligations, Dignum & Royakkers also define weak
collective obligations. A weak collective obligation to bring about A is satisfied
as soon as any subset of the collective brings about A. Given the language
WMDL, we can define an operator Ow for expressing weak collective obligations
as follows:

Ow ◻J A =df O(⋁K⊆∅J ◻KA)

The weak collective obligation operator Ow captures the intended meaning
that if it is obligatory for a group of agents to bring about a certain state of
affairs, then this state of affairs ought to be brought about by some subset of the
group.

Where J ⊂∅ K, the following weakening and strengthening properties hold
for the Ow-operator in MDL:

Ow ◻J A ⊢MDL Ow ◻K A (7.26)

Ow ◻K A /⊢MDL Ow ◻J A (7.27)

Another form of interaction between agents occurs when actions get nested or
iterated. In line with the (literal) reading of ◻JA and OA, we read a formula
◻JO◻K A as “J brings it about that it is obligatory that K brings it about that
A”. Alternatively, we can interpret this formula as “J issues the obligation for
K to bring about A”.

O ◻J O ◻K A ⊬MDL O ◻J A (7.28)

(7.28) expresses that if it is obligatory for J to issue the obligation for K to bring
about A, then it need not be obligatory for J to realize A. This is as it should be,
since J might realize his/her/their duty and issue the obligation to K, without
K realizing his/her/their duty to actually bring about A. Hence it is not up to
J to bring about A. Thus, we cannot derive O ◻J A from O ◻J O ◻K A.

So far, the treatment of actions, obligations, and action-obligation compounds
by MDL seems fine. Things change, however, when we turn to more ‘messy’
settings in which the requirements on agents can conflict.
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7.3 Dealing with normative conflicts

7.3.1 MDL and normative conflicts

In Example 9 from Section 1.4.4, Creon declares the burial of Antigone’s brother
Polyneices illegal on the grounds that he was a traitor to the city, and that his
burial would mock the loyalists who defended the city. At the same time how-
ever, Antigone faces a religious and familial obligation to bury her brother. The
conflicting obligations of Antigone and Creon to bury and not bury Polyneices
can be formalized as O ◻a B and O ◻c ¬B respectively (where ‘a’ abbreviates
‘Antigone’, ‘c’ abbreviates Creon, and ‘B’ abbreviates the statement “Polyneices
is buried”). Conflicts between obligations for different agents or groups to bring
about some state of affairs are called interpersonal conflicts in [121, 164].

Interpersonal obligation-obligation conflicts or OO-conflicts of the kind dis-
played above cannot be consistently formalized in MDL, due to the validity of
(7.29). Where J ≠K:

O ◻J A ∧O ◻K ¬A ⊢MDL B (7.29)

Similarly for interpersonal obligation-permission conflicts or OP-conflicts:

O ◻J A ∧ P ◻K ¬A ⊢MDL B (7.30)

As has been argued extensively by moral philosophers and deontic logicians, single
agents as well as groups can face (intra-personal) OO- or OP-conflicts (see e.g.
[58, 70, 109, 203]). An adult muslim living in Western Europe might for instance
be permitted to drink alcohol (by law) and forbidden to drink alcohol (by his
or her religion) (cfr. Example 2). However, such situations too cause explosion
when formalized in MDL, due to the validity of:

O ◻J A ∧O ◻J ¬A ⊢MDL B (7.31)

O ◻J A ∧ P ◻J ¬A ⊢MDL B (7.32)

The same story applies to the slightly weaker inferences (7.33) and (7.34), and
to ‘nested’ OO- or OP-conflicts:

O ◻J A ∧O¬ ◻J A ⊢MDL B (7.33)

O ◻J A ∧ P¬ ◻J A ⊢MDL B (7.34)

O ◻J O ◻K A ∧O ◻J O ◻K ¬A ⊢MDL B (7.35)

O ◻J O ◻K A ∧O ◻J P ◻K ¬A ⊢MDL B (7.36)

In general, the following explosion principles are MDL-valid:

OA ∧O¬A ⊢MDL B (7.37)

OA ∧ P¬A ⊢MDL B (7.38)

If ⊢MDL ¬(A1 ∧ . . . ∧An), then O ◻J1 A1 ∧ . . . ∧O ◻Jn An ⊢MDL B (7.39)

If ⊢MDL ¬(A1 ∧ . . . ∧An), then O ◻J1 A1 ∧ . . . ∧ P ◻Jn An ⊢MDL B (7.40)

Unfortunately, real life is abundant with (inter- and intra-personal) OO- and
OP-conflicts between (groups of) agents [107]. Hence we should be able to ac-
commodate such conflicts within our logic. In Section 7.3.2, we weaken MDL to
a logic that invalidates the explosion principles (7.37)-(7.40).
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7.3.2 Enters paraconsistency: the logic PMDL

The solution adopted here for the problem of accommodating normative conflicts,
is again to weaken the negation connective of MDL to a paraconsistent negation
connective (cfr. Chapter 6). Below we introduce a logic that weakens ¬ to a
paraconsistent negation connective ∼, namely the logic PMDL. PMDL is built
on top of the propositional fragment of the paraconsistent logic LP.

The set WPMDL of wffs of PMDL is defined by replacing the connective ¬
of WMDL with the connective ∼. Where:
WML

∼ ∶= ⟨Wa⟩ ∣ ∼⟨WML
∼ ⟩ ∣ ⟨WML

∼ ⟩∨⟨WML
∼ ⟩ ∣ ⟨WML

∼ ⟩∧⟨WML
∼ ⟩ ∣ ◻J⟨WML

∼ ⟩ ∣
◇J⟨WML

∼ ⟩
The set WPMDL is defined by:

WPMDL ∶= ⟨WML
∼ ⟩ ∣ ∼⟨WPMDL⟩ ∣ ⟨WPMDL⟩ ∨ ⟨WPMDL⟩ ∣ ⟨WPMDL⟩ ∧

⟨WPMDL⟩ ∣ ◻J⟨WPMDL⟩ ∣ ◇J⟨WPMDL⟩ ∣ O⟨WPMDL⟩ ∣
P⟨WPMDL⟩

For reasons of transparency, we first characterize PMDL semantically. The
PMDL-semantics differs from that of MDL in that (i) we broaden the domain
of the assignment function v so that it includes the set of all literals W∼

l , i.e. we
define v ∶W∼

l → ℘(W ), (ii) we replace clause (C¬) by (C∼) and add de Morgan’s
laws to the semantics (clauses (C∼∼)-(C-∼∨)), and (iii) we add clauses (C∼◻J),
(C∼◇J), (C∼O), and (C∼P) which give us the usual interrelations between dual
operators. Thus, we keep clauses (Ca), (C∧), (C∨), (C◻J), (C◇J), (CO), and
(CP) and add the following:

(C∼) Where A ∈Wa, M,w ⊧ ∼A iff M,w /⊧ A or w ∈ v(∼A)
(C∼∼) M,w ⊧ ∼∼A iff M,w ⊧ A
(C∼∧) M,w ⊧ ∼(A ∧B) iff M,w ⊧ ∼A ∨ ∼B
(C∼∨) M,w ⊧ ∼(A ∨B) iff M,w ⊧ ∼A ∧ ∼B

(C∼◻J) M,w ⊧ ∼ ◻J A iff M,w ⊧◇J∼A
(C∼◇J) M,w ⊧ ∼◇J A iff M,w ⊧ ◻J∼A

(C∼O) M,w ⊧ ∼OA iff M,w ⊧ P∼A
(C∼P) M,w ⊧ ∼PA iff M,w ⊧ O∼A

As before, a PMDL-model M verifies A (M ⊧PMDL A) iff M,w0 ⊧ A.
The addition of clauses (C∼◻J), (C∼◇J), (C∼O), and (C∼P) is necessary in

order to guarantee the interdefinability of the modal operators. If, for instance,
the P-operator were simply defined as the dual of the O-operator (i.e. PA =df
∼O∼A), then, due to the paraconsistency of “∼” we would no longer be able to
derive P∼A from ∼OA. Similarly for the ◻J - and ◇J -operators. This is why
all modalities are primitive in our language, and why extra semantic clauses are
added in order to guarantee their usual interrelations.

Syntactically, the negation connective of LP is defined by de Morgan’s laws
(including double negation) and excluded middle (EM):

A ∨ ∼A (EM)

Since LP no longer validates (ECQ), it can consistently allow for contradictions
A ∧ ∼A. A consequence of this weakening is that LP invalidates modus ponens,
due to its definition of the implication connective in terms of the disjunction and
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negation connectives. A full syntactical characterization of LP is contained in
Section G.1 of the Appendix.

Where ⊡ ∈ {O}∪{◻J ∣ J ⊆∅ I} and ⟐ ∈ {P}∪{◇J ∣ J ⊆∅ I}, the logic PMDL
is defined by adding to LP the rules (4◻J)–(T◇J) for every J ⊆∅ I, (DO), and
(AND⊡)–(INH⟐):

◻JA ⊢ ◻J ◻J A (4◻J)

◇J ◇J A ⊢ ◇JA (4◇J)

◻JA ⊢ A (T◻J)

A ⊢ ◇JA (T◇J)

OA ⊢ PA (DO)

⊡A,⊡B ⊢ ⊡(A ∧B) (AND⊡)

⊡A,⟐B ⊢ ⟐(A ∧B) (AND′⊡)

⟐(A ∨B) ⊢ ⟐A ∨⟐B (OR⟐)

⊡(A ∨B) ⊢ ⊡A ∨⟐B (OR⊡)

∼ ⊡A ⊢ ⟐∼A (R∼⊡)

⟐∼A ⊢ ∼ ⊡A (R⟐∼)

⊡∼A ⊢ ∼⟐A (R⊡∼)

∼⟐A ⊢ ⊡∼A (R∼⟐)

If A ⊢ B, then ⊡A ⊢ ⊡B (INH⊡)

If A ⊢ B, then ⟐A ⊢⟐B (INH⟐)

In the case of (INH⊡) and (INH⟐) we also allow for the case that A is the
empty string, in which case we stipulate that also ⊡A resp. ⟐A is the empty
string.

Note that all of the rules of PMDL are MDL-valid (after replacing occur-
rences of ∼ with ¬). As we will illustrate below, PMDL is strictly weaker than
MDL. The reason why the properties of PMDL are introduced as rules –
and not as axiom schemas – is that the implication connective of PMDL is not
detachable: modus ponens is invalid in PMDL due to its failure in LP. For
instance, if instead of (T◻J) only its weaker variant ◻JA ⊃ A were to hold, then
A would not be PMDL-derivable from ◻JA and ◻JA ⊃ A.

Theorem 33. Γ ⊢PMDL A iff Γ ⊧PMDL A.

A proof of Theorem 33 is contained in Section G.2 of the Appendix.
In accordance with the goal set out for this logic, PMDL tolerates all types

of normative conflicts mentioned in Section 7.3.1; in other words, PMDL inval-
idates the explosion principles (7.37)-(7.40):

OA ∧O∼A ⊬PMDL B (7.41)

OA ∧ P∼A ⊬PMDL B (7.42)

If ⊢MDL ∼(A1 ∧ . . . ∧An), then O ◻J1 A1 ∧ . . . ∧O ◻Jn An ⊬PMDL B (7.43)

If ⊢MDL ∼(A1 ∧ . . . ∧An), then O ◻J1 A1 ∧ . . . ∧ P ◻Jn An ⊬PMDL B (7.44)

7.3.3 A price to pay?

Although PMDL provides a consistent treatment of normative conflicts, this
treatment comes at a high price. Not only does PMDL invalidate inferences
(7.37)-(7.40) (as was desired); alas it also invalidates many other – less unwanted
– MDL-valid inferences:

O ◻J A,O ◻J (∼A ∨B) ⊬PMDL O ◻J B (7.45)
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P ◻J A ⊬PMDL ∼O∼ ◻J A (7.46)

O ◻J A ⊬PMDL ∼P∼ ◻J A (7.47)

O∼A,O(A ∨B) ⊬PMDL OB (7.48)

PA ⊬PMDL ∼O∼A (7.49)

OA ⊬PMDL ∼P∼A (7.50)

◻JA,◻J(∼A ∨B) ⊬PMDL ◻JB (7.51)

◇JA ⊬PMDL ∼ ◻J ∼A (7.52)

◻JA ⊬PMDL ∼◇J ∼A (7.53)

In general, the disjunctive syllogism and modus ponens rules fail in PMDL:

A,∼A ∨B ⊬PMDL B (7.54)

A,A ⊃ B ⊬PMDL B (7.55)

This is a very high price to pay for the conflict-tolerance of PMDL. PMDL is
way too poor to account for our everyday normative and non-normative, agentive
and non-agentive reasoning.

Thus PMDL suffers from a trade-off: its paraconsistent negation connective
allows for the accommodation of normative conflicts, but it drastically weak-
ens the logic. In Section 7.4 we propose to overcome this trade-off by non-
monotonically strengthening PMDL within the standard format for adaptive
logics. The resulting adaptive logics PMDLr and PMDLm interpret a given
premise set ‘as consistently as possible’. On the one hand, these logics allow us
to defeasibly apply all MDL-valid inference steps on the condition that the for-
mulas to which we apply them behave consistently. On the other hand, PMDLr

and PMDLm remain fully conflict-tolerant.

7.4 Two inconsistency-adaptive multi-agent deontic logics

7.4.1 Intuition and definition

Let us take a look at the reasons why some intuitive applications of certain
inference rules fail in PMDL. First, reconsider (7.45)-(7.47). Although these
inferences are PMDL-invalid, the following hold in PMDL:

O ◻J (∼A ∨B),O ◻J A ⊢PMDL O ◻J B ∨ P◇J (A ∧ ∼A) (7.56)

P ◻J A ⊢PMDL ∼O∼ ◻J A ∨ P◇J (A ∧ ∼A) (7.57)

O ◻J A ⊢PMDL ∼P∼ ◻J A ∨ P◇J (A ∧ ∼A) (7.58)

Analogously, while (7.48)-(7.53) are PMDL-invalid, the following hold:

O∼A,O(A ∨B) ⊢PMDL OB ∨ P(A ∧ ∼A) (7.59)

PA ⊢PMDL ∼O∼A ∨ P(A ∧ ∼A) (7.60)

OA ⊢PMDL ∼P∼A ∨ P(A ∧ ∼A) (7.61)

◻JA,◻J(∼A ∨B) ⊢PMDL ◻JB ∨◇J(A ∧ ∼A) (7.62)
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◇JA ⊢PMDL ∼ ◻J ∼A ∨◇J(A ∧ ∼A) (7.63)

◻JA ⊢PMDL ∼◇J ∼A ∨◇J(A ∧ ∼A) (7.64)

Moreover, PMDL allows for the following ‘weak’ variants of modus ponens and
disjunctive syllogism:

A,∼A ∨B ⊢PMDL B ∨ (A ∧ ∼A) (7.65)

A,A ⊃ B ⊢PMDL B ∨ (A ∧ ∼A) (7.66)

Whereas (7.45)-(7.55) all fail for PMDL, their weaker versions (7.56)-(7.66) are
PMDL-valid. In all of these ‘weakened’ cases, the discussed inferences hold
in PMDL in disjunction with a formula that expresses some counterintuitive
consequence. For (7.56)-(7.58), this is the formula P◇J (A∧∼A), expressing that
it is permitted that the inconsistency A∧∼A is compatible with J ’s actions. For
(7.59)-(7.61), it is the formula P(A∧∼A), expressing that the inconsistency A∧∼A
is permitted. For (7.62)-(7.64), the counterintuitive alternative is the formula
◇J(A ∧ ∼A), expressing that A ∧ ∼A is compatible with J ’s actions. For (7.65)
and (7.66), it is the plain contradiction A ∧ ∼A. What all these counterintuitive
disjuncts have in common, is that, semantically, they express that a contradiction
is verified at some accessible world in every PMDL-model of the premises.

By now, the reader is sufficiently familiar with the adaptive logics framework
to see that inferences (7.45)-(7.55) can be defeasibly applied by an adaptive logic.
Such a logic should (i) use PMDL as its LLL, and (ii) ensure that each right-
hand disjunct of the formulas derived in inferences (7.56)-(7.66) gives rise to an
abnormality. This is taken care of by the logic PMDLx, which is defined as
follows (where i ∈ {1, . . . , n}):

(1) Lower limit logic: PMDL.
(2) Set of abnormalities: Ω = {⟐1 . . . ⟐n (A ∧ ∼A) ∣ A ∈ Wa,⟐i ∈

{P} ∪ {◇J ∣ J ⊆∅ I}}.
(3) Adaptive strategy: x ∈ {r,m}.

Intuitively, Ω is the set each member of which verifies an inconsistency in
some accessible world in the PMDL-semantics.

Since our aim is to interpret a given set of premises as consistently as possible
the set Ω is defined in such a way that each normative conflict gives rise to a
(disjunction of) abnormalities in PMDL. This is illustrated in the following list.
Let A ∈Wa:

O ◻J A ∧O ◻K ∼A ⊢PMDL P(A ∧ ∼A) (7.67)

O ◻J A ∧ P ◻K ∼A ⊢PMDL P(A ∧ ∼A) (7.68)

O ◻J A ∧O ◻J ∼A ⊢PMDL P◇J (A ∧ ∼A) (7.69)

O ◻J A ∧ P ◻J ∼A ⊢PMDL P◇J (A ∧ ∼A) (7.70)

O ◻J A ∧O∼ ◻J A ⊢PMDL P◇J (A ∧ ∼A) (7.71)

O ◻J A ∧ P∼ ◻J A ⊢PMDL P◇J (A ∧ ∼A) (7.72)

OA ∧O∼A ⊢PMDL P(A ∧ ∼A) (7.73)

OA ∧ P∼A ⊢PMDL P(A ∧ ∼A) (7.74)
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Where A /∈ Wa, it is easy to see that due to the validity of de Morgan’s laws
the inferences in this table can be generalized to conflicts between more complex
formulas. These will typically give rise to disjunctions of abnormalities. Let for
instance A = A1 ∨A2. Then, for example:

O ◻J A,O ◻K ∼A ⊢PMDL P(A1 ∧ ∼A1) ∨ P(A2 ∧ ∼A2) (7.75)

If A1,A2 ∈ Wa, then P(A1 ∧ ∼A1),P(A2 ∧ ∼A2) ∈ Ω. Otherwise, P(A1 ∧ ∼A1) ∨
P(A2∧∼A2) can be further analyzed into a (longer) disjunction of abnormalities.

7.4.2 Illustrations

A first example illustrates that the disjunctive syllogism rule is applicable in
PMDLx inside the scope of its modal operators.

Example 23. Let Γ1 = {O◻J ∼p,O◻J (p∨q)}. The following PMDLx-proof from
Γ1 illustrates that Γ1 ⊢PMDLx O ◻J q:

1 O ◻J ∼p PREM ∅
2 O ◻J (p ∨ q) PREM ∅
3 O ◻J q 1,2;RC {P◇J (p ∧ ∼p)}

The application of RC at line 3 follows in view of (7.56) above. The latter in
turn follows from the LP-valid inference ∼p, p ∨ q ⊢ q ∨ (p ∧ ∼p) by applications
of (INH◻J), (INHO), (OR◇J) and (ORP).

Example 24. Let Γ2 = {O◻J ∼p,O◻J (p∨q),P◻J p}. The following PMDLx-proof
from Γ2 illustrates that Γ2 ⊬PMDLx O ◻J q:

1 O ◻J ∼p PREM ∅
2 O ◻J (p ∨ q) PREM ∅
3 P ◻J p PREM ∅
4 O ◻J q 1,2;RC {P◇J (p ∧ ∼p)}✓5

5 P◇J (p ∧ ∼p) 1,3;RU ∅

Example 24 highlights the non-monotonicity of PMDLx. By adding a new
premise to the set Γ1 from Example 23, the formula O◻J q is no longer PMDLx-
derivable from the new premise set.

Example 25. Let Γ3 = {O(∼◻K p ⊃ ◻Jp),O◻K ∼◻K p}. The following PMDLx-
proof from Γ3 illustrates that Γ3 ⊢PMDLx O ◻J p:

1 O(∼ ◻K p ⊃ ◻Jp) PREM ∅
2 O ◻K ∼ ◻K p PREM ∅
3 O∼ ◻K p 2; RU ∅
4 O ◻J p 1,3; RC {P◇K (p ∧ ∼p)}

Since ◻K∼ ◻K p ⊢PMDL ∼ ◻K p (by (T◻K)), it follows by (INHO) that O ◻K

∼ ◻K p ⊢PMDL O∼ ◻K p. This justifies the application of RU at line 3. Modus
ponens fails in PMDL, but by the weaker inference ∼◻K p ⊃ ◻Jp,∼◻K p ⊢PMDL

◻Jp∨◇K(p∧ ∼p) it follows by (INHO) and (ORP) that O(∼◻K p ⊃ ◻Jp),O∼◻K

p ⊢PMDL O◻J p∨P◇K (p∧∼p). This motivates the application of RC at line 4.



7.4. THE LOGIC PMDLX 129

Example 26. Let Γ4 = {O ◻J O ◻K p,O ◻J O ◻K (∼p ∨ q),O ◻J r,P ◻K ∼r}. The
following PMDLx-proof from Γ4 illustrates that Γ4 ⊢PMDLx O ◻J O ◻K q:

1 O ◻J O ◻K p PREM ∅
2 O ◻J O ◻K (∼p ∨ q) PREM ∅
3 O ◻J r PREM ∅
4 P ◻K ∼r PREM ∅
5 P(r ∧ ∼r) 3,4; RU ∅
6 O ◻J O ◻K q 1,2; RC {P◇J P◇K (p ∧ ∼p)}

Example 26 illustrates that even for non-normal premise sets PMDLx often
delivers a stronger consequence set than its LLL. Although an abnormality is
PMDL-derivable from the premises, the application of RC at line 6 remains
unmarked, and Γ4 ⊢PMDLx O ◻J O ◻K q.

Examples 27 and 28 below show that PMDLm is slightly stronger than
PMDLr. Γ5 ⊢PMDLm O ◻J r, whereas Γ5 ⊬PMDLr O ◻J r.

Example 27. Let Γ5 = {O ◻J (p ∨ r),O ◻J (q ∨ r),O ◻J (∼p ∧ ∼q),P ◻J (p ∨ q)}.
The following PMDLr-proof from Γ5 illustrates that Γ5 ⊬PMDLr O ◻J r:

1 O ◻J (p ∨ r) PREM ∅
2 O ◻J (q ∨ r) PREM ∅
3 O ◻J (∼p ∧ ∼q) PREM ∅
4 P ◻J (p ∨ q) PREM ∅
5 O ◻J r 1,3;RC {P◇J (p ∧ ∼p)}✓6

6 P◇J (p ∧ ∼p) ∨ P◇J (q ∧ ∼q) 3,4;RU ∅
At stage 6 of the PMDLr-proof from Γ5, U6(Γ5) = {P◇J (p ∧ ∼p),P◇J (q ∧

∼q)}. Hence line 5 is marked in view of Definition 3. Since no other minimal Dab-
formulas are PMDL-derivable from Γ5, the proof cannot be extended in such a
way that line 5 is unmarked. Hence O ◻J r is not a final PMDLr-consequence
of Γ5.

Example 28. The following PMDLm-proof from Γ5 illustrates that Γ5 ⊢PMDLm

O ◻J r:

1 O ◻J (p ∨ r) PREM ∅
2 O ◻J (q ∨ r) PREM ∅
3 O ◻J (∼p ∧ ∼q) PREM ∅
4 P ◻J (p ∨ q) PREM ∅
5 O ◻J r 1,3;RC {P◇J (p ∧ ∼p)}
6 P◇J (p ∧ ∼p) ∨ P◇J (q ∧ ∼q) 3,4;RU ∅
7 O ◻J r 2,3;RC {P◇J (q ∧ ∼q)}

At stage 7 of the PMDLm-proof from Γ5, Φ7(Γ5) = {{P◇J (p ∧ ∼p)},{P◇J

(q ∧ ∼q)}}. By Definition 11, lines 5 and 7 remain unmarked at this stage. Since
the formula derived at line 7 is the only minimal Dab-consequence of Γ5, O ◻J r
is finally PMDLm-derivable from Γ5.

7.4.3 Meta-theoretical properties

Due to Theorem 8 and its definition within the standard format for ALs, PMDLx

is sound and complete with respect to its semantics:
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Corollary 10. Γ ⊢PMDLx A iff Γ ⊧PMDLx A.

The upper limit logic UPMDL of PMDLx is obtained by adding to PMDL
the rule (UPMDL), which trivializes all abnormalities in Ω. Where A ∈Wa,B ∈
WPMDL and, for all i ∈ {1, . . . , n}, ⟐i ∈ {P} ∪ {◇J ∣ J ⊆∅ I}:

⟐1 . . .⟐n (A ∧ ∼A) ⊢ B (UPMDL)

Due to the definition of PMDLx within the standard format for adaptive logics
it follows by Theorems 7 and 18 that:

Corollary 11. CnPMDL(Γ) ⊆ CnPMDLr(Γ) ⊆ CnPMDLm(Γ) ⊆ CnUPMDL(Γ).

If Γ is normal, i.e. if Γ has no Dab-consequences, then, by Theorem 19:

Corollary 12. If Γ is normal, then CnPMDLx(Γ) = CnUPMDL(Γ).

Like the upper limit UPD of the logic DPx from Section 6.1, UPMDL trivi-
alizes contradictions, thus promoting “∼” to a fully classical negation connective.
We can even show that UPMDL is just MDL in disguise. Where Γ ⊆WPMDL,
define Γ¬ by replacing every A ∈ Γ by π(A), where π(A) is the result of replacing
every occurrence of “∼” in A by “¬”. Then:

Theorem 34. Γ ⊢UPMDL A iff Γ¬ ⊢MDL π(A).

A proof outline of Theorem 34 is contained in Section G.3 of the Appendix.

7.5 Related work

7.5.1 Paraconsistent logic

Apart from its capability to represent actions, a major difference between the
logic PMDLx presented in this chapter and the logic DPx presented in Chapter
6 is that the former is built ‘on top’ of the paraconsistent logic LP whereas the
latter is built ‘on top’ of the paraconsistent logic CLuNs�.

The main difference between LP and CLuNs� is that the former does not
feature a detachable implication whereas the latter does (since it is an extension
of CLpos). As a result, modus ponens holds unconditionally in DPx, whereas it
holds only conditionally in PMDLx.

The main advantage of having a non-detachable implication is that it provides
a better isolation of normative conflicts. For instance, from OA,O∼A, and O(A ⊃
B) we cannot derive OB by means of PMDLx, but we can derive OB by means
of DPx. The main disadvantages are (i) that we need to use the more involving
conditional rule for applying modus ponens in unproblematic cases, and (ii) that
we lose expressive power by not having an implication connective not definable
in terms of the other connectives in the language.

We remain indifferent as to which approach is best followed in which context.
It suffices to recognize that adaptive logics can be constructed on top of both
paraconsistent logics with a detachable implications and paraconsistent logics
with a non-detachable implication, as we have illustrated in this chapter and the
preceding one.
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A related matter concerns the (unconditional) validity of de Morgan’s laws
in paraconsistent logics underlying the definition of a system of deontic logic.
All of the paraconsistent logics defined in Chapters 6 and 7 validate these laws
for their paraconsistent negation connectives. However, there are paraconsistent
logics which do not feature them, e.g. the logic CLuN defined in Appendix C.

Here too, it is easily checked that adaptive logics can be constructed on top
of both paraconsistent logics with and without de Morgan’s laws for their re-
spective negation connectives (an example is the logic ACLuN1 from e.g. [15]).
And here too, we remain open to the possibility of fruitfully implementing logics
without de Morgan’s laws for certain normative contexts of application. A pos-
sible motivation for such logics could be that conflicts are better isolated in case
we abstain from applying de Morgan’s laws to conflicting information.

7.5.2 Multi-agent adaptive deontic logic

As mentioned in the introduction, this paper builds on earlier work on agentive
adaptive deontic logics. More specifically, it continues the task set out in [30] of
constructing a multi-agent adaptive deontic logic capable of tolerating normative
conflicts. The system PMDLx differs from the semantics defined in [30] in
various ways.

First, PMDLx is built ‘on top’ of the paraconsistent logic LP, whereas the
logic MDPm from [30] is built ‘on top’ of the paraconsistent logic CLuNs�.

Second, the language of PMDLx has no restrictions whatsoever on nested
modal operators. This flexibility makes it easier to extend the language in var-
ious ways by adding extra modalities for representing e.g. knowledge, beliefs,
commitments of agents and groups.

Third, as opposed to MDPm, PMDLx does not allow for distribution over
disjunctive actions:

◻J(A ∨B) ⊬PMDLx ◻JA ∨ ◻JB (7.76)

Suppose, for instance, that an agent flips a coin. In doing so she guarantees that
either heads or teals will be the outcome, but she cannot determine the exact
outcome of the flip. Hence she does not bring it about that heads is the outcome
or bring it about that tails is the outcome.

Fourth, PMDLx is equipped with an adaptive proof theory, whereas MDPm

was only characterized semantically. Moreover, unlike MDPm, PMDLx has a
regular Kripke-semantics. Altogether, this makes PMDLx the first Kripke-style
agentive adaptive (deontic) logic.

7.5.3 Logics of action and stit-logic

The logics presented in this paper are not defined within one of the two ‘main’
paradigms for representing actions in (deontic) logic, i.e. stit-logic [33, 34, 93, 107]
and dynamic logic [39, 132].5 Nonetheless, our ◻J operators resemble in some

5We paradigmatically consider the logic MDL as representative for our notion of agency
defended in this section. All arguments below are equally valid for the logics PMDL and
PMDLx.
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respects the Chellas stit or cstit operators used in stit logic. In our framework,
a formula ◻JA is interpreted as “J brings about A”. In stit-logic, a formula
[J stit ∶ A] is interpreted as “J sees to it that A”. On both accounts, A is a
state of affairs, and not an action nominal as is the case in e.g. dynamic logic.
Moreover, the notions of refrainment and deliberative agency as defined in Section
7.1.2 are analogous to those of stit logic.

A first major difference between the logics defined here and stit-logics is
that the stit-framework is temporal/prospective, while we work in an atemporal
setting. It is a question for future research to extend the framework given here
with the ability to reason about future (and maybe past) states.

A second difference between both approaches is that the ◻J operators defined
here are S4-modalities, while cstit operators – their analogues in stit logic – are
S5-modalities. Thus, in MDL the (5J) schema is invalid:

◇JA ⊃ ◻J ◇J A (5J)

Note that if (5J) were valid, then the ‘Brouwerian’ schema (BJ) too would hold
for our agentive operators:

A ⊃ ◻J ◇J A (BJ)

Intuitively, (BJ) requires that if A is the case, then all agents guarantee that
A is compatible with their actions. This is a very strong requirement. If A is
indeed the case, then normally we try to act on this fact as much as possible.
But there are exceptions. We might, for instance, not know that A is the case,
we might not be aware of it etc. In such cases, A need not be compatible with
our actions. Therefore we opted to leave (BJ) (and, consequently, (5J)) out of
our axiomatization.6

A third difference worth pointing out is that our systems differ from stit logics
in their treatment of collective actions and obligations. In stit logic, operators
for agency are closed under ‘weakening’ by the addition of further agents: If
J ⊂ K ⊆∅ I, then if J sees to it that A, then K sees to it that A. As illustrated
in (7.5) and (7.6), this kind of weakening is invalid in the logics defined here.
Consequently, a statement like (7.77) is ML- and MDL-consistent, while its stit
analogue would cause explosion:7

◻iA ∧ ◻jA ∧ ¬ ◻{i,j} A (7.77)

Let us further illustrate this property by generalizing it to the deontic setting.
Suppose that two agents i and j are divorced and that they work for the same
company. Then we can imagine that, when faced with a certain task A, it makes
sense for the boss k to issue the following obligations:

◻k(O(◻iA ∨ ◻jA) ∧ ¬P ◻{i,j} A) (7.78)

6A very welcome consequence of not having (5J ) is that – as opposed to refrainment for
the cstit-operator – refrainment for the ◻J -operator does not collapse into simple non-action:
◻J¬ ◻J A ⊢MDL ¬ ◻J A, but ¬ ◻J A ⊬MDL ◻J¬ ◻J A.

7A notable exception here is the sstit or ‘strictly sees to it that’ operator for joint agency
as defined in [33].
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Thus, one of i and j should bring about A, but they should not do it together
(because since the divorce they are no longer on speaking terms).

Altogether, these differences motivate our approach as a pursuit-worthy al-
ternative for existing logics of action.





Chapter 8

Concluding remarks

Forget your perfect offering
There is a crack in everything
That’s how the light gets in

Leonard Cohen

A world without conflicts is a highly idealized world. Unlike such a perfect
world, real life is messy and full of conflicts. In modeling the structure of human
reasoning, we need formalisms that can account for life’s sometimes disorderly
nature. Such formalisms should try to capture an agent’s reasoning processes not
only in the absence, but also in the presence of conflicting information.

The adaptive deontic logics presented in this thesis aim to show that we can
have our cake and eat it too. In the presence of normative conflicts, these logics
allow us to distinguish between sensible and insensible applications of inference
rules that are unrestrictedly valid in a conflict-free setting. On the one hand,
these systems are sufficiently conflict-tolerant given their intended context of
application. On the other hand, they account for all inferences that SDL would
account for as long as the premises to which the inference is applied are untainted
by some normative conflict.

In this concluding chapter, I recapitulate the main merits of the logics pre-
sented in the preceding chapters (Section 8.1), and glimpse beyond with some
suggestions for future work (Section 8.2).

8.1 Merits of this thesis

In chapters 4-7, five adaptive systems for dealing with normative conflicts in deon-
tic logic were presented and discussed. All of these meet the design requirements
proposed in Section 3.3.

First, the lower limit logics of these adaptive systems are sufficiently conflict-
tolerant given their intended context of application:

� P◇ accommodates conflicting moral requirements as characterized by Ber-
nard Williams,
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� P2 tolerates OO-conflicts arising from possibly different normative stan-
dards; alternatively, it tolerates conflicting prima facie obligations,

� DP tolerates OO-conflicts, OP-conflicts as well as contradictory prescrip-
tions, be they obligations or permissions,

� LNP tolerates OO-conflicts and OP-conflicts between norm-propositions,

� and PMDL tolerates intra-personal and inter-personal OO-conflicts, OP-
conflicts and contradictory obligations and permissions in a multi-agent
setting.

None of these logics validate any of the explosion principles stated in Section
3.3.1 for any of the types of conflicts which they are tolerant of.

Second, all of the systems Px
◇, P2.2x, DPx, LNPx and PMDLx are non-

monotonic and allow for the conditional application of any SDL-valid inference.
For instance, none of these logics unconditionally allows for the application of the
deontic disjunctive syllogism (DDS) schema in an adaptive proof. However, each
of them allows for its conditional application, thus validating all unproblematic
instances of this inference rule.

Third, the reasoning processes underlying the application of the adaptive
logics presented here are fully explicable in terms of the logics themselves. No
tailoring the premises is required for applying the conditional rule in an adaptive
proof. For instance, no intervention from outside is required for aggregating two
or more obligations in the logics Px

◇ and P2.2x. The localization of conflicts and
the check for the applicability of certain inferences is fully taken care of by the
logics.

As mentioned in Section 1.6.2, the philosophical relevance of this thesis lies
in its raising and addressing some new questions concerning the structure of
normative conflicts. I brought up the following:

(i) What types of normative conflicts are particularly important under which
circumstances? Are there contexts in which certain types of normative
conflicts can be ignored?

(ii) To what extent should normative conflicts be isolated in deontic logics?
Which rules of inference are applicable to conflicting norms?

(iii) Given the possibility of conflicting norms, which inferences should hold
unrestrictedly in a conflict-tolerant deontic logic? Which inferences should
be restricted? Which inferences should not be valid under any condition?

The very raising of these questions has philosophical importance. Although I
did not aim to answer each and every one of them, I have at some places in this
thesis provided partial and tentative answers.

In reply to (i) it is clear from Section 3.4 that in different contexts we want to
focus our attention on different types of conflicts. For instance, when dealing with
moral norms, philosophers have traditionally focused on conflicting obligations.
As discussed in Chapter 5, these can be formalized directly as OO-conflicts or
indirectly as formulas of the form OA,OB,¬ ◇ (A ∧ B). Since permissions do
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not bear any sense of ‘moral urgency’, it seems safe to ignore these in the formal
study of e.g. moral dilemmas.

The situation is different in a legal context, where OP-conflicts should also be
accounted for (cfr. Section 6.2), and in the context of conflicting commands or
imperatives, where, apart from OO-conflicts, we may also want to accommodate
OP-conflicts as well as contradictory obligations and permissions (cfr. Section
6.1).

The questions in (ii) remain largely unanswered. In Section 7.5.1 I addressed
the differences between the logics CLuNs� and LP and their consequences for
the inconsistency-adaptive logics DPx and PMDLx respectively. For instance,
OA,O∼A,O(A ⊃ B) ⊢ OB is valid in DPx, but not in PMDLx.

Similarly, we may wonder whether an inference like OA,O¬A ⊢ O(A ∨ B)
should or should not be invalidated by a logic that accommodates OO-conflicts
(remember from Section 2.4.2 that even the inference OA ⊢ O(A ∨ B) is con-
tested). All adaptive logics presented here validate this inference, but there are
conflict-tolerant adaptive deontic logics which invalidate the inference, e.g. the
ADPM-systems from [175].

My answer to the questions posed in (iii) is again relative to the normative
context at hand. In the context of moral obligations, Williams argued against
the aggregation principle (AND). As discussed in Section 3.2.2.1, this answer is a
bit too harsh. (AND) need not be rejected. It suffices to restrict its application
to those instances in which none of the obligations to be conjoined is involved in
a conflict.

In the context of commands or imperatives, it is less clear why (AND) should
be restricted for obligations arising from one and the same source, even if the
obligations are conflicting. Here, it is in my opinion justified to defend the un-
restricted applicability of (AND), at least in the a-temporal setting assumed in
this thesis. Finally, in answer to the last question it is quite clear that, given
its intended context of application, a deontic logic should be sufficiently conflict-
tolerant, i.e. it should invalidate all explosion principles relating to those types
of conflicts that it aims to accommodate.

8.2 Further work

As is clear from the (partial) answers to the questions raised in (i)-(iii) in the
previous section, a lot of work remains to be done. Here, I add two more roads
for further research that seem particularly promising.

� In the introduction to this thesis I mentioned that my focus is very narrow.
If we want to do justice to the complex structure of the world, we will
need to extend the results from the previous section to languages with
more expressive power. A first attempt in this direction was undertaken in
Chapter 7, where we added indices for representing (groups of) agents and
modalities for representing the actions of agents.

As an illustration of the type of further strengthenings that can be real-
ized within the adaptive logics framework, consider the extension of the
logic P2.2x to a logic for prioritized normative reasoning from [182], where
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obligations and permissions are equipped with an index expressing their
priority, and norms with higher priority overrule norms of lower priorities.

Another extension that seems particularly interesting in relation to the
topic of normative conflicts, is to use dyadic operators for representing
conditional obligations. In doing so, we might be able to model cases in
which conflicts are resolved by giving priority to the obligations that are
most ‘specific’ given the situation at hand. A promising approach here
might be to combine the logics defined here with the adaptive approach for
modeling the detachment of conditional obligations from [173].

� Deontic logic is not the only branch of modal logic in which the accom-
modation of conflicts bears practical and philosophical interest. As for
obligations, it is possible for our desires, beliefs and intentions to be in
conflict. Moreover, a desire may be incompatible with an agent’s intention,
an obligation may be incompatible with an agent’s belief, etc.

The modal operators of the logics P◇, P2, DP, LNP and PMDL pre-
sented here can all be adjusted by adding axiom schemas (and correspond-
ing constraints on their accessibility relations) for properties such as reflex-
ivity, transitivity etc. In this way, these operators can be reinterpreted as
representing our beliefs, desires, intentions and so on. Using the adaptive
logics framework, we can then use the resulting systems as the lower limit
of new conflict-tolerant adaptive logics. As such, insights from this thesis
can be applied for the accommodation of other types of conflicts in modal
logic.



Appendix A

A list of normative conflicts

Here is a list of examples of normative conflicts (tragic ones, real-life ones, (hy-
pothetical) toy examples etc.) in no particular order. Some of these examples
are only ‘prima facie’ conflicting, others are more severe.

1. Suppose that someone, Jones, ought to visit his daughter Abby at a certain
time and in preparation for that, notify her he is coming. But it could also
be that Jones ought also to visit his daughter Beth at that same time and
notify her he is coming. However, since Abby and Beth live on opposite
sides of the country, it is impossible for Jones to visit both daughters at
that time. Thus he faces a deontic dilemma ([69, p. 468], [95, p. 581]).

2. A friend leaves you with his gun saying he will be back for it in the evening,
and you promise to return it when he calls. He arrives in a distraught
condition, demands his gun, and announces he is going to shoot his wife
because she has been unfaithful. You ought to return the gun, since you
promised to do so – a case of obligation. And yet you ought not to do so,
since to do so would be to be indirectly responsible for a murder, and your
moral principles are such that you regard this as wrong [109, p. 148].1

3. Morty promises to meet a friend at the station by 3 pm. On his way there,
he sees a seriously injured child in an alley; and helping the child will make
Morty late. Morty ought to help children in need, but he also ought to keep
his promises. So it seems that Morty ought to help the child and be at the
station by 3 pm, even if he cannot do both [140, p. 489].2

4. A French student during WWII ought to join the Resistance and fight
against the Nazis to liberate his country, but he also ought to remain at
home to care for his mother, and he cannot do both [70, p. 455].3

1This is a variant of Plato’s classic case (Republic 331c) of a person who ought to return a
borrowed weapon (because he promised to do so), and who ought not to return it (because the
lender has become insane). The example also appears in [70, 121, 154].

2This example varies on an example of Ross that illustrates the possibility of conflicting
prima facie obligations [153, pp. 17-18].

3This example also appears in [122, 95, 109, 154, 164]. It is often referred to as ‘Sartre’s
student’ after the original formulation of the example by Sartre in [155].

139
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5. If the law requires Eleanor to report Franks marijuana use to the police,
then presumably Eleanor ought to report that, and if common decency
requires that she not report Franks marijuana use, then she ought not to.
For such a situation Eleanor seems to have a genuine conflict [70, p. 456].

6. A body of law, or the rules of a university, say, might easily demand one
thing of a person, e.g., that Daniel park his car overnight in Lot A, and
also demand the opposite, e.g., that Daniel not park overnight in Lot A
[70, p. 456].

7. Jephthah had vowed to God, permissibly according to Mosaic law as he
understood it, that if he should be granted victory over the Ammonites
he would, on his return, offer as a burnt sacrifice the first living creature
that should leave his doors to greet him. On his return after winning the
victory, his daughter was the first living creature to leave his doors to greet
him. By Mosaic law as Jephthah understood it, he was morally bound, on
one hand, not to break his vow, and on the other not to commit murder
– that is, not to kill the innocent: in other words, to kill his daughter and
not to kill her ([51, p. 13], [138, pp. 47-48]).

8. In 1842, a ship struck an iceberg and more than 30 survivors were crowded
into a lifeboat intended to hold 7. As a storm threatened, it became obvious
that the lifeboat would have to be lightened if anyone were to survive.
The captain reasoned that the right thing to do in this situation was to
force some individuals to go over the side and drown. Such an action, he
reasoned, was not unjust to those thrown overboard, for they would have
drowned anyway. If he did nothing, however, he would be responsible for
the deaths of those whom he could have saved. Some people opposed the
captain’s decision. They claimed that if nothing were done and everyone
died as a result, no one would be responsible for these deaths. On the
other hand, if the captain attempted to save some, he could do so only
by killing others and their deaths would be his responsibility; this would
be worse than doing nothing and letting all die. The captain rejected this
reasoning. Since the only possibility for rescue required great efforts of
rowing, the captain decided that the weakest would have to be sacrificed.
In this situation it would be absurd, he thought, to decide by drawing lots
who should be thrown overboard. As it turned out, after days of hard
rowing, the survivors were rescued and the captain was tried for his action
([73, pp. 7-8]; shorter version in [60]).

9. You are an inmate in a concentration camp. A sadistic guard is about to
hang your son who tried to escape and wants you to pull the chair from
underneath him. He says that if you don’t he will not only kill your son
but some other innocent inmate as well. You don’t have any doubt that he
means what he says [73, p. 8].

10. A fat man leading a group of people out of a cave on a coast is stuck in the
mouth of that cave. In a very short time high tide will be upon them, and
unless he is promptly unstuck, they will all be drowned except the fat man,
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whose head is out of the cave. But, fortunately, or unfortunately, someone
has with him a stick of dynamite. There seems no way to get the fat man
loose from the opening without using that dynamite which will inevitably
kill him; but if they do not use it everyone will drown [73, p. 8].

11. In Victor Hugo’s Les Miserables, the hero, Jean Valjean, is an ex-convict,
living illegally under an assumed name and wanted for a robbery he com-
mitted many years ago. [Actually, no – he is only wanted for breaking
parole.] Although he will be returned to the galleys – probably [in fact,
actually] for life – if he is caught, he is a good man who does not deserve to
be punished. He has established himself in a town, becoming mayor and a
public benefactor. One day, Jean learns that another man, a vagabond, has
been arrested for a minor crime and identified as Jean Valjean. Jean is first
tempted to remain quiet, reasoning to himself that since he had nothing to
do with the false identification of this hapless vagabond, he has no obliga-
tion to save him. Perhaps this man’s false identification, Jean reflects, is
“an act of Providence meant to save me.” Upon reflection, however, Jean
judges such reasoning “monstrous and hypocritical.” He now feels certain
that it is his duty to reveal his identity, regardless of the disastrous per-
sonal consequences. His resolve is disturbed, however, as he reflects on the
irreparable harm his return to the galleys will mean to so many people who
depend upon him for their livelihood – especially troubling in the case of a
helpless woman and her small child to whom he feels a special obligation.
He now reproaches himself for being too selfish, for thinking only of his
own conscience and not of others. The right thing to do, he now claims
to himself, is to remain quiet, to continue making money and using it to
help others. The vagabond, he comforts himself, is not a worthy person,
anyway. Still unconvinced and tormented by the need to decide, Jean goes
to the trial and confesses [73, pp. 8-9].

12. Roger Smith, a quite competent swimmer, is out for a leisurely stroll. Dur-
ing the course of his walk he passes by a deserted pier from which a teenage
boy who apparently cannot swim has fallen into the water. The boy is
screaming for help. Smith recognizes that there is absolutely no danger to
himself if he jumps in to save the boy; he could easily succeed if he tried.
Nevertheless, he chooses to ignore the boy’s cries. The water is cold and
he is afraid of catching a cold – he doesn’t want to get his good clothes
wet either. “Why should I inconvenience myself for this kid,” Smith says
to himself, and passes on [73, p. 9].

13. Suppose some terrorists poison the water supply of a large city. Liz is an
official who can prevent anyone from being killed, but only by torturing the
child of a terrorist in order to get the terrorist to tell her what and where
the poison is [164, p. 44].4

14. You are a psychiatrist and your patient has just confided to you that he
intends to kill a woman. You’re inclined to dismiss the threat as idle, but

4A variant of this conflict is given in [73].
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you aren’t sure. Should you report the threat to the police and the woman
or should you remain silent as the principle of confidentiality between psy-
chiatrist and patient demands [73, pp. 10-11]?5

15. Physicians and families who believe that human life should not be deliber-
ately shortened and that unpreventable pain should not be tolerated face a
conflict in deciding whether to withdraw life support from a dying patient
[123].

16. In Sophie’s Choice, a novel by William Styron, Sophie arrives with her two
children at a Nazi concentration camp. A guard asks her to choose one
child, and he tells her that the child she chooses will be killed, and the
other child will live in the children’s barracks. Sophie does not want to
choose at all, but the guard tells her that, if she refuses to choose, both
children will be killed [164, p. 54].6

17. A friend of yours has confided to you that he has committed a particular
crime and you have promised never to tell. Discovering that an innocent
man has been accused of your friend’s crime, you plead with the latter to
give himself up to the authorities. He refuses and reminds you of your
promise. What should you do [73, p. 12]?

18. In Sophocles’ Antigone, Creon declares the burial of Antigone’s brother
Polyneices illegal on the not unreasonable grounds that he was a traitor
to the city and that his burial would mock the loyalists who defended the
city, thereby causing civil disorder. At the same time, there is reason for
Creon to respect the religious and familial obligation of Antigone to bury
her brother [72, p. 4].7

19. In Shakespeare’s Julius Caesar, Brutus defends the slaying of Caesar, his
friend but ambitious leader, as follows: “not that I loved Caesar less, but
that I loved Rome more”[72, p. 4].

20. In Shaw’s Major Barbara, the main character, Barbara, has to choose be-
tween discontinuing her efforts on behalf of the bodily and spiritual salva-
tion of the poor and accepting donations that have their origin in profits
of a liquor and a munitions manufacturer [72, p. 4].

21. In ‘work and role dilemma’s’, one’s employment calls for activities which are
morally repugnant (such as deception, or participation in the production of

5A legal variant of this conflict is given in [123]: “The criminal defense attorney is said to
have an obligation to hold in confidence the disclosures made by a client and to be required
to conduct herself with candor before the court (where the latter requires that the attorney
inform the court when her client commits perjury).”

6For alternative formulations of this conflict, see e.g. [108, 123].
7This example is discussed in detail in [44, pp. 26-31], where Castañeda takes it to be a

case of conflicting normative standards (legal vs. religious obligation), and where the religious
obligation ultimately overrides the legal obligation; the example also appears in [108, 121, 164].
Both Marcus and Sinnott-Armstrong refer to this example as an ‘interpersonal’ dilemma.
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nuclear or chemical weapons). These situations may arise either contrac-
tually, e.g. one signed up for the position, or from duty, e.g. to provide for
one’s family [154, p. 661].8

22. Suppose that it is forbidden to kill one’s parents and forbidden to allow
them to die. A dilemma would arise in a situation in which unless one
kills one’s mother, she will kill one’s father. In such a situation it would
be forbidden to kill one’s mother, but also forbidden to do anything else
(since that would allow one’s father to die) [180, p. 114].

23. In a co-operative industrial association, is it just or not that talent or skill
should give a title to superior remuneration? On the negative side it is ar-
gued, that whoever does the best he can, deserves equally well, and ought
not in justice to be put in a position of inferiority for no fault of his own; that
superior abilities have already advantages more than enough, in the admi-
ration they excite, the personal influence they command, and the internal
sources of satisfaction attending them, without adding to these a superior
share of the world’s goods; and that society is bound in justice rather to
make compensation to the less favoured, for this unmerited inequality of
advantages, than to aggravate it. On the contrary side it is contended, that
society receives more from the more efficient labourer; that his services be-
ing more useful, society owes him a larger return for them; that a greater
share of the joint result is actually his work, and not to allow his claim
to it is a kind of robbery; that if he is only to receive as much as others,
he can only be justly required to produce as much, and to give a smaller
amount of time and exertion, proportioned to his superior efficiency. Who
shall decide between these appeals to conflicting principles of justice [137,
pp. 253-254]?

24. In Shakespeare’s Measure for Measure, Angelo, the deputy of the duke of
Vienna, condemns to death one of his subjects, Claudio, for the crime of
lechery. Isabella, Claudio’s sister, goes to plead for her brother’s life. She
is a devout worshipper and a nun. Angelo tells her that he will free her
brother only on the condition that she will sleep with him. As a sister
and one devoted to her family, Isabella believes that she must do what is
in her power to save her brother’s life. As a nun, however, she is morally
committed to preserving her virginity. Whatever she does, she believes
that she will be doing something wrong [72, p. 159] (reprinted version of
the original [122]).9

25. In his Two Cheers for Democracy, E.M. Forster wrote “if I had to choose
between betraying my country and betraying my friend, hope I should have

8Also relevant here is Lemmon’s statement that “Duty conflicts with principle every time
that we are called on in our jobs to do things which we find morally repugnant” [109, p. 150].

9Sinnott-Armstrong adds an extra dimension to the example by discussing it as a case of
ignorance: “The Duke has returned to Vienna, and at one point he stands right next to Isabella.
If she tells him her story, he will let her brother go. But she does not recognize the Duke, since
he is disguised. Thus, she has the opportunity and physical ability to save her brother without
breaking her vow, but she lacks the necessary factual knowledge” [164, p. 27].
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the courage to betray my country”. Marcus considers the following remark
of (the fictional) A.B. Worster: “if I had to choose between betraying my
country and betraying my friend, hope I should have the courage to betray
my friend”[121].

26. Agamemnon is told by a seer that he must sacrifice his daughter to satisfy
a goddess who is delaying at Aulis his expedition against Troy. As a com-
mander, Agamemnon ought to sacrifice his daughter in order to further
the expedition. However, as a father, Agamemnon ought not to kill his
daughter [203].10

27. According to his religious beliefs, Yilmaz is prohibited to drink alcohol.
However, according to the laws of his country, he is permitted to drink
alcohol [129].

28. SWIFT is a Belgium-based company with offices in the United States that
operates a worldwide messaging system used to transmit, inter alia, bank
transaction information. According to the U.S. Treasury, information de-
rived from the use of SWIFT data has enhanced the United States and
third countries ability to identify financiers of terrorism, to map terrorist
networks and to disrupt the activities of terrorists and their supporters.
However, in September 2006 the Belgian Data Protection Authority stated
that SWIFT processing activities for the execution of interbank payments
are in breach of Belgian data protection law. American diplomats and
politicians claim that SWIFT ought to continue passing information to the
U.S. Treasury, whereas according to Belgian law SWIFT ought not to pass
this information, since this activity is in breach of Belgian data protection
law [174].

29. Alice is throwing a party for her birthday. Since Bob and Charles are good
friends of Alice, it ought to be that Alice invite Bob and that Alice invite
Charles to her party. However, when Bob and Charles get together, they
usually get drunk, and chances are that they will annoy the other guests.
Hence Alice ought not invite both Bob and Charles to her party.

30. Having a thousand dollars in my office safe and five hundred in my pocket,
and owing Smith and Jones five hundred dollars each, I promise each that
I will repay my debt at my office tomorrow, only to find next day that I
cannot do so, because overnight my safe has been emptied by a burglar [50,
p. 302].

31. A person falls overboard from a ship in a wartime convoy; if the master
of the ship leaves his place in the convoy to pick him up, he puts the ship
and all on board at risk from submarine attack; if he does not, the person
will drown. In the film The Cruel Sea, a somewhat similar case occurs; the
commander of a corvette is faced with a situation in which if he does not
drop depth charges the enemy submarine will get away to sink more ships
and kill more people; but if he does drop them he will kill the survivors in

10This example also appears in [47, 140, 164].
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the water. In fact he drops them, and is depicted in the film as suffering
anguish of mind [83, p. 29].

32. During the Battle of Britain, Churchill was faced with the following choice.
Thanks to the British government’s access to Germany’s secret codes, he
was informed in advance of many planned German air raids on populated
areas. He could evacuate those areas, sparing many innocent lives, but do-
ing so would, with a significant degree of probability, reveal to the Germans
that their codes had been broken, seriously impairing the British war effort.
He decided not to evacuate these areas [108, p. 214].

33. Elmer had murdered his grandfather (for which crime he was convicted).
The grandfather’s will bequeathed a substantial sum to Elmer. The grand-
father’s will violated none of the explicit provision of estate law in New
York, and no statute explicitly justified withholding the inheritance from
Elmer. Nonetheless, the court ruled the bequest invalid, appealing to the
real but unstated intentions of the lawmakers [108, p. 218].11

34. A train is moving at a speed of 150 miles per hour. All of a sudden the
conductor notices a light on the panel indicating complete brake failure.
Straight ahead of him on the track are five hikers, walking with their backs
turned, apparently unaware of the train. The conductor notices that the
track is about to fork, and another hiker is on the side track. The conductor
must make a decision: He can let the train continue on its current course,
thereby killing the five hikers, or he can redirect the train onto the side
track and thereby kill one hiker but save five. Is it morally permissible for
the conductor to take the side track [84, p. 32]?12

35. A surgeon walks into the hospital as a nurse rushes forward with the fol-
lowing case. “Doctor! An ambulance just pulled in with five people in
critical condition. Two have a damaged kidney, one a crushed heart, one a
collapsed lung, and one a completely ruptured liver. We don’t have time to
search for possible organ donors, but a healthy young man just walked in to
donate blood and is sitting in the lobby. We can save all five patients if we
take the needed organs from this young man. Of course he won’t survive,
but we will save all five patients” [84, p. 32].

36. Suppose I have simultaneously arranged to have a private dinner this evening
with each of two identical and identically situated twins, both of whom
would now be equally disappointed by my cancelation; the situation can be
made arbitrarily symmetrical. The resulting prima facie ought’s – to have
dinner with one twin, and to have dinner with the other – issue from the
same source of value, and can meaningfully be compared in importance.

11Koons and Seung took this real-life example from Ronald Dworkin’s Law’s Empire. It
concerns the 1889 case Riggs v. Palmer, 115 N.Y. 506, 22 N.E. 188.

12This is an instance of a famous class of problems called trolley problems. Trolley problems,
first introduced by Philippa Foot in [53], are thought experiments that present moral dilemmas
in which the permissibility to harm one or more persons for the purpose of saving others is
questioned. For more discussion on trolley cases, see e.g. [53, 54, 101, 177, 178, 179]. See [135]
for some variants of this example.
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But in light of the symmetry, what reason could there be for preferring one
over the other [95, p. 564]?

37. I contract with party X to be present at a certain spot at a certain time.
Separately, I contract with party Y not to be present at that spot at that
time. Both contracts are validated in the usual way, by witnessing, etc.
I may do this with or without ill intention. It may be my intention to
deceive one of the parties. On the other hand, I may just be absentminded.
In such circumstances I am legally obliged both to be and not to be at
this spot at this time. (And if it be suggested that this is not a case of
inconsistent obligations simpliciter, since I am obliged to X to be at that
spot and obliged to Y not to be, just take X and Y to be the same person.)

How can one be sure that I am committed to inconsistent obligations in the
situation described? The answer is simple. If, after the event, I am sued by
the party of whichever contract I do not comply with, the court will hold
me in breach of obligation and award damages appropriately [145, p. 182].

38. Suppose that someone contracts to bring about a more complex inconsis-
tency, say, the squaring of the circle. Suppose that they contracted to do
this before it was known to be impossible, and that they failed to fulfill the
contract. Would a court hold them in default? The answer is ‘yes’. Sup-
pose it were proved to be impossible after signing the contract but before
the court hearing? The answer is still ‘yes’ [145, p. 183].

39. Suppose that there is a pair of statutes, one of which requires a car owner to
change registration plates on January 1st, and the other of which forbids
working on a Sunday. About every seven years the average law-abiding
citizen is embarrassed [145, p. 184].

40. Suppose that there is a certain country which has a constitutional parlia-
mentary system of government. And suppose that its constitution contains
the following clauses. In a parliamentary election:

(1) no person of the female sex shall have the right to vote;

(2) all property holders shall have the right to vote.

We may also suppose that it is part of common law that women may not
legally possess property. As enlightenment creeps over the country, this part
of common law is revised to allow women to hold property . . . Inevitably,
sooner or later, a woman, whom we will call ‘Jan’, turns up at a polling
booth for a parliamentary election claiming the right to vote on the ground
that she is a property holder. A test case ensues. Patently, the law is
inconsistent. Jan, it would seem, both does and does not have the right to
vote in this election [145, pp. 184-185].

41. Let us suppose that the priority law of a certain state is as follows. At
an unmarked junction at which two vehicles arrive simultaneously, (1) any
female driver shall have priority over any male driver; and (2) any older
person shall have priority over any younger person.
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If now an occasion arises when Mr X, of age 40, meets Ms Y, of age 30, at
a junction, then Ms Y has priority by (1), whereas Mr X has priority by
(2). So X and Y both have and do not have priority [145, p. 185].

42. Suppose you are a doctor faced with a mentally competent patient who
has refused a treatment you think represents her best hope of survival.
Should you try again to persuade her (a possible violation of respect for the
patient’s autonomy) or should you accept her decision (a possible violation
of your duty to provide the most beneficent care) [196, p. 27]?

43. Suppose the company you work for licenses some new, expensive computer
software, say Adobe’s Photoshop. After becoming comfortable with the
new software package at work, you feel the urge to copy it onto your home
computer. An internal dialog commences, but not necessarily as wholly
verbal and grammatical as what follows. “Let’s bring Photoshop home and
load the program on my Mac.” “You shouldn’t do that. That would be
illegal and stealing.” “But I’d use it for work-related projects that benefit
my company, which owns the software.” “Yes, but you’d also use it for
personal projects with no relation to the company.” “True, but most of the
work would be company related.” And so on and on [196, p. 181].

44. An ancient paradox is about the famous Greek law teacher Protagoras and
goes like this: Protagoras and Euathlus agree that the former is to instruct
the latter in rhetoric and is to receive a certain fee which is to be paid if
and only if Euathlus wins his first court-case (in some versions: as soon as
he has won his first case). Well, Euathlus completed his course but did not
take any law cases. Some time elapsed and Protagoras sued his student for
the sum. The following arguments were presented to the judge in court.

Protagoras: If I win this case, then Euathlus has to pay me by virtue of
your verdict. On the other hand, if he wins the case, then he will won [sic]
his first case, hence he has to pay me, this time by virtue of our agreement.
In either case, he has to pay me. Therefore, he is obliged to pay me my fee.

Euathlus: If I win this case, then, by your verdict, I don’t have to pay. If,
however, Protagoras wins the case, then I will not yet have won my first
case, so, by our agreement, I don’t have to pay. Hence I am not obliged to
pay the fee [8, p. 147].

45. People have described the situation in Vietnam as follows (not that it really
is this way): If the Americans withdraw from Vietnam, a large number of
people will be killed. If the Americans stay in (do not withdraw from)
Vietnam, a large number of people will be killed [154, p. 659].13

46. If Z does not go to war, he fails to help his friends and fellow countrymen
when they are in desperate need. If Z goes to war, he will be involved in
killing people he has nothing morally or otherwise against [154, p. 659].

13Routley and Plumwood also present the following variant of this dilemma: “If the company
commander invades the hamlet, a large number of his troops will be killed. If he does not invade
the hamlet the prisoners held therein will be killed” [154, p. 659].
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47. Suppose that we have a duly qualified principle to the effect that things
which lead to the feeding of starving people should happen. Suppose also
that we have limited resources, and have decided to distribute these as
follows: If the coin comes down heads (p), then group A of starving people
will be fed. But if the coin does not come down heads (¬p), then group B
of starving people will be fed. Plainly in an ideal situation both p and ¬p
will occur, that is the coin will come down heads and it will not come down
heads, so that both groups of people will be fed. And if the moral principle
cited is correctly applied then a case of Op and O¬p occurs [154, p. 660].

48. It ought to happen that the forest is chopped down, for the benefit of
the presently starving (or etc.), and it ought to happen that the forest is
preserved by positive action for the benefit of coming generations (or etc.)
[154, p. 660].

49. Consider the dilemma of a feminist environmentalist as regards Aborigi-
nal women. On the one hand, suppression of women in Aboriginal society
should be opposed; on the other hand major western interference in Abo-
riginal affairs should be avoided; but changing the position of women would
constitute major interference [154, p. 660].

50. The University opposes the government. The Vice-Chancellor, or rather
his advisor on logic, argues both the following: on the one hand opposing
the government is wrong, because the University’s funds will be restricted
and the students and learning in general will suffer. On the other hand, not
opposing the government is wrong because it will strengthen the present
iniquitous status quo [154, pp. 660-661].

51. As the play opens, Philoctetes has suffered for years with a disfiguring
disease; he had wandered into a forbidden garden, through no fault of his
own, and had been punished by the gods. Banished to a remote island, he
has nothing left but his bow. But the gods reveal to Odysseus that only that
bow can win the Trojan War. So, Odysseus orders Neoptolemus to trick
Philoctetes out of his bow. Neoptolemus obeys. Overcome with regret,
however, he decides to return the bow. Neoptolemus tricks Philoctetes
for serious reasons: to obey Odysseus, his commander, and to win the war.
But those reasons, he concludes, cannot justify the cruelty to the anguished
Philoctetes [9, p. 19].

52. A coach may consider himself consistent when telling each of several athletes
that they ought to win a contest [79, p. 344].

53. A soldier may claim that the commanders-in-chief of two armies at war
both ought to bring about the victory of their respective side [79, p. 344].

54. This problem arises when someone in possession of real estate – which is
owned not by him but by someone else – transfers it (by way of sale or gift)
to a third person. Then comes the question whether (and if so, in what
circumstances) the owner of real estate may recover its possession from the
third holder. Or to put the question in other terms: in what circumstances
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has the third holder the obligation to restore it to its owner and in what
circumstances (if any) may he keep it, i.e. be allowed to refused to restore
it [2, p. 9-10]?

55. Suppose that the UK becomes the belligerent occupant of a territory that
has Sharia as part of its domestic law, e.g. Iran. The Penal Law of Iran
prescribes stoning as a punishment for adultery. On the one hand, Interna-
tional Human Rights Law commands the UK to take all possible measures
to prevent the stoning of adulterers in the territory that it has occupied.
On the other hand, because it considers occupation to be a temporary
situation that requires deference to the displaced sovereign, International
Humanitarian Law prohibits the UK from changing the laws of the occupied
country, particularly its penal laws [136, p. 480].

56. In 1986 German national Jens Söring committed a double murder in Vir-
ginia, USA, after which he fled to the UK, where he was ultimately arrested.
The European Convention on the Protection of Human Rights and Funda-
mental Freedoms interpreted Article 3 of the European Court of Human
Rights as setting out a non-refoulement obligation, prohibiting the UK
from transferring Söring to the US if a real risk of that person being sub-
jected to inhuman or degrading treatment in the US was established. On
the other end was a valid extradition treaty between the UK and the US,
which obliged the UK to extradite Söring, and which specified no exception
to that obligation [136, pp. 470-471].

57. The Third and Fourth amended versions of the Declaration maintained
that it is unethical to assign patients to receive a placebo when effective
treatment exists: “In any medical study, every patient – including those
of a control group – should be assured of the best proven diagnostic and
therapeutic method”. This is in clear opposition to current practice of the
US Food and Drug Administration (FDA). Despite the mandates of the
Declaration of Helsinki and concern from ethicists and scientists, the FDA
continues to demand and defend placebo-controlled evidence of efficacy and
safety for the development of new pharmaceuticals, even if effective therapy
exists [134, pp. 188-189].

58. In Aeschylus’s Choephoroe, Orestes’s mother, Clytaemestra, has killed his
father, Agamemnon. She and her lover, Aegisthus, rule in Argos. Orestes
returns secretly from exile, gains entrance to the palace, and has no dif-
ficulty – physical or moral – in killing Aegisthus. But then Clytaemestra
confronts Orestes. He clearly can kill her, but should he do so? Orestes
ought to kill his mother, because he owes his father the deed of vengeance.
But he ought not to kill his mother, for killing a parent is a terrible crime.
As Aeschylus makes clear in the Eumenides, Orestes faces punishment from
the avenging Furies, whatever he chooses to do [57, pp. 116-117].

59. In the country of Freedonia, there are only two possible forms of govern-
ment: rule by the people’s choice from the candidates put forward by Party
A and Party B; or military dictatorship. An impartial observer asserts that
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democratic rule is clearly better than dictatorship. For this reason, says
the observer, it ought to be that either the candidate of Party A rules the
country or that the candidate of Party B rules the country. However, thinks
the observer, both candidates are equally rotten. Surely it ought to be that
the candidate of Party A does not rule the country. But that hardly means
that it ought to be that the candidate of Party B rules the country. And
yet, given the terrors of military dictatorship, it ought to be that one or
the other candidate rules [57, p. 48].

60. Suppose that both my brother and my sister have a disease that in a few
cases may lead to kidney failure and to the need for a transplantation.
Suppose further that I have solemnly promised each of them that one of
my kidneys will be available for transplantation if that should be medically
called for. Let DiA [DiB] denote my action of making one of my kidneys
available for my sister [brother]. If both my brother and my sister turn
out to need a transplantation, then both ODiA and ODiB apply as prima
facie duties, but I cannot reasonably be said to have a prima facie duty
O(DiA ∧DiB) [79, pp. 344-345].14

61. Consider a Buridan’s ass-type moral dilemma in which not both of two
identical twins (of identical moral status) can be saved from being crushed
to death by a heavy rock. The twins are pinned down in such a way that
only one can be pulled free at a time. If nothing is done the rock will soon
kill both, but if either twin is removed, the shifting increased weight will
immediately kill the other [98, p. 44].

62. Imagine the following situation: you are a heart surgeon treating newborn
Siamese twins who are grown together at the chest in such a way that
they share the same heart. Apart from sharing this vital organ, they have
complete sets of separate organs. The heart is too weak to support both
little bodies but perfectly strong enough to support one of them. So, if
they are not separated within the next 24 hours, they will both die. There
is no way of deciding which of the babies to give the organ to - each of
them has exactly the same fair chance of survival with the organ and will
probably be able to live a long and happy life, and, of course, each of them
will certainly die without a heart. From this, the following question arises:
During the operation that separates the two, which one will you give the
heart to? And which child will you leave to die[37, p. 78]?15

63. Imagine a situation where two identical twins are drowning some distance
apart from each other, and the situation is such that you can save either of
them, but you cannot save both [130, 129, 123].

64. Consider, for example, the controversies surrounding non-spontaneous abor-
tion. Philosophers are often criticized for inventing bizarre examples and
counterexamples to make a philosophical point. But no contrived example

14Hansen uses this example to argue against the application of (AND) to prima facie duties.
15This example also appears in [198, p. 241].
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can equal the complexity and the puzzles generated by the actual circum-
stances of foetal conception, parturation, and ultimate birth of a human
being. We have an organism, internal to and parasitic upon a human being,
hidden from view but relentlessly developing into a human being, which at
some stage of development can live, with nurture, outside of its host. There
are arguments that recognize competing claims: the right to life of the foe-
tus (at some stage) versus the right of someone to determine what happens
to his body. Arguments that justify choosing the mother over the foetus
(or vice-versa) where their survival is in competition. Arguments in which
foetuses that are defective are balanced against the welfare of others. Ar-
guments in which the claims to survival of others will be said to override
survival of the foetus under conditions of great scarcity. There are even
arguments that deny prima facie conflicts altogether on some metaphysical
grounds, such as that the foetus is not a human being or a person until
quickening, or until it has recognizable human features, or until its life can
be sustained external to its host, or until birth, or until after birth when
it has interacted with other persons. Various combinations of such argu-
ments are proposed in which the resolution of a dilemma is seen as more
uncertain, the more proximate the foetus is to whatever is defined as being
human or being a person. What all the arguments seem to share is the
assumption that there is, despite uncertainty, a resolution without residue;
that there is a correct set of metaphysical claims, principles, and priority
rankings of principles which will justify the choice. Then, given the belief
that one choice is justified, assignment of guilt relative to the overridden
alternative is seen as inappropriate, and feelings of guilt or pangs of con-
science are viewed as, at best, sentimental. But as one tries to unravel the
tangle of arguments, it is clear that to insist that there is in every case a
solution without residue is false to the moral facts [121, pp.131-132].16

65. A team of Dutch scientists of the Erasmus Medical Center led by the vi-
rologist Ron Fouchier has created a highly contagious variant of the H5N1
(“bird flu”) virus. The scientists have submitted their results for publica-
tion in Science, claiming that they have positively answered the question
whether or not the H5N1 virus can possibly trigger a pandemic by mutating
into a more transmissible variant.

On the one hand, many virologists support the publication of these results
due to their potential benefits for public health. According to Fouchier, the
U.S. National Institute of Health (NIH) has agreed to the publication of his
team’s results. On the other hand, representatives of the U.S. Government
fear that the publication of the study will give terrorists new knowledge for
constructing bio-weapons of mass destruction.

On December 20th 2011, the U.S. National Science Advisory Board for
Biosecurity ruled that all technical details must be left out for publication.
The journals Science and Nature opposed this decision. After months of
debate about whether the benefits of publishing the research outweigh the

16This example by Marcus is integrally cited in [48, pp. 294-295].
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risks, the paper of Fouchier’s group was published in Science on June 21st

2012.17

17For a more detailed oversight regarding this controversy, see:
http://www.nature.com/news/specials/mutantflu/index.html.



Appendix B

Overview of formal languages

The following table provides an oversight of the grammars defined in this thesis
and shows which logics use which grammar.

Wa {p, q, r, . . .}
W l {A,¬A ∣ A ∈Wa}
W∼

l {A,∼A ∣ A ∈Wa}
W Wa ∣ ¬⟨W⟩ ∣ ⟨W⟩ ∨ ⟨W⟩ ∣ ⟨W⟩ ∧ ⟨W⟩ ∣ ⟨W⟩ ⊃

⟨W⟩ ∣ ⟨W⟩ ≡ ⟨W⟩ ∣ �
CL

Wpos Wa ∣ ⟨Wpos⟩ ∨ ⟨Wpos⟩ ∣ ⟨Wpos⟩ ∧ ⟨Wpos⟩ ∣
⟨Wpos⟩ ⊃ ⟨Wpos⟩ ∣ ⟨Wpos⟩ ≡ ⟨Wpos⟩

CLpos

W∼ Wa ∣ ∼⟨W∼⟩ ∣ ⟨W∼⟩ ∨ ⟨W∼⟩ ∣ ⟨W∼⟩ ∧ ⟨W∼⟩ ∣
⟨W∼⟩ ⊃ ⟨W∼⟩ ∣ ⟨W∼⟩ ≡ ⟨W∼⟩

CLuN,
CLuNs,
CLaN,
CLaNs,
CLoN,
CLoNs

W∼
� Wa ∣ ∼⟨W∼

� ⟩ ∣ ⟨W∼
� ⟩ ∨ ⟨W∼

� ⟩ ∣ ⟨W∼
� ⟩ ∧ ⟨W∼

� ⟩ ∣
⟨W∼

� ⟩ ⊃ ⟨W∼
� ⟩ ∣ ⟨W∼

� ⟩ ≡ ⟨W∼
� ⟩ ∣ �

CLuN�,
CLuNs�,
CLaN�,
CLaNs�,
CLoN�,
CLoNs�

WO W ∣ O⟨W⟩ ∣ P⟨W⟩ ∣ ¬⟨WO⟩ ∣ ⟨WO⟩ ∨ ⟨WO⟩ ∣
⟨WO⟩ ∧ ⟨WO⟩ ∣ ⟨WO⟩ ⊃ ⟨WO⟩ ∣ ⟨WO⟩ ≡ ⟨WO⟩

SDL

WO′ W ∣ O⟨WO′⟩ ∣ P⟨WO′⟩ ∣ ¬⟨WO′⟩ ∣ ⟨WO′⟩ ∨
⟨WO′⟩ ∣ ⟨WO′⟩ ∧ ⟨WO′⟩ ∣ ⟨WO′⟩ ⊃ ⟨WO′⟩ ∣
⟨WO′⟩ ≡ ⟨WO′⟩

WO∖P W ∣ O⟨W⟩ ∣ ¬⟨WO∖P⟩ ∣ ⟨WO∖P⟩ ∨ ⟨WO∖P⟩ ∣
⟨WO∖P⟩ ∧ ⟨WO∖P⟩ ∣ ⟨WO∖P⟩ ⊃ ⟨WO∖P⟩ ∣
⟨WO∖P⟩ ≡ ⟨WO∖P⟩

WO
◻ WO ∣ ◻⟨W⟩ ∣ ¬⟨WO

◻ ⟩ ∣ ⟨WO
◻ ⟩ ∨ ⟨WO

◻ ⟩ ∣ ⟨WO
◻ ⟩ ∧

⟨WO
◻ ⟩ ∣ ⟨WO

◻ ⟩ ⊃ ⟨WO
◻ ⟩ ∣ ⟨WO

◻ ⟩ ≡ ⟨WO
◻ ⟩

P◇, Px
◇
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WP2 W ∣ Oe⟨W⟩ ∣ Oa⟨W⟩ ∣ ¬⟨WP2⟩ ∣ ⟨WP2⟩ ∨
⟨WP2⟩ ∣ ⟨WP2⟩ ∧ ⟨WP2⟩ ∣ ⟨WP2⟩ ⊃ ⟨WP2⟩ ∣
⟨WP2⟩ ≡ ⟨WP2⟩

P2, P2.1x,
P2.2x,
SDLaPe,
SDLae

WDP W∼
� ∣ O⟨W∼

� ⟩ ∣ ∼⟨WDP⟩ ∣ ⟨WDP⟩ ∨ ⟨WDP⟩ ∣
⟨WDP⟩∧⟨WDP⟩ ∣ ⟨WDP⟩ ⊃ ⟨WDP⟩ ∣ ⟨WDP⟩ ≡
⟨WDP⟩

DP,DPx

W /∼ {A ∣ A ∈ WDP and A is not of the form ∼B,
where B ∈WDP}

W∼
O {OA ∣ A ∈W∼

�}
W¬

O O⟨W∼⟩ ∣ P⟨W∼⟩ ∣ ¬⟨W¬
O⟩ ∣ ⟨W¬

O⟩ ∨ ⟨W¬
O⟩ ∣

⟨W¬
O⟩ ∧ ⟨W¬

O⟩ ∣ ⟨W¬
O⟩ ⊃ ⟨W¬

O⟩ ∣ ⟨W¬
O⟩ ≡ ⟨W¬

O⟩
WLNP W ∣ W¬

O ∣ ¬⟨WLNP⟩ ∣ ⟨WLNP⟩ ∨ ⟨WLNP⟩ ∣
⟨WLNP⟩ ∧ ⟨WLNP⟩ ∣ ⟨WLNP⟩ ⊃ ⟨WLNP⟩ ∣
⟨WLNP⟩ ≡ ⟨WLNP⟩

LNP,LNPx

WML ⟨Wa⟩ ∣ ¬⟨WML⟩ ∣ ⟨WML⟩∨ ⟨WML⟩ ∣ ⟨WML⟩∧
⟨WML⟩ ∣ ◻J⟨WML⟩ ∣◇J⟨WML⟩

ML

WMDL ⟨WML⟩ ∣ ¬⟨WMDL⟩ ∣ ⟨WMDL⟩ ∨ ⟨WMDL⟩ ∣
⟨WMDL⟩ ∧ ⟨WMDL⟩ ∣ ◻J⟨WMDL⟩ ∣
◇J⟨WMDL⟩ ∣ O⟨WMDL⟩ ∣ P⟨WMDL⟩

MDL

WML
∼ ⟨Wa⟩ ∣ ∼⟨WML

∼ ⟩ ∣ ⟨WML
∼ ⟩∨ ⟨WML

∼ ⟩ ∣ ⟨WML
∼ ⟩∧

⟨WML
∼ ⟩ ∣ ◻J⟨WML

∼ ⟩ ∣◇J⟨WML
∼ ⟩

WPMDL ⟨WML
∼ ⟩ ∣ ∼⟨WPMDL⟩ ∣ ⟨WPMDL⟩ ∨

⟨WPMDL⟩ ∣ ⟨WPMDL⟩ ∧ ⟨WPMDL⟩ ∣
◻J⟨WPMDL⟩ ∣ ◇J⟨WPMDL⟩ ∣ O⟨WPMDL⟩ ∣
P⟨WPMDL⟩

PMDL,
PMDLx
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CLpos, CLuN(s), CLaN(s), and
CLoN(s)

CLoN, CLuN, and CLaN are extensions of CLpos, the positive (negation-
free) fragment of CL. These logics allow for negation-gaps and/or negation-
gluts. CLoN abbreviates “classical logic with both gluts and gaps for negation”,
CLuN abbreviates “classical logic with gluts for negation”, and CLaN abbre-
viates “classical logic with gaps for negation”. For some presentations of these
systems in the literature, see e.g. [13, 19, 20].

Below we provide an axiomatic and semantic characterization of the propo-
sitional fragment of these logics and of their extensions CLoNs, CLuNs, and
CLaNs (which validate de Morgan’s laws for negation). We also define the logics
obtained by adding the falsum constant � to these systems.

C.1 Axiomatizations

Let:

Wpos ∶= Wa ∣ ⟨Wpos⟩ ∨ ⟨Wpos⟩ ∣ ⟨Wpos⟩ ∧ ⟨Wpos⟩ ∣ ⟨Wpos⟩ ⊃ ⟨Wpos⟩ ∣ ⟨Wpos⟩ ≡
⟨Wpos⟩

CLpos, the positive fragment of CL, is defined by the language schemaWpos,
the rule modus ponens (MP) (A,A ⊃ B/B) and the following axiom schemas:

(A⊃1) A ⊃ (B ⊃ A)
(A⊃2) (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))
(A⊃3) ((A ⊃ B) ⊃ A) ⊃ A
(A∧1) (A ∧B) ⊃ A
(A∧2) (A ∧B) ⊃ B
(A∧3) A ⊃ (B ⊃ (A ∧B))
(A∨1) A ⊃ (A ∨B)
(A∨2) B ⊃ (A ∨B)
(A∨3) (A ⊃ C) ⊃ ((B ⊃ C) ⊃ ((A ∨B) ⊃ C))
(A≡1) (A ≡ B) ⊃ (A ⊃ B)
(A≡2) (A ≡ B) ⊃ (B ⊃ A)
(A≡3) (A ⊃ B) ⊃ ((B ⊃ A) ⊃ (A ≡ B))
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Adding the classical negation “¬” to CLpos is sufficient in order to obtain full
CL. This can be done by replacing the set Wpos of CLpos-wffs by the set W of
CL-wffs, and by adding the axiom schemas (A¬1) and (A¬2):

(A¬1) (A ⊃ ¬A) ⊃ ¬A
(A¬2) A ⊃ (¬A ⊃ B)

For the logics CLuN(s), CLaN(s), and CLoN(s) we make use of the negation
connective “∼”. CLoN is defined by simply adding this connective to the lan-
guage schema of CLpos, i.e. by replacing the set Wpos of CLpos-wffs with the set
W∼:

W∼ ∶=Wa ∣ ∼⟨W∼⟩ ∣ ⟨W∼⟩ ∨ ⟨W∼⟩ ∣ ⟨W∼⟩ ∧ ⟨W∼⟩ ∣ ⟨W∼⟩ ⊃ ⟨W∼⟩ ∣ ⟨W∼⟩ ≡ ⟨W∼⟩
CLuN is defined by adding to CLoN the axiom schema (A∼1):

(A∼1) (A ⊃ ∼A) ⊃ ∼A
CLaN is defined by adding to CLoN the axiom schema (A∼2):

(A∼2) A ⊃ (∼A ⊃ B)
The logics CLoNs, CLuNs, and CLaNs are defined by adding the axiom
schemas (A∼∼)-(A∼ ≡) to the logics CLoN, CLuN, and CLaN respectively:

(A∼∼) ∼∼A ≡ A
(A∼ ⊃) ∼(A ⊃ B) ≡ (A ∧ ∼B)
(A∼∧) ∼(A ∧B) ≡ (∼A ∨ ∼B)
(A∼∨) ∼(A ∨B) ≡ (∼A ∧ ∼B)
(A∼ ≡) ∼(A ≡ B) ≡ ((A ∨B) ∧ (∼A ∨ ∼B))

Finally, where:

W∼
� ∶=Wa ∣ ∼⟨W∼

� ⟩ ∣ ⟨W∼
� ⟩ ∨ ⟨W∼

� ⟩ ∣ ⟨W∼
� ⟩ ∧ ⟨W∼

� ⟩ ∣ ⟨W∼
� ⟩ ⊃ ⟨W∼

� ⟩ ∣ ⟨W∼
� ⟩ ≡ ⟨W∼

� ⟩ ∣ �
The logics CLoN(s)�, CLuN(s)�, and CLaN(s)� are defined by
(i) replacing in the logics CLoN(s), CLuN(s), and CLaN(s) respectively the
language schema W∼ with the language schema W∼

� , and
(ii) adding the schema (A�1):

(A�1) � ⊃ A
Due to the addition of the falsum constant to CLoN(s)�, CLuN(s)� and CLaN(s)�,
the classical negation connective is definable in these logics by ¬A =df A ⊃ � .
Thus, all classical connectives become definable in these logics. This is important
in view of the remark made in footnote 1 in Section 4.2.

C.2 Semantics

A CLpos-model M is a tuple ⟨Wa, v⟩, where v ∶ Wa → {0,1} is an assignment
function. The valuation function vM ∶Wpos → {0,1} associated with M is defined
by:

(Ca) where A ∈Wa, vM(A) = 1 iff v(A) = 1
(C∨) vM(A ∨B) = 1 iff vM(A) = 1 or vM(B) = 1
(C∧) vM(A ∧B) = 1 iff vM(A) = 1 and vM(B) = 1
(C⊃) vM(A ⊃ B) = 1 iff vM(A) = 0 or vM(B) = 1
(C≡) vM(A ≡ B) = 1 iff vM(A) = vM(B)
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A CLpos-model M verifies A, M ⊩ A, iff vM(A) = 1.
The logic CLoN is obtained by letting the assignment function map both atoms
and negated formulas into the set {0,1}. Let F∼ = {∼A ∣ A ∈ W}. A CLoN-
model M is a tuple ⟨Wa ∪ F∼, v⟩, where v ∶ Wa ∪ F∼ → {0,1} is an assignment
function. The valuation function vM ∶W∼ → {0,1} associated with M is defined
by adding the clause (C∼0) to the clauses (Ca), (C∨), (C∧), (C⊃), and (C≡):

(C∼0) vM(∼A) = 1 iff v(∼A) = 1

A CLoN-model M verifies A, M ⊩ A, iff vM(A) = 1.
A CLuN-model M too is a tuple ⟨Wa ∪F∼, v⟩, where v ∶Wa ∪F∼ → {0,1} is an
assignment function. The valuation function vM ∶ W∼ → {0,1} associated with
M is defined by adding the clause (C∼1) to the clauses (Ca), (C∨), (C∧), (C⊃),
and (C≡):

(C∼1) vM(∼A) = 1 iff (vM(A) = 0 or v(∼A) = 1)

A CLuN-model M verifies A, M ⊩ A, iff vM(A) = 1.
A CLaN-model M again is a tuple ⟨Wa ∪ F∼, v⟩, where v ∶ Wa ∪ F∼ → {0,1}
is an assignment function. The valuation function vM ∶ W∼ → {0,1} associated
with M is defined by adding the clause (C∼2) to the clauses (Ca), (C∨), (C∧),
(C⊃), and (C≡):

(C∼2) vM(∼A) = 1 iff (vM(A) = 0 and v(∼A) = 1)

A CLaN-model M verifies A, M ⊩ A, iff vM(A) = 1.
The semantics for CLoNs, CLuNs, and CLaNs is obtained by:
(i) letting the assignment function v assign truth values to literals, i.e. v ∶W∼

l →
{0,1}, (ii) replacing in the respective logics the clauses (C∼0), (C∼1), and (C∼2)
with the clauses (C∼0’), (C∼1’), and (C∼2’):

(C∼0’) Where A ∈Wa, vM(∼A) = 1 iff v(∼A) = 1
(C∼1’) Where A ∈Wa, vM(∼A) = 1 iff (vM(A) = 0 or v(∼A) = 1)
(C∼2’) Where A ∈Wa, vM(∼A) = 1 iff (vM(A) = 0 and v(∼A) = 1)

and (iii) adding the clauses (C∼∼)-(C∼ ≡) to the clauses for CLoN, CLuN and
CLaN respectively:

(C∼∼) vM(∼∼A) = vM(A)
(C∼∨) vM(∼(A ∨B) = vM(∼A ∧ ∼B)
(C∼∧) vM(∼(A ∧B) = vM(∼A ∨ ∼B)
(C∼ ⊃) vM(∼(A ⊃ B) = vM(A ∧ ∼B)
(C∼ ≡) vM(∼(A ≡ B) = vM((A ∨B) ∧ (∼A ∨ ∼B))

Finally, the semantics for CLoN(s)�, CLuN(s)�, and CLaN(s)� is obtained by
adding the clause (C�) to the clauses for CLoN(s), CLuN(s), and CLaN(s)
respectively:

(C�) vM(�) = 0





Appendix D

(Meta-)properties of the logic P◇

In this Appendix, we provide a semantic characterization of the logic P◇ in terms
of neighborhoods. We rely on results from the literature for the proof of Theorem
6 (cfr. infra).

A P◇-frame is a tuple ⟨W,R,N ⟩ where W is a set of points (worlds), R ⊆W ×
W is an accessibility relation and N ∶W → ℘(℘(W )) is a neighborhood function
that satisfies the following conditions for each w ∈ W . Let Rw = {w′ ∣ Rww′}.
P◇-frames satisfy the following frame conditions:

(F-NEC) W ∈ N (w)

(F-RM) If X ∈ N (w) and X ⊆ Y then Y ∈ N (w)

(F-PN) ∅ ∉ N (w)

(F-OIC) If Rw ⊆X then W ∖X ∉ N (w)

(F-◇AND) If X ∈ N (w), Y ∈ N (w) and Rw ∩ (X ∩Y ) ≠ ∅ then X ∩Y ∈ N (w)

A P◇-model is a tuple ⟨W,R,N , v,w0⟩ where ⟨W,R,N ⟩ is a P◇-frame, w0 ∈W
is the actual world, and v ∶ Wa → ℘(W ) is an assignment function. Truth at a
world is defined in the following way:

(Ca) Where A ∈Wa, M,w ⊩ A iff A ∈ v(w)
(C¬) M,w ⊩ ¬A iff M,w ⊮ A
(C∨) M,w ⊩ A ∨B iff (M,w ⊩ A or M,w ⊩ B)
(C∧) M,w ⊩ A ∧B iff (M,w ⊩ A and M,w ⊩ B)
(C⊃) M,w ⊩ A ⊃ B iff (M,w ⊮ A or M,w ⊩ B)
(C≡) M,w ⊩ A ≡ B iff (M,w ⊩ A iff M,w ⊩ B)
(CO) M,w ⊩ OA iff ∣A∣M ∈ N (w) where ∣A∣M =df {w ∈W ∣M,w ⊧ A}
(C◻) M,w ⊩ ◻A iff for all w′ ∈ Rw, M,w′ ⊧ A

Soundness and completeness is proven generically by Pattinson and Schröder for
all rank-1 modal logics with respect to their canonical neighborhood semantics in
[158]. Since their result applies to our semantics, Theorem 6 follows immediately.
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Appendix E

(Meta-)properties of the logic DP

In this Appendix we prove some further properties of the logic DP (Section E.1),
provide the soundness and completeness proof for this logic (Section E.2) and
outline the proof of Theorem 29 (Section E.3). In some of the proofs contained
below, we make extensive use of the axioms and rules of the logic CLuNs� as
defined in Appendix C.

E.1 Some facts about DP

Fact 5. The following are DP-valid:

(i) ⊢DP (OA ∧OB) ⊃ O(A ∧B) ((AND) is DP-derivable)
(ii) ⊢DP (OA ∧ PB) ⊃ P(A ∧B)
(iii) If ⊢DP A′ ⊃ A then A ⊃ B ⊢DP A′ ⊃ B
(iv) If ⊢DP B ⊃ B′ then A ⊃ B ⊢DP A ⊃ B′

(v) ⊢DP A ≡ ((A ⊃ �) ⊃ �)
(vi) ⊢DP (A ⊃ (A ⊃ �)) ⊃ (A ⊃ �)

(vii) ⊢DP A ∨ (A ⊃ �)
(viii) If ⊢DP A ⊃ B then ⊢DP OA ⊃ OB

(ix) ⊢DP (A ⊃ �) ⊃ ∼A
(x) ⊢DP A ∨ ∼A
(xi) ⊢DP ∼((A ∨B) ∧ (∼A ∨ ∼B)) ≡ ((A ∧B) ∨ (∼A ∧ ∼B))

(xii) A ∨B,A ⊃ C,B ⊃ C ⊢DP C
(xiii) If ⊢DP A ≡ B then ⊢DP PA ≡ PB
(xiv) If ⊢DP A ⊃ B then ⊢DP PA ⊃ PB
(xv) ⊢DP (A ⊃ B) ⊃ ∼(A ∧ ∼B)
(xvi) ⊢DP (A ∧B) ⊃ (A ≡ B)

(xvii) A ∨B,A ⊃ C,B ⊃D ⊢DP C ∨D

Proof. By (A∧3), ⊢DP A ⊃ (B ⊃ (A∧B)). By (NEC), it follows that ⊢DP O(A ⊃
(B ⊃ (A ∧B))). By (K), (�) ⊢DP OA ⊃ O(B ⊃ (A ∧B)).

Ad (i): Suppose OA and OB. By (�) and (MP), O(B ⊃ (A ∧B)). By (K),
OB ⊃ O(A ∧B). By (MP), O(A ∧B). The rest follows by Theorem 26.

Ad (ii): Suppose OA and PB. By (�) and (MP), O(B ⊃ (A ∧B)). By (KP),
PB ⊃ P(A ∧B). By (MP) we get P(A ∧B). The rest follows by Theorem 26.
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Ad (iii): Suppose ⊢DP A′ ⊃ A. By (A⊃2), ⊢DP (A′ ⊃ (A ⊃ B)) ⊃ ((A′ ⊃ A) ⊃
(A′ ⊃ B)). By (A⊃1) and (MP), A ⊃ B ⊢DP A′ ⊃ (A ⊃ B). The rest follows by
multiple applications of (MP).

Ad (iv): The proof is similar and left to the reader.

Ad (v): Left-to-right: By (MP), A,A ⊃ � ⊢DP �. The rest follows by Theorem
26.

Right-to-left: By (iv) and (A�1), (A ⊃ �) ⊃ � ⊢DP (A ⊃ �) ⊃ A. By (A⊃3) and
(MP), (A ⊃ �) ⊃ � ⊢DP A.

Ad (vi): By (MP), A,A ⊃ (A ⊃ �) ⊢DP A ⊃ �. By (MP), A,A ⊃ (A ⊃ �) ⊢DP

�. By Theorem 26, A ⊃ (A ⊃ �) ⊢DP A ⊃ �, ⊢DP (A ⊃ (A ⊃ �)) ⊃ (A ⊃ �).
Ad (vii): By (A∨1), A ⊃ (A∨ (A ⊃ �)). By (iii), (A∨ (A ⊃ �)) ⊃ � ⊢DP A ⊃ �.

By Theorem 26, ⊢DP ((A ∨ (A ⊃ �)) ⊃ �) ⊃ (A ⊃ �). By (A∨2), (A ⊃ �) ⊃
(A ∨ (A ⊃ �)). Hence, by (iv), ⊢DP ((A ∨ (A ⊃ �)) ⊃ �) ⊃ (A ∨ (A ⊃ �)). By (v),
⊢DP (A∨(A ⊃ �)) ≡ (((A∨(A ⊃ �)) ⊃ �) ⊃ �). Thus, by (iv), ⊢DP ((A∨(A ⊃ �)) ⊃
�) ⊃ (((A ∨ (A ⊃ �)) ⊃ �) ⊃ �). By (vi) and (MP), ⊢DP ((A ∨ (A ⊃ �)) ⊃ �) ⊃ �.
By (v), (A≡2), and (MP), ⊢DP A ∨ (A ⊃ �).

Ad (viii): Let ⊢DP A ⊃ B. By (NEC), ⊢DP O(A ⊃ B). By (K) and (MP),
⊢DP OA ⊃ OB.

Ad (ix): Suppose (�) A ⊃ �. Suppose (⋆) A then by (�) and (MP), �. By
(A�1), � ⊃ ∼A. By (MP), ∼A. By Theorem 26 and supposition (⋆), A ⊃ ∼A. By
(A∼1) and (MP), ∼A. By Theorem 26 and supposition (�), (A ⊃ �) ⊃ ∼A.

Ad (x): This follows by simple propositional manipulations via (ix) and (vii).

Ad (xi): By (A∼∧), ⊢DP ∼((A ∨B) ∧ (∼A ∨ ∼B)) ≡ (∼(A ∨B) ∨ ∼(∼A ∨ ∼B)).
By (A∼∨), ⊢DP ∼((A∨B)∧ (∼A∨ ∼B)) ≡ ((∼A∧ ∼B)∨ (∼∼A∧ ∼∼B)). By (A∼∼)
and some simple propositional manipulations, ⊢DP ∼((A ∨ B) ∧ (∼A ∨ ∼B)) ≡
((A ∧B) ∨ (∼A ∧ ∼B)).

Ad (xii): Suppose A ∨ B, A ⊃ C and B ⊃ C. By the latter two, (A∨3) and
simple propositional manipulations, (A ∨B) ⊃ C. By (MP), C.

Ad (xiii): Let ⊢DP A ≡ B. By (A≡1) and (A≡2) we get ⊢DP A ⊃ B and
⊢DP B ⊃ A. Hence, by (NEC), ⊢DP O(A ⊃ B) and ⊢DP O(B ⊃ A). By (KP) and
(MP), ⊢DP PA ⊃ PB and ⊢DP PB ⊃ PA. By (A≡3) and (MP), ⊢DP PA ≡ PB.

Ad (xiv): Similar to the previous proof.

Ad (xv): Suppose (1) A ⊃ B. By (x), (2) A∨ ∼A. Suppose (3) A. By (1) and
(MP), B. By (A∼∼), ∼∼B. By (A∨2), ∼∼B ⊃ (∼A ∨ ∼∼B) and whence by (MP),
∼A ∨ ∼∼B. By Theorem 26 and supposition (3), (4) A ⊃ (∼A ∨ ∼∼B). By (A∨1),
(5) ∼A ⊃ (∼A∨∼∼B). By (2), (4), (5) and (xii), ∼A∨∼∼B. By (A∼∧), ∼(A∧∼B).
By Theorem 26 and supposition (1), (A ⊃ B) ⊃ ∼(A ∧ ∼B).

Ad (xvi): Suppose A∧B. By (A∧1) and (MP), A. By (A⊃1) and (MP), B ⊃ A.
In an analogous way we get A ⊃ B. By (A≡3) and some simple propositional
manipulations, A ≡ B.

Ad (xvii): Suppose A ∨B, A ⊃ C and B ⊃ D. By (A∨1), C ⊃ (C ∨D). By
(A∨2), D ⊃ (C ∨D). By (iv), A ⊃ (C ∨D) and B ⊃ (C ∨D). The rest follows by
(xii).

Lemma 1. The following are DP-valid:
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(i) ⊢DP ∼O∼(A ∨B) ≡ ∼O(∼A ∧ ∼B).
(ii) ⊢DP ∼O∼(A ∧B) ≡ ∼O(∼A ∨ ∼B).

(iii) ⊢DP ∼O∼(A ⊃ B) ⊃ ∼O(A ∧ ∼B)
(iv) ⊢DP (A ≡ B) ⊃ ∼((A ∨B) ∧ (∼A ∨ ∼B)).
(v) ⊢DP ∼O∼(A ≡ B) ⊃ ∼O((A ∨B) ∧ (∼A ∨ ∼B)).

Proof. Ad (i): By (A∼∧), (�1) ⊢DP (∼∼A∨∼∼B) ≡ ∼(∼A∧∼B). By means of (A∼∼)
it is easy to see that (�2) ⊢DP (A ∨B) ≡ (∼∼A ∨ ∼∼B). By (�1), (�2) and some
simple manipulations, ⊢DP (A∨B) ≡ ∼(∼A∧ ∼B). Hence, by Fact 5, ⊢DP P(A∨
B) ≡ P∼(∼A ∧ ∼B). By the definition of P, ⊢DP ∼O∼(A ∨B) ≡ ∼O∼∼(∼A ∧ ∼B).
By (A∼∼′) and some simple manipulations, ⊢DP ∼O∼(A ∨B) ≡ ∼O(∼A ∧ ∼B).

Ad (ii): Analogous to the previous proof.
Ad (iii): By Fact 5.xiv and 5.xv, ⊢DP P(A ⊃ B) ⊃ P∼(A ∧ ∼B). By the

definition of P, ⊢DP ∼O∼(A ⊃ B) ⊃ ∼O∼∼(A ∧ ∼B). By (A∼∼′) and some simple
modifications, ⊢DP ∼O∼(A ⊃ B) ⊃ ∼O(A ∧ ∼B).

Ad (iv): Suppose (1) A ≡ B. By Fact 5.vii, (2) A ∨ (A ⊃ �). Suppose (3)
A ⊃ �. By (A�1), � ⊃ A and whence by (A≡3), A ≡ �. By the latter and (1)
and simple propositional manipulations, B ≡ � and whence by (A≡1), B ⊃ �.
Hence by Fact 5.ix, (4) ∼B. Also by Fact 5.ix and (3), (5) ∼A. By Theorem 26,
supposition (3), (4), (5) and some simple propositional manipulations we have
(6) (A ⊃ �) ⊃ (∼A ∧ ∼B).

Now suppose (7) A. By (1), (A≡1) and (MP), (8) B. By Theorem 26,
supposition (7), (8) and some simple propositional manipulations, (9)A ⊃ (A∧B).

Now by (2), (6), (9) and Fact 5.xvii, (A ∧ B) ∨ (∼A ∧ ∼B). By Fact 5.xi,
∼((A ∨B) ∧ (∼A ∨ ∼B)).

Ad (v): By Fact 5.xiv and (iv), ⊢DP P(A ≡ B) ⊃ P∼((A∨B)∧(∼A∨∼B)). By
the definition of P, ⊢DP ∼O∼(A ≡ B) ⊃ ∼O∼∼((A ∨B) ∧ (∼A ∨ ∼B)). By (A∼∼′)
and some simple manipulations, ⊢DP ∼O∼(A ≡ B) ⊃ ∼O((A∨B)∧(∼A∨∼B)).

E.2 Proofs of Theorems 27–28

In order to simplify the notation in the following meta-proofs we define Rw =
{w′ ∣ Rww′}.

Lemma 2. Where M = ⟨W,w0,R, v⟩ is a DP-model, we have: for all w ∈W , if
vM(A,w) = 0 then vM(∼A,w) = 1.

Proof. We show this by an induction over the length of A. Let A ∈Wa. Suppose
vM(A,w) = 0. By (C∼1’), vM(∼A,w) = 1.

For the induction step let first A = B∧C. Suppose vM(B∧C,w) = 0. By (C∧),
vM(B,w) = 0 or vM(C,w) = 0. By the induction hypothesis, vM(∼B,w) = 1 or
vM(∼C,w) = 1. By (C∨), vM(∼B ∨ ∼C,w) = 1. By (C∼∧), vM(∼(B ∧C),w) = 1.
The cases A = B ∨ C, A = B ⊃ C, A = B ≡ C and A = ∼B are similar and left
to the reader. Let A = OB. Suppose vM(∼OB,w) = 0. By (C∼O) there is no
w′ ∈ Rw such that vM(∼B,w′) = 1. Hence, for all w′ ∈ Rw, vM(∼B,w′) = 0. By
the induction hypothesis, for all w′ ∈ Rw, vM(∼∼B,w′) = 1. By (C∼∼), for all
w′ ∈ Rw, vM(B,w′) = 1. By (CO), vM(OB,w) = 1.
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Lemma 3. Where M = ⟨W,w,R, v⟩ is a DP-model: vM(∼OA,w) = 1 iff there is
a w′ ∈ Rw such that vM(∼A,w′) = 1.

Proof. Case 1. If A ∈W∼
l ∪W /∼, then this is immediate in view of (C∼O).

Case 2. A = ∼D, where D = (BπC) and π ∈ {∧,∨,⊃,≡}.

Case 2.1. π = ∧. Then vM(∼O∼(B ∧ C),w) = 1 iff (by (C∼∧′)) vM(∼O(∼B ∨
∼C),w) = 1 iff (by (C∼O)) there is a w′ ∈ Rw such that vM(∼(∼B∨∼C),w′) = 1 iff
(by (C∼∧)) vM(∼∼B ∧ ∼∼C,w′) = 1 iff (by (C∧)) vM(∼∼B,w′) = vM(∼∼C,w′) = 1
iff (by (C∼∼)) vM(B,w′) = vM(C,w′) = 1 iff (by (C∧)) vM(B ∧C,w′) = 1 iff (by
(C∼∼)) vM(∼∼(B ∧C),w′) = 1 iff vM(∼A,w′) = 1.

The cases for π ∈ {∨,⊃,≡} are analogous and are safely left to the reader.

Case 3. A = ∼∼D. Let D′ be the result of removing all pairs ‘∼∼’ by which D is
prefixed. Then either D′ ∈ W∼

l ∪W /∼ or D′ = ∼(BπC). vM(∼OA,w) = 1 iff (by
(multiple applications of) (C∼∼′)) vM(∼OD′,w) = 1 iff (by Case 1 or 2) there is
a w′ ∈ Rw such that vM(∼D′,w′) = 1 iff (by (multiple applications of) (C∼∼))
vM(∼A,w′) = 1.

Proof of Theorem 27. Let in the following M = ⟨W,w0,R, v⟩ be a DP-model.

It is easy to see that all instances of (A⊃1), (A⊃2), (A⊃3) hold in M due to
(C⊃). For instance, M ⊩ A ⊃ (B ⊃ A) iff (M ⊮ A or M ⊩ B ⊃ A) iff (M ⊮ A or
(M ⊮ B or M ⊩ A)) iff (M ⊮ A or M ⊩ A). Thus, M ⊩ A ⊃ (B ⊃ A).

Similarly it can be shown that all instances of (A∧1), (A∧2) and (A∧3) hold
in M due to (C⊃) and (C∧); all instances of (A∨1), (A∨2), and (A∨3) hold in M
due to (C∨) and (C⊃); all instances of (A≡1), (A≡2), and (A≡3) hold in M due
to (C≡) and (C⊃); where π ∈ {∼,⊃,∧,∨,≡}, all instances of (A∼π) and of (A∼π′)
hold in M due to (C∼π) and (C∼π′); (A�1) holds in M due to (C�) and (C⊃).

Ad (A�2): Note that by (C�) there is no w ∈ W for which vM(�,w) = 1.
Thus, by (C∼∼), there is no w ∈W such that vM(∼∼�,w) = 1. Hence, by (C∼O),
vM(∼O∼�,w) = 0 for all w ∈ W . Hence, vM(P�,w) = 0 for all w ∈ W . Hence by
(C⊃), vM(P� ⊃ A,w0) = 1, and whence, M ⊩ P� ⊃ A.

Ad (A∼1): We have M ⊩ (A ⊃ ∼A) ⊃ ∼A iff (M /⊩ A ⊃ ∼A or M ⊩ ∼A) iff
(not (M /⊩ A or M ⊩ ∼A) or M ⊩ ∼A) iff ((M ⊩ A and M ⊮ ∼A) or M ⊩ ∼A) iff
(M ⊩ A or M ⊩ ∼A). The latter holds due to Lemma 2.

Ad (D): Suppose M ⊩ OA. Then for all w ∈ Rw0, vM(A,w) = 1. By (C∼∼)
and the seriality of R, there is a w ∈ Rw0 for which vM(∼∼A,w) = 1. By Lemma
3, M ⊩ ∼O∼A and whence M ⊩ PA. Altogether by (C⊃), M ⊩ OA ⊃ PA.

Ad (K): Suppose M ⊩ O(A ⊃ B). By (CO) and (C⊃), for all w ∈ Rw0,
vM(A,w) = 0 or vM(B,w) = 1. Suppose M ⊩ OA, then for all w ∈ Rw0,
vM(A,w) = 1. Hence, for all w ∈ Rw0, vM(B,w) = 1. Thus by (CO), M ⊩ OB.
Hence, by (C⊃), M ⊩ OA ⊃ OB. Altogether by (C⊃), M ⊩ O(A ⊃ B) ⊃ (OA ⊃
OB).

Ad (KP): Suppose M ⊩ O(A ⊃ B). By (CO) and (C⊃), (�) for all w ∈ Rw0,
vM(A,w) = 0 or vM(B,w) = 1. Suppose M ⊩ PA and whence M ⊩ ∼O∼A.
Hence, by Lemma 3 and (C∼∼), (�) there is a w ∈ Rw0 for which vM(A,w) = 1.
Hence, by (�), (�) and (C∼∼), there is a w ∈ Rw0 such that vM(∼∼B,w) = 1. Thus,
by Lemma 3, M ⊩ ∼O∼B and whence M ⊩ PB. Hence, by (C⊃), M ⊩ PA ⊃ PB.
Altogether by (C⊃), M ⊩ O(A ⊃ B) ⊃ (PA ⊃ PB).
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Ad (OD): Suppose M ⊩ O(A ∨B). Hence, by (CO) and (C∨), (�) for all w ∈
Rw0, vM(A,w) = 1 or vM(B,w) = 1. Suppose M /⊩ PB and whence M ⊮ ∼O∼B.
By Lemma 3 and (C∼∼), (�) for all w ∈ Rw0, vM(B,w) = 0. By (�) and (�), for
all w ∈ Rw0, vM(A,w) = 1. Thus M ⊩ OA. Hence, by (C∨), M ⊩ OA ∨ PB.
Altogether, by (C⊃), M ⊩ O(A ∨B) ⊃ (OA ∨ PB).

Ad (PD): This is similar to the previous case and is left to the reader.

Ad (NEC): Let ⊧DP A. Suppose vM(A,w) = 0 for some w ∈ W . However,
then ⟨W,w,R, v⟩ /⊩ A,— a contradiction. Hence, vM(A,w) = 1 for all w ∈ W .
Thus, by (CO), M ⊩ OA.

We now know that all the axioms of DP are semantically valid. That Γ ⊢DP A
implies Γ ⊧DP A can now be shown via the usual induction on the length of the
proof of A. This is safely left to the reader.

Let for the remainder W c be the DP-deductively closed and maximally DP-
non-trivial subsets of WDP. For the completeness proof of DP, we make use of
the following lemmas.1

Lemma 4. If ∆ ∈ W c, then (i) ∆ is prime, i.e. A ∨B ∈ ∆ iff A ∈ ∆ or B ∈ ∆;
(ii) if A ∉ ∆ then ∼A ∈ ∆; (iii) A ∉ ∆ iff A ⊃ � ∈ ∆; (iv) A,B ∈ ∆ iff A ∧B ∈ ∆;
(v) A ≡ B ∈ ∆ iff A,B ∈ ∆ or A,B ∉ ∆.

Proof. Ad (i): Suppose that, for a ∆ ∈ W c, A ∨ B ∈ ∆ and A /∈ ∆ and B /∈ ∆.
Then, since ∆ is maximally DP-non-trivial, ∆ ∪ {A} is trivial and ∆ ∪ {B} is
trivial. Then, for any C, ∆ ∪ {A} ⊢DP C and ∆ ∪ {B} ⊢DP C. Then, by
Theorem 26, ∆ ⊢DP A ⊃ C and ∆ ⊢DP B ⊃ C. But then, by (MP) and (A∨3),
∆ ⊢DP (A ∨B) ⊃ C. Since A ∨B ∈ ∆, by (MP) ∆ ⊢DP C, and since ∆ is DP-
deductively closed, C ∈ ∆. This contradicts the supposition. Hence if A∨B ∈ ∆,
then A ∈ ∆ or B ∈ ∆. The other direction is shown in a similar way. This is left
to the reader.

Ad (ii): Suppose A ∉ ∆. Since ∆ ∈ W c, ∆ ∪ {A} is DP-trivial. Hence,
∆ ∪ {A} ⊢DP ∼A. By Theorem 26, ∆ ⊢DP A ⊃ ∼A. By (A∼1) and (MP),
∆ ⊢DP ∼A. Since ∆ is DP-deductively closed, ∼A ∈ ∆.

Ad (iii): Suppose A ∉ ∆. Assume A ⊃ � ∉ ∆. By (ii), ∼(A ⊃ �) ∈ ∆. By
(A∼⊃) and the deductive closure of ∆, A ∧ ∼� ∈ ∆ and whence by (A∧1) and
(MP) A ∈ ∆,—a contradiction. Suppose now that A ⊃ � ∈ ∆. Assume A ∈ ∆ then
by (MP), � ∈ ∆,—a contradiction to the fact that ∆ is consistent.

Ad (iv): This follows by means of (A∧3), (A∧1) and (A∧2).

Ad (v): Suppose A ≡ B ∈ ∆. Assume that neither A,B ∈ ∆ nor A,B ∉ ∆.
Without loss of generality let A ∉ ∆. Hence by the assumption B ∈ ∆. Since
A ≡ B ∈ ∆ and by (A≡2) and (MP), B ⊃ A. By (MP), A ∈ ∆,—a contradiction.
Suppose now that A,B ∈ ∆. By Fact 5.xvi and (MP), A ≡ B ∈ ∆. Suppose now
that A,B ∉ ∆. Assume A ≡ B ∉ ∆. By (ii), ∼(A ≡ B) ∈ ∆. By (A∼≡) and (MP)
also (A ∨B) ∧ (∼A ∨ ∼B) ∈ ∆. By (iv), A ∨B ∈ ∆. By (i), A ∈ ∆ or B ∈ ∆,—a
contradiction.

1The proof of Lemma 6 is an adaptation of the proof of Lemma 1.7.1 from [19]. The proofs
of Lemma 7 and Lemma 9 rely on insights from [110, pp. 205-207] and [144, p. 341].
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Where Γ ∈ W c and A ∈ W∼
� , we will use the following abbreviations: ΓA

O =
{B ∣ OB ∈ Γ} ∪ {A} and ΓP = {B ∣ PB ∉ Γ}.

Lemma 5. Let Γ ∈ W c. (i) If PA ∈ Γ then CnDP(ΓA
O) ∩ ΓP = ∅; (ii) If PA ∈ Γ

then ΓA
O is DP-non-trivial; (iii) If OA ∉ Γ, then P(A ⊃ �) ∈ Γ; (iv) If OA ∉ Γ,

then ΓA⊃�
O is DP-non-trivial.

Proof. Ad (i): We show by reductio that ΓA
O ⊬DP C for all C ∈ ΓP . Suppose thus

that ΓA
O ⊢DP C for some C ∈ ΓP . Then Γ′ ⊢DP C for some finite Γ′ ⊆ ΓA

O (given
the compactness of DP). Then Γ′∪{A} ⊢DP C by the monotonicity of DP. Then
⊢DP (⋀Γ′∧A) ⊃ C by Theorem 26. Then ⊢DP O((⋀Γ′∧A) ⊃ C) by (NEC). Then

⊢DP P(⋀Γ′∧A) ⊃ PC by (KP) and (MP). By the supposition, {OB ∣ B ∈ Γ′} ⊆ Γ
and PA ∈ Γ. Given the deductive closure of Γ and ⊢DP (O(⋀Γ′)∧PA) ⊃ P(⋀Γ′∧
A) (which follows from Fact 5 (ii)), it follows that P(⋀Γ′∧A) ∈ Γ. Hence PC ∈ Γ,

since Γ is deductively closed and ⊢DP P(⋀Γ′ ∧A) ⊃ PC. But PC /∈ Γ in view of

the construction of ΓP . This is a contradiction. So ΓA
O ⊬DP C for all formulas

C ∈ ΓP . (ii) follows immediately due to (i) and the fact that � ∈ ΓP .
Ad (iii): Assume OA /∈ Γ and P(A ⊃ �) ∉ Γ. Then, by Lemma 4 (ii), ∼P(A ⊃

�) ∈ Γ. Hence by the definition of P, (A∼∼) and the deductive closure of Γ,
O∼(A ⊃ �) ∈ Γ. By (A∼⊃) and (A∧1), ⊢DP ∼(A ⊃ �) ⊃ A. By Fact 5 (viii),
⊢DP O∼(A ⊃ �) ⊃ OA. By (MP), OA ∈ Γ,—a contradiction. Hence P(A ⊃ �) ∈ Γ.
(iv) follows by (ii) and (iii).

Lemma 6. Let Γ ∈ W c and Γ ⊢DP PA. There is a ∆ ⊆ WDP for which (i)
ΓA
O ⊆ ∆, (ii) ΓP ∩∆ = ∅, and (iii) ∆ ∈W c.

Proof. Where ⟨B1,B2, . . .⟩ is a list of the members of WDP, define

∆0 = CnDP(ΓA
O)

∆i+1 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

CnDP(∆i ∪ {Bi+1}) if, for all B ∈ ΓP ,
B /∈ CnDP(∆i ∪ {Bi+1})

∆i otherwise

∆ = ∆0 ∪∆1 ∪ . . .

Ad (i): this holds by the construction.
Ad(ii): By Lemma 5 (i) ∆0 ∩ΓP = ∅. The rest follows by the construction of

the ∆i’s.
Ad (iii): We first show that if Bi ∉ ∆ then Bi ⊃ � ∈ ∆. Suppose Bi ∉ ∆. Hence,

by the construction and the monotonicity of DP, (�) ∆ ∪ {Bi} ⊢DP B for some
B ∈ ΓP . By Theorem 26, ∆ ⊢DP Bi ⊃ B. Assume that Bi ⊃ � ∉ ∆. Hence, by the
construction and the monotonicity of DP, ∆∪ {Bi ⊃ �} ⊢DP C for some C ∈ ΓP .
By Theorem 26, (�) ∆ ⊢DP (Bi ⊃ �) ⊃ C. By simple propositional manipulations,
(�) and (�), ∆ ⊢DP (Bi∨(Bi ⊃ �)) ⊃ (B∨C). By Fact 5 (vii), ⊢DP Bi∨(Bi ⊃ �).
By (MP), ∆ ⊢DP B ∨C. By (ii), B ∨C ∉ ΓP . Hence, Γ ⊢DP P(B ∨C). By (PD),
Γ ⊢DP PB ∨ PC. By Lemma 4 (i), PB ∈ Γ or PC ∈ Γ,—a contradiction. Hence,
Bi ⊃ � ∈ ∆.

Note that by Lemma 5 (ii), ∆0 is DP-non-trivial. Hence, ∆ is DP-non-
trivial by the construction. Suppose B ∉ ∆. By Lemma 4 (iii), B ⊃ � ∈ ∆. Thus,
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by (MP) and (A�1), ∆ ∪ {B} is DP-trivial. Hence, ∆ is maximally DP-non-
trivial.

Definition 18. The binary relation R ⊆ (W c ×W c) is defined as follows: RΓ∆
iff, the following two conditions are met

(a) if OA ∈ Γ then A ∈ ∆, and

(b) if A ∈ ∆ then PA ∈ Γ.

Lemma 7. Let Γ ∈W c. PA ∈ Γ iff there is a ∆ ∈W c for which RΓ∆ and A ∈ ∆.

Proof. Left-right : Suppose PA ∈ Γ. Then, by Lemma 6, there is a ∆ ⊆ WDP

such that (i) ΓA
O ⊆ ∆, (ii) for all C ∈ ΓP , C /∈ ∆, (iii) ∆ ∈W c. We now show that

RΓ∆. Ad (a): if, for some D, OD ∈ Γ then D ∈ ΓA
O, hence D ∈ ∆ by (i). Ad (b):

suppose PE /∈ Γ for some E. Then E ∈ ΓP , hence E /∈ ∆ by (ii).
Right-left : Follows directly by Definition 19.

Lemma 8. Let Γ ∈W c. There is a ∆ ∈W c such that RΓ∆ (i.e. R is serial).

Proof. By Fact 5 (vii), ⊢DP A ∨ (A ⊃ �) and hence by (NEC), (D) and (MP),
⊢DP P(A ∨ (A ⊃ �)). Thus, P(A ∨ (A ⊃ �)) ∈ Γ. By Lemma 7, there is a ∆ ∈W c

such that RΓ∆ and A ∨ (A ⊃ �) ∈ ∆.

Lemma 9. Where Γ ∈W c, OA ∈ Γ iff, for all ∆ ∈W c such that RΓ∆, A ∈ ∆.

Proof. Left-right : This is an immediate consequence of Definition 19.
Right-left : For some Γ ∈ W c and some A ∈ W∼

� , suppose that (�) OA /∈ Γ and
RΓ∆. By Lemma 5 (iii), P(A ⊃ �) ∈ Γ. By Lemma 7 there is a ∆ such that RΓ∆
and A ⊃ � ∈ ∆. Since ∆ is DP-non-trivial, A ∉ ∆.

Lemma 10. If ∆ ∈ W c, then there is a DP-model M such that M ⊩ A for all
A ∈ ∆ and M /⊩ A for all A ∈WDP −∆.

Proof. Let ∆ ∈ W c. We construct a DP-model M = ⟨W c,∆,R, v⟩ where v is
defined as follows:

(i) For all A ∈Wa and all w ∈W c, v(A,w) = 1 iff A ∈ w
(ii) For all A ∈Wa and all w ∈W c, v(∼A,w) = 1 iff A,∼A ∈ w

Note that due to the seriality of R (Lemma 8) M is indeed a DP-model.
We now show that:

(*) for all A ∈WDP and for all w ∈W c, vM(A,w) = 1 iff A ∈ w
The proof proceeds by an induction on the complexity of A. Let w ∈ W c. If
A ∈ Wa, then v(A,w) = 1 iff A ∈ w (by (i)). Then, by (Ca), vM(A,w) = 1 iff
A ∈ w. Hence, (*) is valid for all A ∈Wa and all w ∈W c.

We proceed with the induction step. Depending on the logical form of A, we
distinguish 6 cases (for the 5 connectives ∼,∨,∧,⊃,≡ and for O) and show for each
of them that vM(A,w) = 1 iff A ∈ w.

Case 1: A is of the form ∼B.
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Case 1.1: Suppose B ∈Wa. vM(∼B,w) = 1 iff [by (C∼1’)] (vM(B,w) = 0 or
v(∼B,w) = 1) iff [by the induction hypothesis and (ii)] (B ∉ w or B,∼B ∈ w) iff
[by Lemma 4(ii)] ∼B ∈ w.

Case 1.2: Suppose B ∈WDP ∖Wa.
Case 1.2.1: If B = OC, then vM(∼OC,w) = 1 iff (by Lemma 3) there is a

w′ ∈ Rw for which vM(∼C,w′) = 1 iff [by the induction hypothesis] there is a
w′ ∈ Rw for which ∼C ∈ w′ iff [by Definition 19] P∼C ∈ w iff [by the definition of
P] ∼O∼∼C ∈ w iff [by (A∼∼′)] ∼OC ∈ w.

Case 1.2.2: Otherwise B is of one of the following forms: C ∧ D, C ∨ D,
C ⊃ D, C ≡ D, or ∼C. Let B = C ∧ D. vM(∼(C ∧ D),w) = 1 iff [by (C∼∧)]
vM(∼C ∨ ∼D,w) = 1 iff [by (C∨)] (vM(∼C,w) = 1 or vM(∼D,w) = 1) iff [by the
induction hypothesis] (∼C ∈ w or ∼D ∈ w) iff [by Lemma 4(i)] ∼C ∨ ∼D ∈ w iff [by
(A∼∧) and since w is deductively closed] ∼(C ∧D) ∈ w.

To give another example let B = C ≡ D. vM(∼(C ≡ D),w) = 1 iff [by (C∼≡)]
vM((C∨D)∧(∼C∨∼D),w) = 1 iff [by (C∧)] vM(C∨D,w) = vM(∼C∨∼D,w) = 1 iff
[by (C∨)] ((vM(C,w) = 1 or vM(D,w) = 1) and (vM(∼C,w) = 1 or vM(∼D,w) =
1)) iff [by the induction hypothesis] ((C ∈ w or D ∈ w) and (∼C ∈ w or ∼D ∈ w)) iff
[Lemma 4.i] (C∨D ∈ w and ∼C∨∼D ∈ w) iff [by Lemma 4.iv] (C∨D)∧(∼C∨∼D) ∈
w iff [by (A∼≡)] ∼(C ≡D) ∈ w.

The other cases are analogous and are left to the reader.
Case 2. A is of the form B ∨C. vM(B ∨C,w) = 1 iff [by (C∨)] (vM(B,w) = 1

or vM(C,w) = 1) iff [by the induction hypothesis] (B ∈ w or C ∈ w) iff [by Lemma
4(i)] B ∨C ∈ w.

Case 3. A is of the form B ≡ C. vM(B ≡ C,w) = 1 iff [by (C≡)] vM(B,w) =
vM(C,w) iff ((i) vM(B,w) = vM(C,w) = 1) or ((ii) vM(B,w) = vM(C,w) = 0) iff
[by the induction hypotheses] (((i) B,C ∈ w) or ((ii) B,C ∉ w)) iff [by Lemma
4.v] B ≡ C ∈ w.

The proof for the other classical connectives (cases 4-5) is similar and left to
the reader. We proceed with the modal operator O.

Case 6. OA ∈ w iff [by Lemma 9] A ∈ w′ for all w′ ∈ Rw iff [by the induction
hypothesis] vM(A,w′) = 1 for all w′ ∈ Rw iff [by (CO)] vM(OA,w) = 1.

The rest follows since our actual world is ∆ and due to (*).

Lemma 11. Let Γ ⊆ WDP and Γ /⊢DP A. There is a ∆ ⊆ WDP such that (i)
Γ ⊆ ∆, (ii) A ∉ ∆, and (iii) ∆ ∈W c.

Proof. Where ⟨B1,B2, . . .⟩ is a list of the members of WDP, define

∆0 = CnDP(Γ)

∆i+1 = { CnDP(∆i ∪ {Bi+1}) if A ∉ CnDP(∆i ∪ {Bi+1})
∆i else

∆ = ∆0 ∪∆1 ∪ . . .

Ad (i): This holds by the definition of ∆0.
Ad (ii): This holds by the construction and since A ∉ CnDP(Γ).
Ad (iii): Suppose B ∉ ∆. Assume that B ⊃ � ∉ ∆. By the construction of ∆

and the monotonicity of DP, ∆ ∪ {B ⊃ �} ⊢DP A and whence by Theorem 26,
∆ ⊢DP (B ⊃ �) ⊃ A. Analogously, ∆ ⊢DP B ⊃ A. By (A∨3), ∆ ⊢DP (B ∨ (B ⊃
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�)) ⊃ A. Since by Fact 5 (vii), ⊢DP B ∨ (B ⊃ �), we have by (MP), ∆ ⊢DP A,—a
contradiction to (ii). Hence, B ⊃ � ∈ ∆. Thus, ∆ ∪ {B} ⊢DP � by (MP).

Proof of Theorem 28. Suppose Γ ⊬DP A. Then, by Lemma 11, there is a ∆ ⊇ Γ
such that A /∈ ∆ and ∆ ∈W c. Then, by Lemma 10, there is a DP-model M such
that M ⊩ B for all B ∈ Γ and M⊮A. Hence Γ ⊭DP A.

E.3 Proof outline of Theorem 29

Lemma 12. ⊢UDP (A ∧ ∼A) ⊃ B for all A,B ∈WDP

Proof outline: This is shown by an induction over the complexity of A. For
A ∈Wa∪W∼

O this holds due to (UDP). For the induction step we paradigmatically
consider the case A = C ∧D. By the induction hypothesis, ⊢UDP (C ∧ ∼C) ⊃ B
and ⊢UDP (D ∧ ∼D) ⊃ B. By (A∨3), (�) ⊢UDP ((C ∧ ∼C) ∨ (D ∧ ∼D)) ⊃ B.
By some simple propositional manipulations it is easy to see that ⊢UDP ((C ∧
D) ∧ ∼(C ∧D)) ⊃ ((C ∧ ∼C) ∨ (D ∧ ∼D)). By the latter, (�) and (MP), ⊢UDP

((C ∧D)∧∼(C ∧D)) ⊃ B. The other cases are similar and left to the reader.

Fact 6. (i) A ⊃ (B ⊃ C) ⊢DP (A∧B) ⊃ C and (ii) (A∧B) ⊃ C ⊢DP A ⊃ (B ⊃ C).
The proof of Fact 6 is straightforward in view of the definition of CLuNs�,

and is safely left to the reader.
Let SDL∼ be SDL with the negation symbol ∼ (similarly for CL∼).

Proof outline of Theorem 29: Left-right : By its definition, UDP contains CLpos

and (A∼1). Moreover, By Lemma 12 and Fact 6 (ii), ⊢UDP A ⊃ (∼A ⊃ B) for all
A,B ∈ WDP. Hence UDP contains CL. By definition it also verifies (K), (D)
and (NEC).

Right-left : Since SDL∼ is a strengthening of CL∼, and CL∼ is a strengthening
of CLuNs�, SDL∼ also strengthens CLuNs�. Obviously, SDL∼ also verifies (D),
(K) and (NEC). Moreover, it is easily seen that SDL∼ verifies (KP), (OD) and
(PD). Hence SDL∼ verifies all the axioms and rules of DP. By Fact 6 (i) and
(A∼2), SDL∼ also verifies (UDP). Hence, it verifies all the axioms and rules of
UDP.





Appendix F

(Meta-)properties of the logic
LNP

In this Appendix we prove some further properties of the logic LNP (Section F.1),
provide the soundness and completeness proof for this logic (Section F.2) and
provide the proof of Theorem 32 (Section F.3). In some of the proofs contained
below, we make extensive use of the axioms and rules of the logic CLoNs as
defined in Appendix C.

F.1 Some facts about LNP and CLoNs

The following theorems will come in handy for the proofs of Theorems 30 and
31. Let in the remainder L ∈ {CLoNs,LNP}:

Theorem 35. L is reflexive, transitive and monotonic.

Theorem 36. L is compact (if Γ ⊢L A then Γ′ ⊢L A for some finite Γ′ ⊆ Γ).

Theorem 37. If Γ ⊢L B and A ∈ Γ, then Γ − {A} ⊢L A ⊃ B (Generalized
Deduction Theorem for L).

The proofs of Theorems 35 – 37 are straightforward and safely left to the reader.

Fact 7. (i) OA,OB ⊢LNP O(A ∧B)
(ii) OA,PB ⊢LNP P(A ∧B)
(iii) ⊢LNP (OA ∧OB) ⊃ O(A ∧B)
(iv) ⊢LNP (OA ∧ PB) ⊃ P(A ∧B)
(v) ⊢LNP P(A ⊃ A)
(vi) If ⊢CLoNs A

′ ⊃ A then A ⊃ B ⊢CLoNs A
′ ⊃ B.

(vii) If ⊢CLoNs B ⊃ B′ then A ⊃ B ⊢CLoNs A ⊃ B′.
(viii) ⊢CLoNs (A ∨ (A ⊃ B)) ≡ (((A ∨ (A ⊃ B)) ⊃ B) ⊃ B)
(ix) ⊢CLoNs (A⊃(A⊃B))⊃(A⊃B)
(x) ⊢CLoNs A ∨ (A ⊃ B).

Proof. Ad(i). Suppose OA and OB. By (A∧3), ⊢CLoNs A ⊃ (B ⊃ (A ∧ B)).
By (NEC∼), it follows that ⊢LNP O(A ⊃ (B ⊃ (A ∧B))). By (K), ⊢LNP OA ⊃

171
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O(B ⊃ (A∧B)). By (MP), O(B ⊃ (A∧B)). By (K), OB ⊃ O(A∧B). By (MP),
O(A ∧B).

Ad(ii). Suppose OA and PB. By (A∧3), ⊢CLoNs A ⊃ (B ⊃ (A ∧ B)). By
(NEC∼), ⊢LNP O(A ⊃ (B ⊃ (A ∧B))). By (K), ⊢LNP OA ⊃ O(B ⊃ (A ∧B)). By
(MP), O(B ⊃ (A ∧B)). By (KP), PB ⊃ P(A ∧B). By (MP), P(A ∧B).

Ad(iii)-(iv). Immediate in view of (i),(ii), and Theorem 37.
Ad(v). Since A ⊃ A is a theorem of the positive fragment of CL, it is also a

CLoNs-theorem. By (NEC∼), ⊢LNP O(A ⊃ A). By (D), ⊢LNP P(A ⊃ A).
Ad (vi): Suppose ⊢CLoNs A

′ ⊃A. By (A⊃2), ⊢CLoNs (A′ ⊃(A⊃B))⊃
((A′ ⊃A)⊃(A′ ⊃B)). By (A⊃1) and (MP), A⊃B ⊢CLoNs A

′ ⊃(A⊃B). The rest
follows by multiple applications of (MP).

Ad (vii): The proof is similar and left to the reader.
Ad (viii): Left-to-right : By (MP), (A∨ (A ⊃ B)) ⊃ B,A∨ (A ⊃ B) ⊢CLoNs B.

The rest follows by Theorem 37. Right-to-left : By (A⊃1), (�) ⊢CLoNs B ⊃ (A ⊃
B). By (A∨2), (�) ⊢CLoNs (A ⊃ B) ⊃ (A ∨ (A ⊃ B)). Altogether, by (�), (�),
(vii) and (MP), ⊢CLoNs B ⊃ (A ∨ (A ⊃ B)). Hence, by (vii), ⊢CLoNs ((A ∨
(A ⊃ B) ⊃ B) ⊃ B) ⊃ ((A ∨ (A ⊃ B) ⊃ B) ⊃ (A ∨ (A ⊃ B))). By (A⊃3),
⊢CLoNs ((A ∨ (A ⊃ B) ⊃ B) ⊃ (A ∨ (A ⊃ B))) ⊃ (A ∨ (A ⊃ B)). Hence, again by
(vii), ((A ∨ (A ⊃ B) ⊃ B) ⊃ B) ⊃ (A ∨ (A ⊃ B)).

Ad (ix): By (MP),A, A⊃(A⊃B) ⊢CLoNs A⊃B. By (MP),A,A⊃(A⊃B) ⊢CLoNs

B. By Theorem 37, A⊃(A⊃B) ⊢CLoNs A⊃B, ⊢CLoNs (A⊃(A⊃B))⊃(A⊃B).
Ad (x): By (A∨1), ⊢CLoNs A ⊃ (A ∨ (A ⊃ B)). By (vi), ⊢CLoNs (A ∨ (A ⊃

B)) ⊃ B ⊢CLoNs A ⊃ B. By Theorem 37, ⊢CLoNs ((A∨(A ⊃ B)) ⊃ B) ⊃ (A ⊃ B).
By (A∨2), ⊢CLoNs (A ⊃ B) ⊃ (A∨ (A ⊃ B)). Hence, by (vii), ⊢CLoNs ((A∨ (A ⊃
B)) ⊃ B) ⊃ (A ∨ (A ⊃ B)). By (viii), ⊢CLoNs (A ∨ (A ⊃ B)) ≡ (((A ∨ (A ⊃ B)) ⊃
B) ⊃ B). Thus, by (vii), ⊢CLoNs ((A ∨ (A ⊃ B)) ⊃ B) ⊃ (((A ∨ (A ⊃ B)) ⊃ B) ⊃
B). By (ix) and (MP), ⊢CLoNs ((A ∨ (A ⊃ B)) ⊃ B) ⊃ B. By (viii), (A≡2), and
(MP), ⊢CLoNs A ∨ (A ⊃ B).

F.2 Proofs of Theorems 30 and 31

In order to simplify the notation in the following meta-proofs we define R(w) =
{w′ ∣ Rww′}.

Proof of Theorem 30. Let in the following M = ⟨W,w0,R, v0, v⟩ be an LNP-
model.

It is easy to check that all CL-axiom schemas hold at w0 in M due to (C0),
(C¬), and (C⊃)-(C≡). Similarly, (�) where w ∈ W ∖ {w0}, all CLoNs-axiom
schemas hold at w in M due to (Cl) and (C∼∼)-(C≡).

Ad (NEC∼). Let ⊧CLoNs A. By (CO), (�) and the definition ofR, vM(OA,w0) =
1.

Ad (K). Suppose M ⊩ O(A ⊃ B). By (CO) and (C⊃), for all w ∈ R(w0),
vM(A,w) = 0 or vM(B,w) = 1. Suppose M ⊩ OA, then for all w ∈ R(w0),
vM(A,w) = 1. Hence, for all w ∈ R(w0), vM(B,w) = 1. Thus by (CO), M ⊩ OB.
Hence, by (C⊃), M ⊩ OA ⊃ OB. Altogether, by (C⊃), M ⊩ O(A ⊃ B) ⊃ (OA ⊃
OB).
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Ad (D). Suppose M ⊩ OA. Hence for all w ∈ R(w0), vM(A,w) = 1 (by (CO)).
By the non-emptiness of R, there is a w ∈ R(w0) for which vM(A,w) = 1. By
(CP), M ⊩ PA. By (C⊃), M ⊩ OA ⊃ PA.

Ad (KP). Suppose M ⊩ O(A ⊃ B). By (CO) and (C⊃), (�) for all w ∈ R(w0),
vM(A,w) = 0 or vM(B,w) = 1. Suppose M ⊩ PA. Then, by (CP) there is a
w ∈ R(w0) for which vM(A,w) = 1. Hence, by (�), there is a w ∈ R(w0) such that
vM(B,w) = 1. Thus, by (CP) M ⊩ PB and, by (C⊃), M ⊩ PA ⊃ PB. Altogether,
by (C⊃), M ⊩ O(A ⊃ B) ⊃ (PA ⊃ PB).

Ad (OD). Suppose M ⊩ O(A∨B). By (CO) and (C∨), (⋆) for all w ∈ R(w0),
vM(A,w) = 1 or vM(B,w) = 1. Suppose M /⊩ PB. By (CP): for all w ∈ R(w0),
vM(B,w) = 0. By (⋆), for all w ∈ R(w0), vM(A,w) = 1. Thus, by (CO), M ⊩ OA.
Hence, by (C∨), M ⊩ OA∨PB. Altogether, by (C⊃), M ⊩ O(A∨B) ⊃ (OA∨PB).

Ad (PD). This is similar to the previous case and is left to the reader.
We now know that all axiom schemas and rules of LNP are semantically valid.

That Γ ⊢LNP A implies Γ ⊧LNP A can now be shown via the usual induction on
the length of the proof of A. This is safely left to the reader.

Let in the remainderWc be the LNP-deductively closed and maximally LNP-
non-trivial subsets of WLNP. Moreover, let W ∼

c be the CLoNs-deductively
closed subsets Γ of W∼ where Γ is prime, i.e. for each A ∨B ∈ Γ either A ∈ Γ or
B ∈ Γ.

For the completeness proof of LNP, we make use of the following lemmas.1

Lemma 13. If ∆ ∈Wc, then ∆ is prime.

Proof. Suppose that, for a ∆ ∈ Wc, A ∨ B ∈ ∆ and A /∈ ∆ and B /∈ ∆. Then,
since ∆ is maximally LNP-non-trivial, ∆ ∪ {A} is trivial and ∆ ∪ {B} is trivial.
Then, for any C ∈ WLNP, ∆ ∪ {A} ⊢LNP C and ∆ ∪ {B} ⊢LNP C. Then, by
Theorem 37, ∆ ⊢LNP A ⊃ C and ∆ ⊢LNP B ⊃ C. But then, by (MP) and (A∨3),
∆ ⊢LNP (A ∨ B) ⊃ C. Since A ∨ B ∈ ∆, by (MP) ∆ ⊢LNP C, and since ∆
is LNP-deductively closed, C ∈ ∆. This contradicts the supposition. Hence if
A ∨B ∈ ∆, then A ∈ ∆ or B ∈ ∆.

Where Γ ∈Wc and A ∈W∼, we will use the following abbreviations: ΓO = {B ∣
OB ∈ Γ}, ΓA

O = ΓO ∪ {A}, ΓP = {B ∣ PB ∉ Γ}, ∨ΓP = {⋁Θ ∣ Θ ⊆ ΓP ,Θ is finite}
and ∨ΓB

P = {⋁Θ ∣ Θ ⊆ ΓP ∪ {B},Θ is finite}.

Lemma 14. Let Γ ∈ Wc. (i) If C ∈ CnCLoNs(ΓO) then OC ∈ Γ. (ii) Where
PA ∈ Γ, if C ∈ CnCLoNs(ΓA

O) then PC ∈ Γ.

Proof. Ad (i): Suppose that ΓO ⊢CLoNs C. Then Γ′ ⊢CLoNs C for some finite
Γ′ ⊆ ΓO (given the compactness of CLoNs). Hence, ⊢CLoNs (⋀Γ′) ⊃ C by

Theorem 37. Thus, ⊢LNP O((⋀Γ′) ⊃ C) by (NEC∼). By (K), ⊢CLoNs O⋀Γ′ ⊃
OC. By the deductive closure of Γ, the fact that Γ′ ⊆ Γ and Fact 7 (i), O⋀Γ′ ∈ Γ.
By (MP), OC ∈ Γ.

Ad (ii): Suppose that ΓA
O ⊢CLoNs C. Then Γ′ ⊢CLoNs C for some finite

Γ′ ⊆ ΓA
O (given the compactness of CLoNs). Then Γ′ ∪ {A} ⊢CLoNs C by the

1The proof of Lemma 16 is inspired by the proof of Lemma 1.7.1 from [19].



174 APPENDIX F. (META-)PROPERTIES OF THE LOGIC LNP

monotonicity of CLoNs. Then ⊢CLoNs (⋀Γ′ ∧ A) ⊃ C by Theorem 37. Then

⊢LNP O((⋀Γ′ ∧A) ⊃ C) by (NEC∼). Then ⊢LNP P(⋀Γ′ ∧A) ⊃ PC by (KP) and
(MP). By the supposition, {OB ∣ B ∈ Γ′} ⊆ Γ and PA ∈ Γ. Given the deductive
closure of Γ and ⊢LNP (O(⋀Γ′) ∧ PA)⊃P(⋀Γ′ ∧A) (which follows from Fact 7
(ii)), it follows that P(⋀Γ′ ∧A) ∈ Γ. Hence PC ∈ Γ, since Γ is deductively closed

and ⊢LNP P(⋀Γ′ ∧A) ⊃ PC.

Lemma 15. Let Γ ∈ Wc. (i) Where PA ∈ Γ, ∨ΓP ∩ CnCLoNs(ΓA
O) = ∅. (ii)

Where B ∉ ΓO, ∨ΓB
P ∩CnCLoNs(ΓO) = ∅.

Proof. Ad (i): Let C = ⋁Θ where Θ = {C1, . . . ,Cn} ⊆ ΓP . Suppose C ∈
CnCLoNs(ΓA

O) then by Lemma 14 (ii), P⋁Θ ∈ Γ. Hence, by (PD), ⋁n
i=1 PCi ∈ Γ.

Since Γ is prime, there is an i ∈ {1, . . . , n} for which PCi ∈ Γ and hence Ci ∉ ΓP ,—a
contradiction.

Ad (ii): Let C = ⋁Θ where Θ = {C1, . . . ,Cn} ⊆ (ΓP ∪ {B}). Suppose C ∈
CnCLoNs(ΓO). By Lemma 14 (i), O⋁Θ ∈ Γ. Assume that, where i ∈ {1, . . . , n},
all Ci ∈ ΓP . By (D), P⋁Θ ∈ Γ. By (PD), ⋁n

i=1 PCi ∈ Γ. Hence, since Γ is prime,
there is an i ∈ {1, . . . , n} such that PCi ∈ Γ and hence Ci ∉ ΓP ,—a contradiction.
Hence there is a non-empty J ⊆ {1, . . . , n} such that for each j ∈ J , Cj = B. Hence,
by (OD), OB∨P⋁{1,...,n}∖J Ci ∈ Γ. Thus, by (PD), OB∨⋁{1,...,n}∖J PCi ∈ Γ. Since
B ∉ ΓO and since Γ is prime, there is an i ∈ {1, . . . , n} ∖ J such that PCi ∈ Γ and
hence Ci ∉ ΓP ,—a contradiction.

Lemma 16. Let Γ ∈Wc.

1. Where PA ∈ Γ, there is a ∆ ⊆W∼ for which (i) ΓA
O ⊆ ∆, (ii) ∨ΓP ∩∆ = ∅,

and (iii) ∆ ∈W ∼
c .

2. Where B ∉ ΓO, there is a ∆ ⊆W∼ for which (i) ΓO ⊆ ∆, (ii) ∨ΓB
P ∩∆ = ∅,

and (iii) ∆ ∈W ∼
c .

Proof. Let ⟨ΓO,ΓP⟩ ∈ {⟨ΓA
O,

∨ ΓP ⟩, ⟨ΓO,
∨ ΓB

P ⟩}. Where ⟨B1,B2, . . .⟩ is a list of the
members of W∼, define ∆0 = CnCLoNs(ΓO) and ∆ = ∆0 ∪∆1 ∪ . . . where

∆i+1 = { CnCLoNs(∆i ∪ {Bi+1}) if ΓP ∩CnCLoNs(∆i ∪ {Bi+1}) = ∅
∆i otherwise

Ad (i): this holds by the construction and the reflexivity of CLoNs.
Ad (ii): By Lemma 15 ∆0 ∩ΓP = ∅. The rest follows by the construction.
Ad (iii): We first show that ∆ is CLoNs-deductively closed. Suppose there

is a Bi ∉ ∆ such that ∆ ⊢CLoNs Bi. Then, by the construction of ∆, there is
a D ∈ ΓP such that ∆ ∪ {Bi} ⊢CLoNs D and hence by Theorem 37, ∆ ⊢CLoNs

Bi ⊃ D. However, by (MP) also ∆ ⊢CLoNs D. By the compactness of CLoNs
there is a ∆i for which ∆i ⊢CLoNs D. By the construction ∆i = CnCLoNs(∆i)
and whence D ∈ ∆i. Hence, D ∈ ∆,—a contradiction with (ii).

We now show that ∆ is prime. Suppose A1 ∨ A2 ∈ ∆. Assume A1,A2 ∉ ∆.
Hence, by the construction of ∆, ∆∪ {A1} ⊢CLoNs D1 and ∆∪ {A2} ⊢CLoNs D2

for some D1,D2 ∈ ΓP. By Theorem 37, ∆ ⊢CLoNs A1 ⊃ D1 and ∆ ⊢CLoNs

A2 ⊃ D2. By some simple propositional manipulations, ∆ ⊢CLoNs (A1 ∨ A2) ⊃
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(D1 ∨D2). By (MP), ∆ ⊢CLoNs D1 ∨D2 and hence D1 ∨D2 ∈ ∆. However, by
the definition of ΓP, D1 ∨D2 ∈ ΓP,—a contradiction with (ii).

Definition 19. The binary relation R ⊆ (Wc ×W ∼
c ) is defined as follows: RΓ∆

iff the following two conditions are met

(a) if OA ∈ Γ then A ∈ ∆, and

(b) if A ∈ ∆ then PA ∈ Γ.

In view of the definition of R, the following holds:

Lemma 17. Where Γ ∈ Wc, PA ∈ Γ iff there is a ∆ ∈ W ∼
c such that RΓ∆ and

A ∈ ∆.

Proof. Left-right : Suppose PA ∈ Γ. Then, by Lemma 16.1, there is a ∆ ⊆ W∼

such that (i) ΓA
O ⊆ ∆, (ii) for all C ∈ ΓP , C /∈ ∆, (iii) ∆ ∈W ∼

c . We now show that
RΓ∆. Ad (a): if, for some D, OD ∈ Γ then D ∈ ΓA

O, hence D ∈ ∆ by (i). Ad (b):
suppose PE /∈ Γ for some E ∈W∼. Then E ∈ ΓP , hence E /∈ ∆ by (ii).

Right-left : Follows directly by Definition 19.

Lemma 18. For every Γ ∈ Wc, there is a ∆ ∈ W ∼
c such that RΓ∆ (i.e. R is

non-empty).

Proof. By Fact 7 (v), ⊢LNP P(A ⊃ A). Hence, P(A ⊃ A) ∈ Γ for every Γ ∈ Wc.
But then, by Lemma 17, there is a ∆ ∈W ∼

c such that RΓ∆ and A ⊃ A ∈ ∆. Hence
R is non-empty as required.

Lemma 19. Where Γ ∈Wc, OA ∈ Γ iff, for all ∆ ∈W ∼
c such that RΓ∆, A ∈ ∆.

Proof. Left-right : This is an immediate consequence of Definition 19.
Right-left : Suppose OA ∉ Γ. Hence, A ∉ ΓO. By Lemma 16.2, there is a

∆ ⊆ W∼ for which (i) ΓO ⊆ ∆, (ii) (ΓP ∪ {A}) ∩ ∆ = ∅, and (iii) ∆ ∈ W ∼
c . We

now show that RΓ∆. Ad (a): if, for some D, OD ∈ Γ then D ∈ ΓO, hence D ∈ ∆
by (i). Ad (b): suppose PE /∈ Γ for some E ∈W∼. Then E ∈ ΓP , hence E /∈ ∆ by
(ii).

Lemma 20. Where ∆ ∈Wc, there is an LNP-model M such that M ⊩ A for all
A ∈ ∆ and M /⊩ A for all A ∈WLNP ∖∆.

Proof. Let ∆ ∈ Wc. We construct an LNP-model M = ⟨{∆} ∪W ∼
c ,w0,R, v0, v⟩

such that:
(i) w0 = ∆
(ii) For all A ∈Wa, v0(A,w0) = 1 iff A ∈ w0

(iii) For all A ∈W∼
l and all w ∈W ∼

c , v(A,w) = 1 iff A ∈ w
By Lemma 18, R is non-empty. We now show that:

(*) (a) for all A ∈WLNP, vM(A,w0) = 1 iff A ∈ w0,
(b) for all A ∈W∼ and all w ∈W ∼

c , vM(A,w) = 1 iff A ∈ w.

The proof proceeds as usual by an induction on the complexity of A. Let w ∈
{w0} ∪W ∼

c , and A ∈ Wa. If w = w0, then, by (ii), v0(A,w0) = 1 iff A ∈ w0. By
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(C0), it follows that vM(A,w) = 1 iff A ∈ w. If w ≠ w0, then, by (iii), v(A,w) = 1
iff A ∈ w. By (Cl), it follows that vM(A,w) = 1 iff A ∈ w. Hence, for all
w ∈ {w0} ∪W ∼

c , vM(A,w) = 1 iff A ∈ w and (*) is valid for all A ∈Wa.

Depending on the logical form of A, we distinguish 8 cases (6 for the connec-
tives ∼,¬,∨,∧,⊃,≡, and 2 for the modal operators O and P) and show for each of
them that vM(A,w) = 1 iff A ∈ w.

Case 1. Let w ∈ W ∼
c . We show that vM(∼A,w) = 1 iff ∼A ∈ w. Either

∼A ∈W∼
l , or A has one of the forms ∼B,B∨C,B∧C,B ⊃ C, or B ≡ C (note that,

since w ≠ w0, A cannot have the form OB or PB).

If ∼A ∈W∼
l , then, by (Cl), vM(∼A,w) = 1 iff v(∼A,w) = 1. By (iii), it follows

that vM(∼A,w) = 1 iff ∼A ∈ w.

If A has the form ∼B, then, by (C∼∼), vM(∼∼B,w) = 1 iff vM(B,w) = 1. By
the induction hypothesis, vM(∼∼B,w) = 1 iff B ∈ w. By (A∼∼), vM(∼A,w) = 1 iff
∼A ∈ w.

If A has the form B ∨ C, then, by (C∼∨), vM(∼(B ∨ C),w) = 1 iff vM(∼B ∧
∼C,w) = 1 iff [by (C∧)] vM(∼B,w) = 1 and vM(∼C,w) = 1 iff [by the induction
hypothesis] ∼B ∈ w and ∼C ∈ w iff [by (A∧1), (A∧2), and (A∧3)] ∼B ∧ ∼C ∈ w iff
[by (A∼∨)] ∼A ∈ w.

The cases where A is of one of the forms B ∧C,B ⊃ C, or B ≡ C are similar
and left to the reader.

Case 2. Let w = w0. Suppose vM(¬A,w) = 1. By (C¬), vM(A,w) = 0. By
the induction hypothesis, A /∈ w. Then, since w is maximally LNP-non-trivial,
w ∪ {A} is LNP-trivial and w ∪ {A} ⊢LNP ¬A. By Theorem 37, it follows that
w ⊢LNP A ⊃ ¬A. Then, since w is LNP-deductively closed, A ⊃ ¬A ∈ w and, by
(A¬1) and (MP), ¬A ∈ w.

Suppose ¬A ∈ w. We show via reductio that A /∈ w. Suppose thus that A ∈ w.
Then, by (A¬2), (MP), and since w is LNP-deductively closed, B ∈ w for any
B ∈WLNP. This contradicts the non-triviality of w, hence A /∈ w. But then, by
the induction hypothesis vM(A,w) = 0 and, by (C¬), vM(¬A,w) = 1.

Case 3. Let w ∈ {w0} ∪W ∼
c . Suppose vM(A ∨ B,w) = 1. Then, by (C∨),

vM(A,w) = 1 or vM(B,w) = 1. By the induction hypothesis, A ∈ w or B ∈
w. Hence, by (A∨1), (A∨2), (MP), and the fact that w is LNP-(in case w =
w0)/CLoNs-(in case w ∈W ∼

c )-deductively closed, A ∨B ∈ w.

Suppose A ∨B ∈ w. If w ≠ w0, then, by the definition of W ∼
c , A ∈ w or B ∈ w.

If w = w0, then, by Lemma 13, A ∈ w or B ∈ w. By the induction hypothesis,
vM(A,w) = 1 or vM(B,w) = 1. Hence, by (C∨), vM(A ∨B,w) = 1.

Case 4. Let w ∈ {w0} ∪W ∼
c . Suppose vM(A ⊃ B,w) = 1. Then by (C⊃),

vM(A,w) = 0 or vM(B,w) = 1. By the induction hypothesis, A ∉ w or B ∈ w. Let
now w ∈W ∼

c . If A ∉ w, then, since ⊢CLoNs A ∨ (A ⊃ B) by Fact 7 (x) and since
w is prime, also A ⊃ B ∈ w. If B ∈ w, then since by (A⊃1) ⊢CLoNs B ⊃ (A ⊃ B)
and by (MP), also A ⊃ B ∈ w. The same argument applies to w = w0 since also
⊢LNP A ∨ (A ⊃ B), and (A⊃1) and (MP) are also valid in LNP.

Suppose A ⊃ B ∈ w. By (MP), if A ∈ w then B ∈ w. By the induction
hypothesis, if vM(A,w) = 1 then vM(B,w) = 1. Hence, by (C⊃), vM(A ⊃ B,w) =
1.

The proof for the other classical connectives (cases 4-6) is similar and left to
the reader. We proceed with the cases for O and P.
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Case 7. Let w = w0. By Lemma 19, OA ∈ w0 iff A ∈ w for all w such that
Rw0w. Hence, by the induction hypothesis, OA ∈ w0 iff vM(A,w) = 1 for all w
such that Rw0w. But then, by (CO), OA ∈ w0 iff vM(OA,w0) = 1.

Case 8. Let w = w0. By Lemma 17, PA ∈ w0 iff A ∈ w for some w such that
Rw0w. Hence, by the induction hypothesis, PA ∈ w0 iff vM(A,w) = 1 for some w
such that Rw0w. But then, by (CP), PA ∈ w0 iff vM(PA,w0) = 1.

The rest follows by (i) and (*).

Lemma 21. Let Γ ⊆WLNP and Γ /⊢LNP A. There is a ∆ ⊆WLNP such that (i)
Γ ⊆ ∆, (ii) A ∉ ∆, and (iii) ∆ ∈Wc.

Proof. Where ⟨B1,B2, . . .⟩ is a list of the members ofWLNP, define ∆0 = CnLNP(Γ)
and ∆ = ∆0 ∪∆1 ∪ . . . where

∆i+1 = { CnLNP(∆i ∪ {Bi+1}) if A ∉ CnLNP(∆i ∪ {Bi+1})
∆i else

Ad (i): This holds by the construction of ∆ and the reflexivity of LNP.
Ad (ii): This holds by the construction and since A ∉ CnLNP(Γ).
Ad (iii): Assume that B ∉ ∆ and ∆ ⊢LNP B. Hence, by the construction of ∆,

∆∪{B} ⊢LNP A and whence by Theorem 37, ∆ ⊢LNP B ⊃ A. But then by (MP),
∆ ⊢LNP A. Thus, by the compactness of LNP and since each ∆i = CnLNP(∆i),
there is a ∆i such that A ∈ ∆i,—a contradiction to (ii).

Suppose B ∉ ∆. Assume that ¬B ∉ ∆. By the construction of ∆ and the
monotonicity of LNP, ∆ ∪ {¬B} ⊢LNP A and whence by Theorem 37, ∆ ⊢LNP

¬B ⊃A. Analogously, ∆ ⊢LNP B ⊃A. By (A∨3), ∆ ⊢LNP (B ∨ ¬B)⊃A. Since
⊢CL B∨¬B, also ∆ ⊢LNP B∨¬B. By (MP), ∆ ⊢LNP A,—a contradiction to (ii).
Hence, ¬B ∈ ∆. Thus, ∆ ∪ {B} is CL-trivial and hence also LNP-trivial.

Proof of Theorem 31. Suppose Γ /⊢LNP A. Then, by Lemma 21, there is a ∆ ⊇ Γ
such that A /∈ ∆ and ∆ ∈ Wc. Then, by Lemma 20, there is an LNP-model M
such that M ⊩ B for all B ∈ Γ and M /⊩ A. Hence Γ /⊧LNP A.

F.3 Proof outline of Theorem 32

We first show that (ULNP1) and (ULNP2) can be generalized to their derived
schemas (ULNP1’) and (ULNP2’), which hold without the restriction that A is
an atomic proposition:

Lemma 22. The schemas (ULNP1’) and (ULNP2’) are ULNP-valid:

P(A ∧ ∼A) ⊃ B (ULNP1’)

¬O(A ∨ ∼A) ⊃ B (ULNP2’)

Proof outline: This is shown by an induction over the complexity of A. Where
A ∈Wa, this holds due to (ULNP1) and (ULNP2). For the induction step, the
proof proceeds analogously to the proof of Lemma 12 and is safely left to the
reader.
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Lemma 23. If Γ ⊢ULNP A then Γ¬ ⊢SDL π(A).

Proof. It easily checked that, under the transformation given in Section 6.2.6, all
of (K), (D), (KP), (OD), (PD), (ULNP1), and (ULNP2) are SDL-valid. More-
over, since CLoNs is a proper fragment of CL, (NEC∼) too is valid in SDL
(assuming again the transformation from Section 6.2.6).

Lemma 24. If Γ¬ ⊢SDL π(A) then Γ ⊢ULNP A.

Proof. By the definition, ULNP verifies (K) and (D). It remains to show that
ULNP verifies (i) all instances of PA ≡ ¬O∼A and (ii) the rule “If ⊢CL∼ A then
⊢ULNP OA”, where CL∼ is classical propositional logic with the negation symbol
∼ behaving classically.

Ad (i). Left-Right. By (A∧3), PA ⊃ (O∼A ⊃ (PA ∧ O∼A)). By Fact 7 (iv),
(PA ∧ O∼A) ⊃ P(A ∧ ∼A). Thus, by some propositional manipulations in CL,
PA ⊃ (O∼A ⊃ P(A∧∼A)), which is CL-equivalent to (�) PA ⊃ (¬O∼A∨P(A∧∼A)).
Suppose now that PA. By (�), ¬O∼A ∨ P(A ∧ ∼A). Moreover, by (ULNP1’),
P(A ∧ ∼A) ⊃ ¬O∼A. Thus, by (MP) and some simple CL-manipulations, we
obtain ¬O∼A.
Right-left. By CL, O(A∨∼A)∨¬O(A∨∼A). By (OD), O(A∨∼A) ⊃ (O∼A∨PA).
Thus, by some propositional manipulations in CL, (O∼A ∨ PA) ∨ ¬O(A ∨ ∼A).
The latter formula is CL-equivalent to ¬O∼A ⊃ (PA ∨ ¬O(A ∨ ∼A)). Suppose
now that ¬O∼A. By (MP), PA ∨ ¬O(A ∨ ∼A). By (ULNP2’), ¬O(A ∨ ∼A) ⊃ PA.
Thus, by (MP) and some simple CL-manipulations, PA.

Ad (ii). Note that A ∈W∼ iff π(A) ∈W. Thus, where
(A∼1): (A ⊃ ∼A) ⊃ ∼A,
(A∼2): A ⊃ (∼A ⊃ B),

it follows by the definitions of CLoNs and CL that ⊢CLoNs∪{(A∼1),(A∼2)} A iff
⊢CL π(A). We show that (i) if ⊢CLoNs A, then ⊢ULNP A, (ii) ⊢ULNP O((A ⊃
∼A) ⊃ ∼A), and (iii) ⊢ULNP O(A ⊃ (∼A ⊃ B)).
(i) In case A is a CLoNs-theorem, OA follows immediately in view of (NEC∼).
(ii) (A ∨ ∼A) ⊃ ((A ⊃ ∼A) ⊃ ∼A) is an instance of the theorem (A ∨B) ⊃ ((A ⊃
B) ⊃ B) of positive CL, thus it is a CLoNs-theorem. By (NEC∼), ⊢ULNP

O((A∨∼A) ⊃ ((A ⊃ ∼A) ⊃ ∼A)). By (K), ⊢ULNP O(A∨∼A) ⊃ O((A ⊃ ∼A) ⊃ ∼A).
By CL, (�) ⊢ULNP O((A ⊃ ∼A) ⊃ ∼A) ∨ ¬O(A ∨ ∼A). We know by (ULNP2’)
that ¬O(A ∨ ∼A) ⊃ O((A ⊃ ∼A) ⊃ ∼A). Hence, by (�) and CL, ⊢ULNP O((A ⊃
∼A) ⊃ ∼A).
(iii) (A ⊃ (∼A ⊃ B))∨(A∧∼A) is an instance of the theorem (A ⊃ (B ⊃ C))∨(A∧
B) of positive CL, thus it is a CLoNs-theorem. By (NEC∼), ⊢ULNP O((A ⊃
(∼A ⊃ B))∨ (A∧ ∼A)). By (OD), (�) ⊢ULNP O(A ⊃ (∼A ⊃ B))∨P(A∧ ∼A). We
know by (ULNP1’) that P(A ∧ ∼A) ⊃ O(A ⊃ (∼A ⊃ B)). Hence, by (�) and CL,
⊢ULNP O(A ⊃ (∼A ⊃ B)).

Theorem 32 follows immediately by Lemmas 23 and 24.



Appendix G

(Meta-)properties of the logic
PMDL

In this Appendix we provide a syntactic characterization of the logic DP (Section
G.1), prove soundness and completeness for the logic PMDL (Section G.2) and
outline the proof of Theorem 34 (Section G.3).

G.1 The rules of LP

LP is axiomatized as follows:

A,B ⊢ A ∧B (AND)

A ∧B ⊢ A (AN1)

A ∧B ⊢ B (AN2)

A ⊢ A ∨B (OR1)

B ⊢ A ∨B (OR2)

∼(A ∧B) ⊢ ∼A ∨ ∼B (DM1)

∼A ∨ ∼B ⊢ ∼(A ∧B) (DM2)

∼A ∧ ∼B ⊢ ∼(A ∨B) (DM3)

∼(A ∨B) ⊢ ∼A ∧ ∼B (DM4)

A ⊢ ∼∼A (DN1)

∼∼A ⊢ A (DN2)

⊢ A ∨ ∼A (EM)
and

If A,B ⊢D and A,C ⊢D, then A,B ∨C ⊢D. (RBC)

For a semantical characterization of LP, see e.g. [145, 146].
In footnote 1 in Section 4.2 we required – for technical reasons – that ev-

ery LLL of an AL in standard format contains all classical connectives. Strictly
speaking, PMDL does not feature the classical negation and implication con-
nectives due to its definition ‘on top’ of LP. However, these connectives can
easily be ‘superimposed’ on LP, as is done in [19, Ch. 7]. For more information
on superimposing the classical connectives in order to obtain an AL in standard
format, see e.g. [19, Sec. 4.3], [172, Sec. 2.8] or [181, Sec. 2.7].

G.2 Soundness and completeness of PMDL

Fact 8. (i) If ∆ ∪ {A} ⊢PMDL C and ∆ ∪ {B} ⊢PMDL C then ∆ ∪ {A ∨
B} ⊢PMDL C.

179



180 APPENDIX G. (META-)PROPERTIES OF THE LOGIC PMDL

(ii) The following axiom is PMDL-derivable for each J ⊆∅ I:

◻JA ⊢ ◇JA (D◻J)

It is easy to see that (i) follows by means of (RBC) and (ii) by means of (T◻J)
and (T◇J).

As ML and MDL are fairly standard normal modal logics, we do not prove
soundness and completeness theorems for these logics. Instead, we prove sound-
ness and completeness for the more complex system PMDL.

Where R ⊆ W ×W we use in the remainder the notation Rw = {w′ ∈ W ∣
Rww′}.

Lemma 25. Where M = ⟨W,RO, ⟨RJ⟩J⊆∅I , v,w0⟩ is a PMDL-model, we have:
for all w ∈W , if M,w /⊧ A then M,w ⊧ ∼A.

Proof. We show this by an induction over the length of A. Let A ∈Wa. Suppose
M,w /⊧ A. By (C∼), M,w ⊧ ∼A.

For the induction step let first A = B ∧C. Suppose M,w /⊧ B ∧C. By (C∧),
M,w /⊧ B or M,w /⊧ C. By the induction hypothesis, M,w ⊧ ∼B or M,w ⊧ ∼C.
By (C∨), M,w ⊧ ∼B ∨ ∼C. By (C∼∧), M,w ⊧ ∼(B ∧ C). The cases A = B ∨ C,
and A = ∼B are similar and left to the reader.

Let A = OB. Suppose M,w /⊧ ∼OB. By (C∼O) M,w /⊧ P∼B. By (CP)
there is no w′ ∈ ROw for which M,w′ ⊧ ∼B. By the induction hypothesis, for
all w′ ∈ ROw, M,w′ ⊧ ∼∼B and hence by (C∼∼), M,w′ ⊧ B. Thus, by (CO),
M,w ⊧ OB.

The case A = ◻JB is analogous and left to the reader.
Let A = PB. Suppose M,w /⊧ PB. Hence, by (CP) there is no w′ ∈ ROw for

which M,w′ ⊧ B. By the induction hypothesis, for all w′ ∈ ROw, M,w′ ⊧ ∼B.
Hence, by (CO), M,w ⊧ O∼B. By (C∼P), M,w ⊧ ∼PB.

The case A =◇JB is analogous and left to the reader.

Theorem 38 (Soundness of PMDL). If Γ ⊢PMDL A then Γ⊩PMDLA.

Proof. Let in the following M = ⟨W,RO, ⟨RJ⟩J⊆∅I , v,w0⟩ be a PMDL-model,
w ∈W , and J ⊆∅ I.

Ad (AND): Suppose M,w ⊧ A,B, then by (C∧), M,w ⊧ A ∧B.
Ad (AN1): Suppose M,w ⊧ A ∧B, then by (C∧), M,w ⊧ A. The proof for

(AN2) is analogous.
Ad (OR1): Suppose M,w ⊧ A, then by (C∨), M,w ⊧ A ∨B. The proof for

(OR2) is analogous.
Ad (DM1): Suppose M,w ⊧ ∼(A ∧B), then by (C∼∧), M,w ⊧ ∼A ∨ ∼B. The

proof for (DM2), (DM3) and (DM4) is analogous.
Ad (DN1): Suppose M,w ⊧ A, then by (C∼∼), M,w ⊧ ∼∼A. The proof for

(DN2) is analogous.
Ad (EM): This holds by (C∨) and Lemma 25 for all w ∈W .
Ad (4◻J): Suppose M,w ⊧ ◻JA. Hence by (C◻J), for all w′ ∈ RJw, M,w′ ⊧

A. Let for some w′ ∈ RJw, RJw
′w′′. Then by the transitivity of RJ also RJww

′′

and hence M,w′′ ⊧ A. Hence, M,w ⊧ ◻J ◻J A.
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Ad (4◇J): Suppose M,w ⊧ ◇J ◇J A. Hence by (C◇J), there is a w′ ∈ RJw
and a w′′ ∈ RJw

′ such that M,w′′ ⊧ A. By the transitivity of RJ also RJww
′′

and hence M,w ⊧◇JA.
Ad (AND◻J): Suppose M,w ⊧ ◻JA and M,w ⊧ ◻JB. Hence, by (C◻J) and

(C∧), for all w′ ∈ RJw, M,w′ ⊧ A∧B. Hence, again by (C◻J), M,w ⊧ ◻J(A∧B).
Ad (ANDO): The proof is analogous to the one for (AND◻J).
Ad (AND′◻J): SupposeM,w ⊧ ◻JA,◇JB. Hence, by (C◻J) for all w′ ∈ RJw,

M,w′ ⊧ A. Moreover, by (C◇J) there is a w′′ ∈ RJw for which M,w′′ ⊧ B. Thus
by (C∧), M,w′′ ⊧ A ∧B. By (C◇J), M,w ⊧◇J(A ∧B).

Ad (AND′O): The proof is analogous to the one for (AND′◻J).
Ad (OR◇J): Suppose M,w ⊧ ◇J(A ∨ B). Hence there is a w′ ∈ RJw for

which M,w′ ⊧ A ∨B. By (C∨), M,w′ ⊧ A or M,w′ ⊧ B. Hence, by (C◇J) and
(C∨), M,w ⊧◇JA ∨◇JB.

Ad (ORP): The proof is analogous to the one for (OR◇J).
Ad (OR◻J): Suppose M,w ⊧ ◻J(A ∨B). Hence, for all w′ ∈ RJw, M,w′ ⊧

A ∨ B. Suppose there is no w′ ∈ RJw for which M,w′ ⊧ B. Then by (C∨) for
all w′ ∈ RJw, M,w′ ⊧ A and hence M,w ⊧ ◻JA. Suppose there is a w′ ∈ RJw
for which M,w′ ⊧ B then by (C◇J), M,w ⊧ ◇JB. Altogether, by (C∨), M,w ⊧
◻JA ∨◇JB.

Ad (ORO): The proof is analogous to the one for (OR◻J).
Ad (DO): Suppose M,w ⊧ OA. Hence for all w′ ∈ ROw, M,w′ ⊧ A. By the

seriality of RO there is such a w′ ∈ ROw and hence by (CP), M,w ⊧ PA.
Ad (T◻J): Suppose M,w ⊧ ◻JA. By (C◻J) for all w′ ∈ RJw, M,w ⊧ A.

Since RJ is reflexive, RJww and hence M,w ⊧ A.
Ad (T◇J): Suppose M,w ⊧ A. By the reflexivity of RJ , also RJww. Hence,

by (C◇J), M,w ⊧◇JA.
Ad (R∼O) and (RP∼): Note that by (C∼O), M,w ⊧ ∼OA iff M,w ⊧ P∼A.
Ad (R∼◻) and (R◇∼): The proof is analogous and left to the reader.
Ad (R∼P) and (RO∼): Note that by (C∼P) M,w ⊧ O∼A iff M,w ⊧ ∼PA.
Ad (R◻∼) and (R∼◇): The proof is analogous and left to the reader.
We now show by means of an induction on the number of inference steps

needed to derive some formula A that each w ∈W is PMDL-deductively closed.
For proofs of length 1 this has been demonstrated already above.
For the induction step suppose Γ ⊢PMDL A and A is derived in n+1 steps. In

case A is derived by (AND), (AN1), (AN2), (OR1), (OR2), (DM1), (DM2),
(DM3), (DM4), (DN1), (DN2), (EM), (4◻J), (4◇J), (AND◻J), (AND′◻J),
(OR◻J), (OR◇J), (D◻J), (T◻J), (T◇J), (ANDO), (AND′O), (ORP), (ORO),
(R∼O), (RP∼), (RO∼), (R∼P), (R∼◻), (R◇∼), (R◻∼), or (R∼◇), we have already
shown above that all w ∈W are closed under these rules.

Suppose A is derived by means of (RBC) from D and B ∨ C and the fact
that {D,B} ⊢PMDL A and {D,C} ⊢PMDL A. By the induction hypothesis
M,w ⊧ B,D implies M,w ⊧ A and M,w ⊧ C,D implies M,w ⊧ A. Suppose
M,w ⊧D,B ∨C. By (C∨), M,w ⊧D,B or M,w ⊧D,C and hence M,w ⊧ A.

Suppose A = ◻JA
′ is derived by means of (INH◻J) from ◻JB and the fact

that B ⊢PMDL A. Suppose M,w ⊧ ◻JB. Hence, by (C◻J), for all w′ ∈ RJw,
M,w′ ⊧ B. By the induction hypothesis if M,w′ ⊧ B then M,w′ ⊧ A′. Hence,
M,w′ ⊧ A′. Hence, by (C◻J), M,w ⊧ ◻JA

′.
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Suppose A = ◇JA
′ is derived by means of (INH◇J) from ◇JB and the fact

that B ⊢PMDL A
′. Suppose M,w ⊧◇JB. Hence, by (C◇J), there is a w′ ∈ RJw

for which M,w′ ⊧ B. By the induction hypothesis, if M,w′ ⊧ B then M,w′ ⊧ A′.
Hence, M,w′ ⊧ A′. Hence, by (C◇J), M,w ⊧◇JA

′.
The arguments for the rules (INHO) and (INHP) are analogous and left to

the reader.

Definition 20. A set Γ of formulas is prime iff for all A∨B ∈ Γ, Γ∩ {A,B} ≠ ∅.
Where L is a logic, Γ is L-deductively closed iff, if Γ ⊢L A then A ∈ Γ.

Definition 21. Let ΨPMDL be the set of all prime and PMDL-deductively
closed subsets of WMDL.

Definition 22. We define RJ ⊆ ΨPMDL × ΨPMDL as follows: RJΓ∆ iff (a)
whenever ◻JA ∈ Γ then A ∈ ∆, and (b) whenever A ∈ ∆ then ◇JA ∈ Γ.

Definition 23. We define RO ⊆ ΨPMDL × ΨPMDL as follows: ROΓ∆ iff (a)
whenever OA ∈ Γ then A ∈ ∆, and (b) whenever A ∈ ∆ then PA ∈ Γ.

Lemma 26. For all Γ ⊆WMDL,B ∈WMDL we have:

(i) If Γ ⊢PMDL B, then {OA ∣ A ∈ Γ} ⊢PMDL OB.

(ii) Where Γ is finite, if Γ ⊢PMDL B, then P⋀Γ ⊢PMDL PB.

(iii) If Γ ⊢PMDL B, then {◻JA ∣ A ∈ Γ} ⊢PMDL ◻JB.

(iv) Where Γ is finite, if Γ ⊢PMDL B, then ◇J ⋀Γ ⊢PMDL ◇JB.

Proof. Ad (i): We prove the statement by means of an induction on the number
of inference steps n needed to derive B from Γ in PMDL.

“n = 1”: In case B is derived by a rule R ∉ {(AND), (ANDO), (AND′O),
(AND◻J), (AND′◻J) ∣ J ⊆∅ I} from some A ∈ Γ, then A ⊢PMDL B and hence
by (INHO) also OA ⊢PMDL OB.

Suppose R = (AND) and B is derived from A1,A2 ∈ Γ. Note that OA1,OA2

⊢PMDL O(A1 ∧A2) by (ANDO).
Suppose R = (ANDO) and B = O(A1 ∧ A2) is derived from OA1,OA2 ∈ Γ.

Then by (ANDO), OOA1,OOA2 ⊢PDML O(OA1 ∧OA2). By (INHO), O(OA1 ∧
OA2) ⊢PMDL OO(A1 ∧A2). Altogether, OOA1,OOA2 ⊢PMDL OO(A1 ∧A2).

Suppose R = (AND′O) and B = P(A1 ∧ A2) is derived from OA1,PA2 ∈
Γ. By (ANDO), OOA1,OPA2 ⊢PMDL O(OA1 ∧ PA2). By (INHO), O(OA1 ∧
PA2) ⊢PMDL OP(A1 ∧ A2). Hence, altogether, OOA1,OPA2 ⊢PMDL OP(A1 ∧
A2).

The arguments for R ∈ {(AND◻J), (AND′◻J)∣ J ⊆∅ I} are analogous and left
to the reader.

“n ⇒ n + 1”: Suppose B is derived from Γ in n + 1 inference steps from
A1, . . . ,Am by means of ruleR. By the induction hypothesis {OA ∣ A ∈ Γ} ⊢PMDL

OAi for all i ≤ m. If R ∉ {(AND), (ANDO), (AND′O), (AND◻J), (AND′◻J)
∣ J ⊆∅ I}, then m = 1 and A1 ⊢PMDL B and hence by (INHO) also OA1 ⊢PMDL

OB. In case R ∈ {(AND), (ANDO), (AND′O), (AND◻J), (AND′◻J) ∣ J ⊆∅ I}
the argument is analogous to the one given above and is left to the reader.
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Ad (iii): This case is analogous to case (i) and left to the reader.

Ad (ii): We again proceed by means of an induction similar as in (i). Where
Γ ⊢i A means that A is derived from Γ in PDML in i steps, we show by an in-
duction that for any A1, . . . ,Am for which Γ ⊢i A1, . . . ,Am we have P⋀Γ ⊢PDML

P(A1∧ . . .∧Am). We show that this holds for any i ∈ N and statement (ii) follows
immediately.

“i = 1”: In case B is derived by a rule R ∉ {(AND), (ANDO), (AND′O),
(AND◻J), (AND′◻J) ∣ J ⊆∅ I} from some A ∈ Γ, then A ⊢PMDL B and hence
by (INHP) also PA ⊢PMDL PB. By (INHP) also P⋀Γ ⊢PMDL PB.

Suppose R = (AND) and B is derived from A1,A2 ∈ Γ. Obviously, P(A1 ∧
A2) ⊢PMDL P(A1 ∧A2). Thus, by (INHP), P⋀Γ ⊢PMDL PB.

Suppose R = (ANDO) and B = O(A1∧A2) is derived from OA1 and OA2. By
(INHP), P(OA1 ∧OA2) ⊢PMDL PO(A1 ∧A2). By (INHP), P⋀Γ ⊢PMDL PB.

Suppose R = (AND′O) and B = P(A1∧A2) is derived from OA1 and PA2. By
(INHP), P(OA1 ∧ PA2) ⊢PMDL PB and hence again by (INHP), P⋀Γ ⊢PMDL

PB.

The arguments for R ∈ {(AND◻J), (AND′◻J)∣ J ⊆∅ I} are analogous and left
to the reader.

“i ⇒ i + 1”: Suppose B is derived from A in n + 1 inference steps from
A1, . . . ,Am by means of rule R. By the induction hypothesis P⋀Γ ⊢PMDL P(A1∧
. . . ∧Am). If R ∉ {(AND), (ANDO), (AND′O), (AND◻J), (AND′◻J) ∣ J ⊆∅ I}
then m = 1 and A1 ⊢PMDL B and hence by (INHP) also PA1 ⊢PMDL PB. In case
R ∈ {(AND), (ANDO), (AND′O), (AND◻J), (AND′◻J) ∣ J ⊆∅ I} the argument
is analogous to the one given above and is left to the reader.

Ad (iv): This case is analogous to case (ii) and left to the reader.

Definition 24. Where Γ ∈ ΨPMDL and A ∈WMDL, let

ΓO = {B ∣ OB ∈ Γ}, ΓJ
◻ = {B ∣ ◻JB ∈ Γ},

ΓA
O = ΓO ∪ {A}, ΓJ,A

◻ = ΓJ
◻ ∪ {A},

ΓP = {B ∣ PB ∉ Γ}, ΓJ
◇ = {B ∣◇JB ∉ Γ},

∨ΓP = {⋁I Bi ∣ Bi ∈ ΓP}, ∨ΓJ
◇ = {⋁I Bi ∣ Bi ∈ ΓJ

◇},
∨ΓA

P = {⋁I Bi ∣ Bi ∈ ΓP ∪ {A}}, ∨ΓJ,A
◇ = {⋁I Bi ∣ Bi ∈ ΓJ

◇ ∪ {A}}.

Lemma 27. Let Γ ∈ ΨPMDL. (i) If ΓO ⊢PMDL C, then OC ∈ Γ. (ii) Where
PA ∈ Γ, if ΓA

O ⊢PMDL C then PC ∈ Γ.

Proof. Ad (i): Suppose that ΓO ⊢PMDL C. By Lemma 26i, Γ ⊢PMDL OC. Since
Γ is PMDL-deductively closed, OC ∈ Γ.

Ad (ii): Suppose ΓA
O ⊢PMDL C. Then there is a finite Θ ⊆ ΓO for which (�)

Θ ∪ {A} ⊢PMDL C. Since Θ ⊆ ΓO, O⋀Θ ∈ Γ by (ANDO) and the deductive
closure of Γ. Since also PA ∈ Γ, also P(⋀Θ ∧ A) ∈ Γ by (AND′O) and the
deductive closure of Γ. Hence, by Lemma 26ii, (�), and the deductive closure of
Γ, PC ∈ Γ.

Lemma 28. Let Γ ∈ ΨPMDL. (i) If Γ◻ ⊢PMDL C, then ◻JC ∈ Γ. (ii) Where

◇JA ∈ Γ, if ΓJ,A
◻ ⊢PMDL C then ◇JC ∈ Γ.
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Proof. Analogous to Lemma 27. We use (AND◻J), (AND′◻J), Lemma 26iii,
and Lemma 26iv instead of (ANDO), (AND′O), Lemma 26i, and Lemma 26ii
respectively.

Lemma 29. Let Γ ∈ ΨPMDL. (i) Where PA ∈ Γ, ∨ΓP ∩CnPMDL(ΓA
O) = ∅. (ii)

Where B ∉ ΓO, ∨ΓB
P ∩CnPMDL(ΓO) = ∅.

Proof. Ad (i): Let C = ⋁I Ci where Ci ∈ ΓP for all i ∈ I. Assume C ∈ CnPMDL(ΓA
O)

then by Lemma 27ii, P⋁I Ci ∈ Γ. Hence, by (ORP) and the deductive closure
of Γ, also ⋁I PCi ∈ Γ. Since Γ is prime, there is an i ∈ I such that PCi ∈ Γ and
hence Ci ∉ ΓP,—a contradiction.

Ad (ii): Let C = ⋁I Ci where Ci ∈ ΓP ∪ {B} for all i ∈ I. Assume C ∈
CnPMDL(ΓO). By Lemma 27i and the deductive closure of Γ, (⋆) O⋁I Ci ∈ Γ.
Assume that all Ci ∈ ΓP. By (DO), P⋁I Ci ∈ Γ. By (ORP), ⋁I PCi ∈ Γ. Since Γ
is prime there is a i ∈ I for which PCi ∈ Γ and hence Ci ∉ ΓP,—a contradiction.
Thus, there is a non-empty J ⊆ I such that for each j ∈ J , Cj = B, and for each
j ∈ I ∖J,Cj ≠ B. By (⋆), (ORO) and the deductive closure of Γ, OB∨P⋁I∖J Ci ∈
Γ. Hence, by (ORP), OB ∨ ⋁I∖J PCi ∈ Γ. Since B ∉ ΓO and since Γ is prime,
there is an i ∈ I ∖ J such that PCi ∈ Γ and hence Ci ∉ ΓP,—a contradiction.

Lemma 30. Let Γ ∈ ΨPMDL. (i) Where ◇JA ∈ Γ, ∨Γ◇ ∩ CnPMDL(ΓJ,A
◻ ) = ∅.

(ii) Where B ∉ ΓJ
◻, ∨ΓJ,B

◇ ∩CnPMDL(ΓJ
◻) = ∅.

Proof. The proof is analogous to the proof of Lemma 29. We use Lemma 28,
(OR◇J), (D◻J), and (OR◻J) instead of Lemma 27, (ORP), (DO), and (ORO)
respectively.

Lemma 31. Let Γ ∈ ΨPMDL.

(i) Where PA ∈ Γ, there is a ∆ ⊆WMDL for which (1) ΓA
O ⊆ ∆, (2) ∨ΓP∩∆ = ∅,

and (3) ∆ ∈ ΨPMDL.

(ii) Where B ∉ ΓO, there is a ∆ ⊆WMDL for which (1) ΓO ⊆ ∆, (2) ∨ΓB
P ∩∆ = ∅,

and (3) ∆ ∈ ΨPMDL.

Proof. Let ⟨ΓO,ΓP⟩ ∈ {⟨ΓA
O ,

∨ΓP⟩, ⟨ΓO,
∨ΓB

P ⟩}. Where ⟨B1,B2, . . .⟩ is a list of all
the members of WMDL, define ∆0 = CnPMDL(ΓO) and ∆ = ∆0 ∪∆1 ∪ . . . where

∆i+1 = { CnPMDL(∆i ∪ {Bi+1}) if ΓP ∩CnPMDL(∆i ∪ {Bi+1}) = ∅
∆i else

Ad (1): This holds by the definition of ∆0 and since ∆0 ⊆ ∆.
Ad (2): By Lemma 29, ∆0 ∩ΓP = ∅. The rest follows by the construction of

∆.
Ad (3): We first show that ∆ is PMDL-deductively closed. Assume there

is a Bi ∉ ∆ for which (�) ∆ ⊢PMDL Bi. Then, by the construction, there is a
D ∈ ΓP for which ∆∪{Bi} ⊢PMDL D. Hence, by (�), ∆ ⊢PMDL D. Hence, there
is a j ∈ N such that ∆j ⊢PMDL D. By the construction ∆j = CnPMDL(∆j) and
thus, D ∈ ∆j . Hence, D ∈ ∆,—a contradiction with (2).
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We now show that ∆ is prime. Suppose A1 ∨A2 ∈ ∆. Assume that A1,A2 ∉
∆. By the construction, ∆ ∪ {A1} ⊢PMDL D1 and ∆ ∪ {A2} ⊢PMDL D2 for
some D1,D2 ∈ ΓP. Hence, by (OR1), ∆ ∪ {A1} ⊢PMDL D1 ∨D2 and by (OR2)
∆∪{A2} ⊢PMDL D1 ∨D2. Hence, by Fact 8, ∆∪{A1 ∨A2} ⊢PMDL D1 ∨D2 and
since A1 ∨A2 ∈ ∆, ∆ ⊢PMDL D1 ∨D2 and hence D1 ∨D2 ∈ ∆ by the deductive
closure of ∆. However, D1 ∨D2 ∈ ΓP,—a contradiction with (2).

Lemma 32. Let Γ ∈ ΨPMDL.

(i) Where ◇JA ∈ Γ, there is a ∆ ⊆WMDL for which (1) ΓJ,A
◻ ⊆ ∆, (2) ∨ΓJ

◇∩∆ =
∅, and (3) ∆ ∈ ΨPMDL.

(ii) Where B ∉ ΓJ
◻, there is a ∆ ⊆WMDL for which (1) ΓJ

◻ ⊆ ∆, (2) ∨ΓJ,B
◇ ∩∆ =

∅, and (3) ∆ ∈ ΨPMDL.

Proof. The proof is analogous to the proof of Lemma 31. Instead of making use
of Lemma 29 we now use Lemma 30.

Lemma 33. Where Γ ∈ ΨPMDL, PA ∈ Γ iff there is a ∆ ∈ ΨPMDL such that
ROΓ∆ and A ∈ ∆.

Proof. Left-Right : Suppose PA ∈ Γ. By Lemma 31i there is a ∆ ⊆ WMDL for
which (1) ΓA

O ⊆ ∆, (2) for all C ∈ ΓP, C ∉ ∆, and (3) ∆ ∈ ΨPMDL. We now show
that ROΓ∆. Ad (a): if, for some D, OD ∈ Γ, then D ∈ ΓA

O and hence D ∈ ∆ by
(1). Ad (b): suppose PE ∉ Γ for some E ∈WMDL. Then E ∈ ΓP and thus E ∉ ∆
by (2).

Right-Left : follows directly by the definition of RO.

Lemma 34. Where Γ ∈ ΨPMDL, ◇JA ∈ Γ iff there is a ∆ ∈ ΨPMDL such that
RJΓ∆ and A ∈ ∆.

Proof. The proof is analogous to the proof of Lemma 33, except that we use
Lemma 32i instead of Lemma 31i.

Lemma 35. For every Γ ∈ ΨPMDL there is a ∆ ∈ ΨPMDL such that ROΓ∆.
(RO is serial.)

Proof. By (EM) and (INHP), ⊢PDML P(A ∨ ∼A). Hence, P(A ∨ ∼A) ∈ Γ by the
deductive closure of Γ. By Lemma 33, there is a ∆ ∈ ΨPMDL such that ROΓ∆
and A ∨ ∼A ∈ ∆.

Lemma 36. Where Γ ∈ ΨPMDL, OA ∈ Γ iff, for all ∆ ∈ ΨPMDL such that
ROΓ∆, A ∈ ∆.

Proof. Left-Right : This is an immediate consequence of the definition of RO.
Right-Left : Suppose OA ∉ Γ. Hence A ∉ ΓO. By Lemma 31ii, there is a

∆ ⊆WMDL for which (1) ΓO ⊆ ∆, (2) (ΓP ∪ {A}) ∩∆ = ∅, and (3) ∆ ∈ ΨPMDL.
We now show that ROΓ∆. Ad (a): if, for some D ∈WMDL, OD ∈ Γ, then D ∈ ΓO

and thus D ∈ ∆ by (1). Ad (b): Suppose PE ∉ Γ and hence E ∈ ΓP. Thus, E ∉ ∆
by (2).



186 APPENDIX G. (META-)PROPERTIES OF THE LOGIC PMDL

Lemma 37. Where Γ ∈ ΨPMDL, ◻JA ∈ Γ iff, for all ∆ ∈ ΨPMDL such that
RJΓ∆, A ∈ ∆.

Proof. The proof is analogous to the proof of Lemma 36, except that instead of
Lemma 31ii we make use of Lemma 32ii.

Lemma 38. Where Γ ∈ ΨPMDL, RJΓΓ. (RJ is reflexive.)

Proof. Assume there is a Γ ∈ ΨPMDL for which RJΓΓ is not the case. Then,
either (1) there is a ◻JA ∈ Γ such that A ∉ Γ, or (2) there is a A ∈ Γ such that
◇JA ∉ Γ. Ad (1): Since Γ is PMDL-deductively closed, and by (T◻J), ◻JA ⊢ A,
also A ∈ Γ. Ad (2): Since Γ is PMDL-deductively closed, and by (T◇J), A ⊢
◇JA, also ◇JA ∈ Γ. Since neither (1) nor (2) we reached a contradiction.

Lemma 39. If RJΓ∆ and RJ∆∆′ then RJΓ∆′. (RJ is transitive.)

Proof. Suppose RJΓ∆ and RJ∆∆′. Assume not RJΓ∆′. Thus, either (1) there
is a ◻JA ∈ Γ for which A ∉ ∆′, or (2) there is a A ∈ ∆′ for which ◇JA ∉ Γ. Ad
(1): Suppose ◻JA ∈ Γ. By (4◻J) and the PMDL-deductive closure of Γ, also
◻J ◻J A ∈ Γ. Hence, by (a) in the definition of RJ , ◻JA ∈ ∆. Hence, again by (a)
in the definition of RJ and since RJ∆∆′, A ∈ ∆′. Ad (2): Suppose A ∈ ∆′. Hence
◇JA ∈ ∆ by (b) in the definition of RJ and since RJ∆∆′. Hence, ◇J ◇J A ∈ Γ
by (b) in the definition of RJ and since RJΓ∆. Since (4◇J) is valid in Γ, also
◇JA ∈ Γ.

Since neither (1) nor (2) is the case we reached a contradiction.

Lemma 40. Where ∆ ∈ ΨPMDL, there is a PMDL-model M such that M ⊧ A
for all A ∈ ∆ and M /⊧ A for all A ∈WMDL ∖∆.

Proof. Let ∆ ∈ ΨPMDL. We construct a PMDL-model

M = ⟨ΨPMDL,RO, ⟨RJ⟩J⊆∅I , v,∆⟩

such that (�) for all A ∈W∼
l , w ∈ v(A) iff A ∈ w. By Lemmas 35, 38, 39, RO and

RJ (for all J ⊆∅ I) have the needed properties for M to be a PMDL-model.
We now show by an induction that for all w ∈ ΨPMDL and for all A ∈WMDL,

M,w ⊧ A iff A ∈ w. The induction is in terms of the length of the formulas
A ∈WMDL in question.

Let A ∈Wa. By (�), A ∈ w iff w ∈ v(A) iff [by (Ca)] M,w ⊧ A.
For the induction step let first A be of the form ∼B.
Let first B ∈ Wa. By (�), ∼B ∈ w iff w ∈ v(∼B). By (C∼), if ∼B ∈ w and

hence w ∈ v(∼B), then M,w ⊧ ∼B. Suppose now that M,w ⊧ ∼B. By (C∼)
either w ∈ v(∼B) and hence ∼B ∈ w, or M,w /⊧ B. In the second case, by the
induction hypothesis, B ∉ w. Since w is prime and since B ∨ ∼B ∈ w (since w is
PMDL-deductively closed), ∼B ∈ w.

Now let B = ∼B′. M,w ⊧ ∼∼B′ iff [by (C∼∼)] M,w ⊧ B′ iff [by the induction
hypothesis] B′ ∈ w iff [since w is DPML-deductively closed, (DN1) and (DN2)]
∼∼B′ ∈ w.

The cases B ∈ {B1 ∧B2,B1 ∨B2} are similar and left to the reader.
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Let now B = OB′. M,w ⊧ ∼OB′ iff [by (C∼O)] M,w ⊧ P∼B′ iff [by (CP)] there
is a w′ ∈ ROw for which M,w′ ⊧ ∼B′ iff [by the induction hypothesis] ∼B′ ∈ w′ iff
[by the definition of RO] P∼B′ ∈ w iff [by (R∼O) and (RP∼)] ∼OB′ ∈ w.

The case B = ◻JB
′ is analogous.

Let now B = PB′. M,w ⊧ ∼PB′ iff [by (C∼P)] M,w ⊧ O∼B′ iff [by (CO)]
for all w′ ∈ ROw, M,w′ ⊧ ∼B′ iff [by the induction hypothesis] for all w′ ∈ ROw,
∼B′ ∈ w′ iff [by Lemma 36] O∼B′ ∈ w iff [by (R∼P) and (RO∼)] ∼PB′ ∈ w.

The case B = ◇JB
′ is analogous (except that we use Lemma 37 instead of

Lemma 36).
Let now A = B ∧ C. M,w ⊧ B ∧ C iff [by (C∧)] M,w ⊧ B,C iff [by the

induction hypothesis] B,C ∈ w iff [by (AND), (AN1), (AN2) and the fact that w
is PMDL-deductively closed] B ∧C ∈ w.

The case A = B ∨C is similar and left to the reader.
Let A = OB. M,w ⊧ OB iff [by (CO)] for all w′ ∈ ROw, M,w′ ⊧ B iff [by the

induction hypothesis] for all w′ ∈ ROw, B ∈ w′ iff [by Lemma 36] OB ∈ w.
The case A = ◻JB is analogous and left to the reader (just we use Lemma 37

instead of Lemma 36).
Let A = PB. M,w ⊧ PB iff [by (CP)] there is a w′ ∈ ROw for which M,w′ ⊧ B

iff [by the induction hypothesis] B ∈ w′ iff [by Lemma 33] PB ∈ w.
The case A = ◇JB is analogous (just we use Lemma 34 instead of Lemma

33).

Lemma 41. Let Γ ⊆WMDL and Γ ⊬PMDL A. There is a ∆ ⊆WMDL such that
(i) Γ ⊆ ∆, (ii) A ∉ ∆, and (iii) ∆ ∈ ΨPMDL.

Proof. Where ⟨B1,B2, . . .⟩ is a list of the members of WMDL, define ∆0 =
CnPMDL(Γ) and ∆ = ∆0 ∪∆1 ∪ . . ., where

∆i+1 = { CnPMDL(∆i ∪ {Bi+1}) if A ∉ CnPMDL(∆i ∪ {Bi+1})
∆i else

Ad (i): This holds by the definition of ∆0 and since ∆0 ⊆ ∆.
Ad (ii): This holds since A ∉ CnPMDL(Γ) and by the construction of ∆.
Ad (iii): Assume that some Bi ∉ ∆ but ∆ ⊢PMDL Bi. Hence, by the construction
of ∆, ∆i−1∪{Bi} ⊢PMDL A and hence ∆∪{Bi} ⊢PMDL A. Since also ∆ ⊢PMDL

Bi, ∆ ⊢PDML A,—a contradiction with (ii). Hence ∆ is PMDL-deductively
closed.

Suppose B ∨ C ∈ ∆. Assume B,C ∉ ∆. Hence, ∆ ∪ {B} ⊢PMDL A and
∆∪{C} ⊢PMDL A. Hence, by Fact 8, ∆∪{B∨C} ⊢PMDL A and since B∨C ∈ ∆
also ∆ ⊢PMDL A,—a contradiction with (ii). Hence, ∆ is prime.

Theorem 39 (Strong Completeness of PMDL.). If Γ⊩PMDLA then Γ ⊢PMDL

A.

Proof. Suppose Γ ⊬PMDL A. By Lemma 41 there is a ∆ ⊇ Γ such that A ∉ ∆
and ∆ ∈ ΨPMDL. By Lemma 40, there is a PMDL-model M for which M ⊧ B
for all B ∈ ∆ and M /⊧ A.
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G.3 Proof outline of Theorem 34

The following fact holds since MDL strengthens classical propositional logic.

Fact 9. Γ ⊢MDL ¬A ∨B iff Γ ∪ {A} ⊢MDL B.

Lemma 42. A ∧ ∼A ⊢UPMDL B for all A,B ∈WPMDL

Proof outline: This is shown by an induction over the complexity of A. Where
A ∈Wa,⟐i ∈ {P} ∪ {◇J ∣ J ⊆∅ I} this holds due to (UPMDL). For the induction
step we paradigmatically consider three cases.

(i) Let A = C ∧ D. By the induction hypothesis, C ∧ ∼C ⊢UPMDL B and
D ∧ ∼D ⊢UPMDL B. By (RBC), (C ∧ ∼C) ∨ (D ∧ ∼D) ⊢UPMDL B. By some
simple LP-manipulations it is easy to see that (C ∧ D) ∧ ∼(C ∧ D) ⊢UPMDL

(C ∧ ∼C) ∨ (D ∧ ∼D). Altogether (C ∧D) ∧ ∼(C ∧D) ⊢UPMDL B.
(ii) Let A = OC. Suppose OC ∧ ∼OC. By (R∼⊡), OC ∧ P∼C. By (AND’⊡),

P(C ∧ ∼C). By (UPMDL) and the induction hypothesis, B.
(iii) Where J ⊆∅ I, let A = ◇JC. Suppose ◇JC ∧ ∼ ◇J C. By (R∼⟐),

◇JC ∧ ◻J∼C. By (AND’⊡), ◇J(C ∧ ∼C). By (UPMDL) and the induction
hypothesis, B.

The other cases are similar and left to the reader.

Lemma 43. The following is valid in UPMDL:
(i) A,A ⊃ B ⊢UPMDL B

(ii) If A ⊢UPMDL B then ⊢UPMDL A ⊃ B.
(iii) If ⊢UPMDL A ⊃ B then A ⊢UPMDL B.
(iv) If A ⊢UPMDL B then ∼B ⊢UPMDL ∼A.

Proof. Ad (i): Suppose A and ∼A ∨ B. (1) Suppose ∼A. By A and ∼A we
get B by Lemma 42. (2) Suppose now B, then by (AND) and (AN1), B. By
(1), (2), (RBC), and the supposition, B. Ad (ii): Suppose A ⊢UPMDL B.
(1) Hence, by (OR2) and the supposition, A ⊢UPMDL ∼A ∨ B. (2) By (OR1)
∼A ⊢UPMDL ∼A ∨ B. (3) By (EM), A ∨ ∼A. By (1), (2), (3) and (RBC),
⊢UPMDL ∼A ∨B. Ad (iii): Suppose ⊢UPMDL ∼A ∨B. Suppose A. By (i), B.
Hence A ⊢UPMDL B. Ad (iv): Suppose A ⊢UPMDL B. By (ii), ⊢UPMDL ∼A∨B.
By (RBC) and (DN1), ⊢UPMDL ∼A ∨ ∼∼B. By (OR1), (OR2), and (RBC),
⊢UPMDL ∼∼B ∨ ∼A. By (iii), ∼B ⊢UPMDL ∼A.

Let MDL∼ be MDL with the negation symbol ∼ (similarly for CL∼).

Proof outline of Theorem 32. We first show that all the MDL∼ axioms are valid
in UPMDL.

By Lemma 43.i and the fact that all classical theorems are theorems of LP (see
e.g., [144]), UPMDL strengthens CL∼. Let in the following ⊡ ∈ {O,◻J ∣ J ⊆∅ I}
and ⟐ ∈ {P,◇J ∣ J ⊆∅ I}.

Ad (AK⊡): By simple propositional manipulations (henceforth, SPM), ⊡(∼A∨
B) ⊢UPMDL ⊡(B ∨ ∼A). By (OR⊡), ⊡(∼A∨B) ⊢UPMDL ⊡B ∨⟐∼A. By (R⟐∼)
and some SPM, ⊡(∼A ∨ B) ⊢UPMDL ∼ ⊡ A ∨ ⊡B. By Lemma 43.ii, ⊢UPMDL

⊡(∼A ∨B) ⊃ (∼⊡A ∨ ⊡B). Ad (A4◻J): This follows by Lemma 43.ii and (4◻J).
Ad (AT◻J): This follows by Lemma 43.ii and (AT◻J). Ad (ADf⟐): By (R⊡∼)
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and Lemma 43.iv, ∼∼⟐ A ⊢UPMDL ∼ ⊡ ∼A. By (DN1), ⟐A ⊢UPMDL ∼∼⟐ A.
Hence, ⟐A ⊢UPMDL ∼ ⊡ ∼A. By Lemma 43.ii, ⊢UPMDL ⟐A ⊃ ∼ ⊡ ∼A. In a
similar way we get ⊢UPMDL ∼ ⊡ ∼A ⊃ ⟐A. By (AND), ⊢UPMDL ⟐A ≡ ∼ ⊡ ∼A.
Ad (NEC⊡): This follows by (INH⊡). Ad (ADO): This follows by (DO) and
Lemma 43.ii.

We now show that all the UPMDL axioms are valid in MDL∼.
All the rules and axioms of LP hold trivially in MDL∼ due to the fact that

MDL∼ strengthens CL∼.
Ad (4◻J), (4◇J), (T◻J), (T◇J), (DO): This follows by Fact 9 and (A4◻J),

(A4◇J), (AT◻J), and (ADO). Ad (INH⊡): This follows by (NEC⊡), (AK⊡) and
SPM. Ad (INH⟐): This follows by (INH⊡), (ADf⟐) and SPM. Ad (AND⊡): This
follows by (NEC⊡), (AK⊡) and by Fact 9. Ad (AND′⊡): By (ADfP), (AND⊡),
by Fact 9 and SPM, ⊡A,∼ ⟐ (A ∧ B) ⊢MDL∼ ⊡(A ∧ ∼B). By (INH⊡), ⊡(A ∧
∼B) ⊢MDL∼ ⊡∼B. By (ADf⟐) and SPM, ⊡(A ∧ ∼B) ⊢MDL∼ ∼⟐B. Altogether,
⊡A,∼⟐ (A ∧B) ⊢MDL∼ ∼⟐B. By SPM, ⊡A,⟐B ⊢MDL∼ ⟐(A ∧B). Ad (R∼⊡),
(R⟐∼), (R⊡∼), (R∼⟐): This follows by (ADf⟐) and SPM. Ad (OR⟐): By
(AND⊡), ⊡∼A∧⊡∼B ⊢MDL∼ ⊡(∼A∧∼B). By contraposition, (ADf⟐), and SPM,
⟐(A∨B) ⊢MDL∼ ⟐A∨⟐B. Ad (OR⊡): By SPM, ⊡(A∨B) ⊢MDL∼ ⊡(∼B ⊃ A).
By (AK⊡) and by Fact 9, ⊡(∼B ⊃ A) ⊢MDL∼ ∼⊡∼B ∨⊡A. By SPM and (ADf⟐),
∼ ⊡ ∼B ∨ ⊡A ⊢MDL∼ ⊡A ∨⟐B. Altogether, ⊡(A ∨B) ⊢MDL∼ ⊡A ∨⟐B.





Bibliography

[1] Carlos E. Alchourrón. Logic of norms and logic of normative propositions.
Logique & Analyse, 47:242–268, 1969.

[2] Carlos E. Alchourrón and Eugenio Bulygin. Normative Systems. Springer-
Verlag, Wien/New York, 1971.

[3] Carlos E. Alchourrón and Eugenio Bulygin. The expressive conception of
norms. In Risto Hilpinen, editor, New Studies in Deontic Logic, pages
95–124. D. Reidel Publishing Company, Dordrecht, 1981.

[4] Carlos E. Alchourrón and Eugenio Bulygin. Von Wright on deontic logic
and the philosophy of law. In P.A. Schilpp and L.E. Hahn, editors, The
Philosophy of Georg Henrik Von Wright, pages 665–693. Open Court Pub-
lishing Company, 1989.

[5] A.R. Anderson. The reduction of deontic logic to alethic modal logic. Mind,
67:100–103, 1958.

[6] A.R. Anderson. The formal analysis of normative systems. In Nicolas
Rescher, editor, The Logic of Decision and Action, pages 147–213. Univer-
sity of Pittsburgh Press, 1967.
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conflicts. In Michal Pelǐs and Vı́t Punčochář, editors, The Logica Yearbook
2011, pages 1–14. College Publications, London, 2012.

[28] Mathieu Beirlaen and Christian Straßer. Nonmonotonic reasoning with
normative conflicts in multi-agent deontic logic. Under review. Preprint
available at http://logica.ugent.be/centrum/writings/.

[29] Mathieu Beirlaen and Christian Straßer. Two adaptive logics of norm-
propositions. Journal of Applied Logic. In print. Preprint available at
http://logica.ugent.be/centrum/writings/.

[30] Mathieu Beirlaen and Christian Straßer. A paraconsistent multi-agent
framework for dealing with normative conflicts. In João Leite, Paolo Tor-
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