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Chapter 1

Introduction

I thank Joke Meheus and Dagmar Provijn for the valuable comments and inten-
sive discussions that helped shape this introduction.

This thesis is about prioritized adaptive logics, which as I will argue, are
very good candidates to explicate forms of prioritized defeasible reasoning. First
and foremost, it concerns generic formats in which such logics may be defined.
Second, it is about concrete (prioritized) adaptive logics that explicate particular
forms of human reasoning. This introductory chapter spells out the philosophical
and logical motivations of the present study.

I will first explain what is meant by prioritized defeasible reasoning (Section
1.1). Then I will indicate what makes adaptive logics specific, in comparison to
other approaches to defeasible reasoning in formal logic and AI (Section 1.2).
I will explain the need for a thorough study of the metatheory of prioritized
adaptive logics in Section 1.3. After that, I will spell out a number of restrictions
of the current study (Section 1.4). I end this chapter with an overview of the
other chapters’ content (Section 1.5).

1.1 Prioritized defeasible reasoning

The term prioritized (defeasible) reasoning is used for all sorts of inferential
processes. I do not wish to restrict its use here to only one very specific type of
inferences, since it is my aim to argue that the research I will present is applicable
in a very broad range of contexts. Rather, I will try to illustrate the variety and
ubiquity of what I call prioritized defeasible reasoning forms in everyday life.
While doing so, a number of typical features of these reasoning forms will be
highlighted.

To get a first idea of what this thesis is about, let us consider some toy-
examples. The first one is inspired by similar examples from [68] and will also
be used in Chapter 7. The third is based on a true story – see [66].

Example 1. After having a car accident, Mary has to stay at the site of
the accident to fill in her insurance papers. However, she also promised

1



2 CHAPTER 1. INTRODUCTION

her mother to pick her up from the supermarket and take her home. She
cannot do both at the same time, but gives priority to her legal duties.
Hence she concludes that she should stay at the site of the accident and
break the promise.

Example 2. Tim is walking with his son in the park, when they see two
black birds on a branch of a tree. The son points at the two birds, and Tim
tells his son that those two birds are crows. The day after, Tim’s son sees
another black bird in the garden of their house, and shouts: “look daddy, a
crow!”. However, when Tim looks, he sees that it is actually a magpie, and
so he tells his son. At that point, his son readily changes his mind about
the bird and believes it is a magpie.

Example 3. Benjamin notices that the overhead light in his office is broken,
and asks the security warden of the building how he can get it repaired. The
warden advises him to send an email to the Administrative Assistent of the
building, and so he does. However, the morning after, Benjamin receives an
angry email from the Administrative Assistent, telling him he should first
make an official request to the security warden, who then (if he approves
the request) makes over an official request to the Administrative Assistent.
Since the Administrative Assistent has a higher authority than the security
warden, Benjamin decides to follow the procedure she proposed.

To grasp the similarities between these and other examples, we may use
the following informal definition of prioritized defeasible reasoning (henceforth
PDR):

PDR is any kind of defeasible reasoning in which priorities co-determine which
conclusions can, and which cannot, be drawn from a given body of evidence.

Let me briefly explain some of the notions used in this definition. Obviously,
PDR refers to particular kinds of reasoning, i.e. inferential processes by means
of which we draw conclusions from a given body of evidence. The reasoning
forms are moreover defeasible. This means that in these processes, we may draw
conclusions at a given moment in time, at a later moment retract some of them,
and at a still later moment retrieve some of the retracted inferences – I will
provide such an example in the next section.

Note that the definition does not delineate a subject of this reasoning: it
can be about beliefs, about generalizations, about explanations, about obliga-
tions, etc. Hence, the term evidence refers to an equally broad range of things:
experimental data, new information that contradicts our initial beliefs, proposi-
tions that express what is obligatory according to a given normative system, etc.
Likewise, the intended conclusions of PDR can be of various sorts – they can
be explanatory hypotheses, statements about what our actual obligations are (in
view of the normative systems at hand), predictions about the outcome of the
next experiment, etc.

What is indispensable however, are the priorities. Again, the precise meaning
of this term depends on that which we reason about: it can refer to degrees of
plausibility (of beliefs), of urgence or importance (of a duty), of explanatory
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power (of an explanation), of specificity (of a default rule), of the reliability of
a specific type of inference, etc. Sometimes the priorities are seen as part of
the evidence itself, as in Example 3, where Benjamin reasons about two advices
which he got from sources with a different degree of authority. However, the
priorities can also be internal to the reasoning process, e.g. when two different
argumentation techniques receive a different weight in an general argumentation
strategy. Finally, it may be the case that we reason on the basis of various kinds
of information and methods, as e.g. in the case of Tim’s son, who uses both
inductive generalization and what his father tells him.

The definition of PDR stipulates that the priorities co-determine the conclu-
sions which we can or cannot draw – obviously, the evidence itself also determines
which conclusions can be drawn. The priorities are themselves not a result or
the subject of the reasoning process. In this sense, PDR can (at least ideally)
be distinguished from reasoning about priorities, and from reasoning processes
through which we obtain priorities.

From this description and the above examples, it should be clear that many
defeasible reasoning forms have a prioritized counterpart, or more precisely, that
non-prioritized types of defeasible reasoning are often mere idealizations of PDRs.
For instance, when we revise our beliefs in view of new information, it is hard to
imagine that we consider each of these as equally plausible. Likewise, when we
reason on the basis of conflicting obligations, we usually consider some of these
as more important than others.

1.2 Defeasible Reasoning and Adaptive Logics

In formal logic and Artificial Intelligence, there is a vast body of research on pro-
cesses that fall under the general header of PDR. Prioritized (non-monotonic)
consequence relations have been studied e.g. in belief revision [36, 57, 114, 5],
deontic logic [2, 39, 68], default logic [81, 42, 40] and circumscription [99, 66] –
to name only the most prominent approaches. Just as many defeasible reason-
ing forms have a prioritized counterpart (cf supra), most frameworks for non-
monotonic logics have been extended in order to account for forms of PDR.1

Notwithstanding the variety in approaches and applications, this field of re-
search is bound by a number of restrictions. First and foremost, most of the
existing models do not have a proof theory that explicates how agents draw con-
clusions on the basis of prioritized information, and retract inferences in view
of new insights into this information – I will clarify this point below. Second,
these models usually consider PDR as reasoning with (one type of) prioritized
defeasible information. In this terminology, “information” can refer to beliefs,
obligations, background assumptions, default rules, etc. Third, the priority order
on the information is often assumed to be a well-founded, strict partial order.2

Fourth and last, although some authors consider the possibility that this order

1A logic L is said to be non-monotonic if there are premise sets Γ,Γ′ such that Γ ⊆ Γ′, but
the set of L-consequences of Γ is not a subset of Γ′.

2This means that (i) the order is transitive, anti-symmetric and irreflexive and (ii) there are
no infinite sequences of elements with ever higher priority.
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is itself subject to revisions – see e.g. [42, 66, 123, 113, 84, 47, 129], the standard
approaches start from a static order on the information.

In this thesis, PDR will be approached in a way that departs from the more
common models, especially with respect to the first two of the above restrictions.
That is, (i) it not only provides a static (semantic) characterization of prioritized
non-monotonic consequence relations, but also equips them with a dynamic proof
theory, and (ii) it models defeasible reasoning in terms of the abnormality of
formulas with a specific logical form, and thereby allows us to compare and
combine qualitatively distinct reasoning methods – this will be explained below.
Both these features are intrinsic to the general framework I will be working with,
viz. adaptive logics. To understand this, let us take a look at a slightly more
elaborate example of PDR.

Example 1.1 When John has finished working, he passes by the house of his
friend Peter on his way home. He notices that the lights of the house are on,
which seems to indicate that Peter is at home. Hence John decides to pay his
friend an unannounced visit.

However, when he comes near Peter’s door, he also sees that Peter’s car is
nowhere in the street, even though there are quite a few empty places to park
his car. “If Peter would be at home”, so John thinks, “then how can I explain
the fact that his car is not around?” At this point, John starts to doubt whether
Peter is really at home, or whether he just went out and forgot to put the lights
off.

However, after giving it some further thought, John figures out that there
might be several explanations for the fact that Peter is at home, whereas his car
is not around. For instance, he might have brought it to the garage, because
something was wrong with it. Or he might have lend it to a relative or friend
who urgently needed a car. Hence, John returns to his conclusion that Peter will
be at home.

After John has rung the bell twice, Peter still does not show up. At that point,
John gives up ringing, and concludes that Peter is after all not at home. As a
result, he also drops all possible hypotheses about Peter’s car – if Peter went out,
then it is no wonder that his car is gone as well.

When John is back at home, he decides to call Peter on his mobile phone.
After a brief conversation, it turns out that he was in the shower at the moment
John rang the bell, and that Peter’s brother – who does not have a car of his own
– used his car to do some shopping.

In the above example, John changes his mind quite a few times about whether
or not Peter is at home. In other words, John’s reasoning process is dynamic.
This is inevitable, since the aim of this reasoning is to find an answer to the
question “Is Peter at home?”, on the basis of continuously growing, yet fairly
weak evidence (the lights, the car, the door bell). Only later on, when Peter tells
John that he was indeed at home, the conclusion can be called “deductive” –
although it still relies on the assumption that Peter is telling the truth.

What is perhaps less obvious, is that two sorts of dynamics are at play. On
the one hand, John sometimes changes his mind in the light of new evidence.
For instance, when he notices that the car is not around, he withdraws his belief
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that Peter is at home. Likewise, when Peter does not answer the door bell, John
concludes that Peter is not at home. This type of dynamics has been called the
external dynamics of a reasoning process: additional information, or information
that is external or new to the process, leads to the retraction of some previously
drawn conclusions.

However, there is also an internal dynamics in the above example.3 This is
most appearant in the third paragraph of the story. There, John changes his
mind, solely on the basis of his own further reasoning. In this particular case,
the reasoning leads to a choice between two conflicting hypotheses: “Peter is at
home”, and “Peter is not at home”. The choice is made on the basis of the fact
that Peter’s being absent is only one of several equally likely hypotheses that
explain why his car is not around.

In more complex cases, the internal dynamics can also be of a different sort.
That is, it may be the case that a reasoner draws a number of different conclu-
sions, and that only after a while, i.e. after he made several additional inferences,
he notes that these conclusions are mutually inconsistent. At that point (and not
before), he will retract some of those conclusions in order to reinstall consistency.

Formally, the external dynamics of a reasoning method corresponds to the
non-monotonic character of a logic. As noted above, there are several competing
models for non-monotonic consequence relations, e.g. default logic, belief revision,
and circumscription. These frameworks allow one to explicate how the addition
of new evidence forces a rational subject to change its mind about a given matter.
However, to explicate the internal dynamics, we need a more fine-grained model,
i.e. one that not only defines an “output” (consequence set) for each given “input”
(premise set), but also describes how a reasoner stepwise obtains the former from
the latter. In other words, we need a proof theory, just like monotonic systems
such as classical logic have one. However, to make this proof theory capable of
dealing with the dynamics of defeasible reasoning, it will also have to differ from
the classical proof theory in some respects. Adaptive logics have such a proof
theory, as will be shown in the next chapter.

A second distinctive feature of adaptive logics, is that they model defeasible
reasoning in terms of the abnormality of formulas with a specific logical form. To
understand the difference with other approaches, consider the following proposi-
tions:

(i) “If the light is on, then Peter is at home.”
(ii) “If he does not answer the door bell, then Peter is not at home.”

We may treat (i) and (ii) as default assumptions held by John, where (ii) has
priority over (i). Roughly speaking, this means that we use (i) and (ii) as rules
of thumb, and derive their consequent from their antecedent, unless this leads to
problems. If is turns out that applying both rules is problematic, but applying
only one of them is not, we only apply rule (ii). This treatment explains some of
the dynamics in the above example, and seems to be fairly intuitive.

3The distinction between internal and external is very common in the research on adaptive
logics – see e.g. [21]. Pollock refers to the same distinction, when he speaks of the synchronic
versus diachronic defeasibility of non-monotonic reasoning [122].
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However, what about Peter’s car? In this case, John’s reasoning is about pos-
sible explanations for a given fact. Although it might in principle be formalized
in terms of default assumptions, we can also frame it in a more direct way, i.e.
in terms of an abductive inference.4 Such an inference is of the following form:

If A is the case, then B naturally follows.
B is the case.
Hence, A is the case.

The overall aim of an abduction is to find an explanation for a given fact.
However, in John’s case, it plays a slightly different role: the fact that he can-
not use a very obvious hypothesis to explanain his previously drawn conclusion,
causes him to withdraw this conclusion. The reason is that he considers the fact
that a given observation cannot be explained, as abnormal. Only after John has
come up with a number of other explanations, his mind is relieved and he again
assumes that Peter is at home.

What counts as an abnormal fact? This depends on the context in which
we reason and on the reasoning method we are implementing. Sometimes, we
consider it as abnormal that we hold a certain belief, but that this belief is
contradicted by new (supposedly reliable) information. On other occasions, we
consider it as abnormal that a certain phenomenon cannot be explained by means
of reference to a more general rule, or that we cannot generalize a specific feature
of an object to the class this object belongs to.

The working hypothesis of the adaptive logic program is that for every defea-
sible reasoning method, we can specify a corresponding notion of “abnormality”
in terms of one or several logical forms. Formulas that have this form, are called
“abnormalities”, and are “as much as possible” considered to be false by the
adaptive logic that is defined from them.5 What matters to us here, is that dif-
ferent forms of defeasible reasoning come with different types of abnormalities.
Hence adaptive logics allow us to distinguish these defeasible reasoning forms,
to treat them differently, yet still to combine them into one single system. Ex-
amples of different notions of abnormality that correspond to different forms of
defeasible reasoning are given in Table 1.1.

In other approaches to defeasible reasoning such as e.g. circumscription, there
is also the idea that certain states of the world are more abnormal than others,
and that we should only consider those interpretations of our premises that cor-
respond to minimally abnormal states of the world. However, what is missing in
those approaches, is the fact that abnormality is explicated by means of a logical
form, and that various notions of abnormality can be used to model defeasible
reasoning.

In the context of prioritized defeasible reasoning, this has an important con-
sequence. Just as different pieces of information can receive a different priority,
also different sorts of abnormalities can receive a different weight. This way,

4I am not arguing here that we can always clearly distinguish between default assumptions
and abductive hypotheses. For instance, the antecedents of propositions (i) and (ii) can also
be interpreted as abductive explanations for their respective consequents.

5Actually, as we will see in Chapter 2, every adaptive logic is defined by a triple, of which
the set of abnormalities is the second member.
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formal framework reasoning form abnormality

Epistemic Logic Reasoning with defea-
sible background as-
sumptions

“p” is a background as-
sumption, but “p” is
false

Deontic Logic Reasoning with prima
facie obligations

“q” is a prima facie
obligation, but not an
actual one

Predicate Logic Inductive Generaliza-
tion

there is an object that
has property “R”, but
not every object has
property “R”

Predicate Logic Singular Fact Abduc-
tion

“∀x(Px ⊃ Qx)” and
“Qa” are true, but
“Pa” is false

Table 1.1: Some examples of defeasible reasoning forms, and examples of corre-
sponding abnormalities.

adaptive logics allow us to model cases in which qualitatively distinct reasoning
methods are combined in a prioritized way. A simple example of such a case is
the reasoning of Tim’s son in Example 2 above. As noted before, Tim’s son uses
both inductive inferences, and inferences on the basis of what his father tells him.
If we model this example in terms of an adaptive logic, we can distinguish be-
tween these (defeasible) types of inferences, and attach different priority degrees
to them. Again, how this can be done precisely, will be explained in subsequent
chapters.

1.3 Prioritized Adaptive Logics: A Gap

The term adaptive logics (henceforth ALs) refers to a very broad class of formal
systems developed in the field of philosophical logic. The first adaptive logics were
designed by Diderik Batens, to capture non-monotonic reasoning with inconsis-
tent premises – see e.g. [10, 9, 12, 30]. These are nowadays called inconsistency-
adaptive logics – an example of them will be given in Chapter 2. It soon became
clear that the general idea behind inconsistency-ALs (cf. infra) could be applied
to several other types of inference – most often types which were considered to be
beyond the scope of formal logic, in view of their non-monotonicity and dynamic
flavor.

In recent years, scholars have developed ALs for numerous forms of human
reasoning: inductive generalization [29, 17, 13, 24, 101], abduction [111, 106, 107,
108, 58], reasoning on the basis of conflicting norms [109, 138, 140, 35], factual
detachment in a deontic context [139], abstract argumentation [144, 142, 143],
reasoning with vague premises [156, 162, 154, 152, 153], analogical reasoning [104],
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revision of conceptual knowledge in view of anomalies [147], etc.6 In addition,
many consequence relations from the literature have been reformulated as ALs,
see e.g. [31, 34, 136, 164].

The consequence relations of ALs are often non-monotonic and usually lack
a positive test.7 However, this is not a matter of principle. Rather, what is
crucial is that ALs model both the internal and external dynamics of defeasible
reasoning processes, by means of a dynamic proof theory (cf supra).

Roughly speaking, one may discern two complementary aspects of the adap-
tive logic program. First of all, it has aimed to characterize particular reasoning
methods in terms of concrete adaptive logics, with special attention to their dy-
namic character. This research went hand in hand with the philosophical analysis
of those reasoning methods, and detailed case-studies from the history of science
– see e.g. [102, 103, 58, 125, 148].

Second, more theoretic work focused on the overall structure of adaptive
logics, which eventually led to the formulation of a so-called standard format [16,
11, 21, 33]. This not only simplified the metatheory of the particular ALs, but also
paved the road to new applications, and to the incorporation of other consequence
relations from the literature. As a result, the standard format provides a unifying
framework for the study of a great variety of human reasoning forms. Such
unification has several advantages:

(i) It allows us to compare various systems from a structural point of view,
and with respect to their application.

(ii) It also allows us to combine different logics in a very straightforward way –
some ways to combine ALs in standard format will be discussed in subse-
quent chapters.

(iii) Once we have developed a single logic for a specific application, we can
easily vary some of its components while staying within the same general
framework. Hence we can adapt the logic to more specific circumstances,
and distinguish between several variants of a reasoning method, or several
ways to obtain a specific goal. An illustration of this is provided in Chapter
9.

Moreover, the focus on the general structure of ALs has led to a very rich body
of concepts that allows us to discuss various aspects of the defeasibility of human
reasoning.

Every adaptive logic in standard format is characterized by a triple: a lower
limit logic (henceforth LLL), a set of abnormalities (usually denoted by Ω) and
a strategy. The LLL is a monotonic logic, the rules of which are uncondition-
ally valid in the AL. The AL strengthens its LLL by considering a certain set
of formulas (the elements of Ω) as abnormal, and by interpreting premises “as

6I refer to [33] for a longer list of references to applications of adaptive logics. Unpub-
lished papers in the bibliography (and many others) are available from the internet address
http://logica.UGent.be/centrum/writings/.

7There is a positive test for a given property and a class of objects, iff there is a mechanical
procedure that leads to the answer YES whenever a particular object has the property. If the
property does not hold, the procedure may lead to the answer NO or may continue ad infinitum.
Note that decidability implies that there is a positive test.
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normally as possible”. For all ALs in standard format, it is required that the ab-
normalities are specified in terms of a logical form. The precise interpretation of
the phrase “as normally as possible” depends on the strategy of the AL – again,
all this will be specified in Chapter 2. As we will see there, every AL in standard
format is sound and complete with respect to a static selection semantics in the
vein of Shoham [133], and has a number of nice properties such as Idempotence,
Cautious Monotonicity, and Cumulative Transitivity.8

However, so far, the standard format is only able to deal with non-prioritized,
or “flat” defeasible reasoning forms. To model forms of PDR, it seems that one
has to trespass the safe boundaries of the standard format. In the remainder, I
will therefore often use the term “flat adaptive logics” to refer to adaptive logics
in standard format.

This does not imply that PDR has been neglected by adaptive logicians –
quite to the contrary. Various ALs were developed to capture reasoning with
prioritized belief bases (see e.g. [32, 164, 163]). There are also examples in the
literature of prioritized logics for inductive generalization [24] and prioritized
inconsistency-adaptive logics [22, 19]. Examples of prioritized ALs that combine
qualitatively distinct reasoning methods can be found in [105, 91, 139, 144].
Finally, in [17, 29, 13, 24], some logics are presented to formalize the interaction
of induction and background assumptions. For the time being, I will use the
term prioritized adaptive logics (PALs) in a loose way to denote these systems.
That is, PALs are logics that bear a significant number of similarities with ALs
in standard format, but are developed to capture forms of prioritized defeasible
reasoning. What these similarities exactly are, will become clear in subsequent
chapters.

While ALs in standard format are well-studied, the existing PALs have been
comparatively neglected from the meta-theoretic point of view.9 In the literature,
many ALs that deal with prioritized reasoning are defined in terms of a sequential
superposition of flat ALs – how this is done exactly, will be explained in Chapter
3. Other systems, e.g. those from [164, 29] were defined in a more direct way, i.e.
in terms of a proof theory and semantics that have a prioritized flavor. However,
the metatheory of these logics has remained largely unknown, and more recently
it turned out that they have several disadvantages – more on this in Chapter 3.
Moreover, as will be shown in Chapters 4 and 5, there are several other ways to
characterize prioritized reasoning by adaptive logic tools, which score at least as
good as superpositions of ALs in various respects.

This explains the need to investigate these formats, and to try to achieve the
same level of insight into their metatheory, as that obtained for the standard
format. Such research is motivated by the same reasons as the research on the
standard format: if successful, it warrants the well-behavedness of PALs; it pro-
vides a unifying framework for PALs (with all the advantages mentioned above);
it allows us to focus on the properties that are typical for prioritized defeasible
reasoning in general, and to make various distinctions on a more abstract level.

There are two additional reasons why we should take the metatheory of PALs

8The precise meaning of these terms is explained in Chapter 2.
9Notable exceptions are [25] and [137] – both are of very recent vintage and will be often

referred to in the remainder of this thesis.
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serious. First of all, as will be explained in the next section, the current PALs are
restricted in various respects. In order to remove one or more of these restrictions,
we should first get to know better the internal structure, power and limitations of
the current systems. I will argue at the end of Chapter 6 that, on the basis of the
results presented here, we can think of various ways to further extend the scope
of adaptive logics. Second, as I will argue especially in Chapter 10, the existing
formats of PALs are not only interesting for the development of adaptive logics;
some of the ideas that underlie them might also be used in other formalisms.

1.4 The Subject of this Thesis

As indicated at the start of this chapter, I will be mostly concerned with the
metatheory of PALs in this thesis (Part I). That is, I will compare these logics to
adaptive logics in standard format, focusing on their proof theory, their semantic
chacterization(s) and a list of meta-theoretic properties that are known to hold
for all flat ALs. This will be done by means of a study of three generic formats
of such logics.

After that, I will also consider the application of PALs in three contexts:
prioritized normative reasoning, abduction, and the revision of a prioritized set
of beliefs (Part II). These applications substantiate the claim that the various
formats of PALs from Part I are applicable in a broad range of contexts. A more
detailed overview of the other chapters is provided below. However, let me first
point at some restrictions of the research presented in the current thesis.

Some features of (prioritized) ALs will remain largely outside the scope of the
current study, e.g. the alternative dynamic semantics for ALs in terms of blocks
[7, 8], the proof-procedures for final derivability [18, 160], the game-theoretic
interpretations of dynamic proofs [23, 158], and issues concerning the computa-
tional complexity of ALs [157, 26] – the list is by far not complete. The research
on ALs has been very successful over the past few decades, and it is impossible
to even explain all these results in one thesis, let alone to see whether they can
be extended to the prioritized case.

More generally, some aspects of prioritized defeasible reasoning will not be
studied at length in this thesis. First of all, the existing PALs can only handle
forms of PDR in which the priorities are ordered by a well-founded, modular
order. In the context of prioritized information (obligations, beliefs, etc), this
means that we can divide the information into distinct layers, each associated
with a priority degree. In the context of combining various (qualitatively distinct)
methods in a prioritized way, this means that each method receives a place of its
own in a fixed hierarchy.10

Needless to say, this restriction implies that various applications call for other
logics, and possibly also extensions of the existing formats. For instance, we
may have three obligations p, q, r, where we only know for sure that p is more
important than q, but we have no information on the relation between p and r,
or between q and r. The formats I will consider in this thesis seem unable to

10For a general definition of the concept of a modular order, see e.g. [88].
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adequately represent such situations, and to deal with them in an appropriate
way.

A second restriction, which PALs share with most of the existing approaches
to PDR, concerns the dynamics of priorities. As argued e.g. in [123], not only
the conclusions we can or should draw, but also the priorities themselves may
change as a reasoning process proceeds. For instance, we may start off with a
“flat” belief base, and only when it turns out that some beliefs are problematic
in view of the new information, attach different degrees of reliability to them.
Although such dynamics are particularly interesting from the philosophical point
of view, there has been no successful way to deal with them in terms of adaptive
logics, so far.

I will return to these restrictions in Chapter 6, where I indicate how one might
tackle some of them on the basis of the present results.

1.5 Overview of the Other Chapters

Part I. Chapter 2 gives a detailed account of the semantics, proof theory and
metatheory of the standard format. This chapter contains no new material, but is
indispensible for several reasons: it introduces concepts that are used throughout
the rest of the thesis (including the notion of an adaptive proof and the definition
of a selection semantics), and numerous important metatheorems are stated here
for further reference.

In the three subsequent chapters, I will discuss three generic formats of pri-
oritized ALs: sequential superpositions (Chapter 3), hierarchic ALs (Chapter 4)
and lexicographic ALs (Chapter 5). I will present semantic characterizations and
proof theories for each of these, and consider a fixed list of metatheoretic prop-
erties, comparing the results with those of the standard format and the other
formats of prioritized ALs. As the reader will note, Chapters 2-5 do not have a
concluding section. A summary of the results of these chapters is presented at
the end of Chapter 6.

In Chapter 6, I will compare the various formats of prioritized adaptive log-
ics in terms of their logical strength, and the relation between their respective
semantic characterizations. This chapter ends with an extensive conclusion and
outlook to further research, on the basis of the technical results from Chapters
3-6.

Part II. In Chapter 7, the prioritized deontic logic MPm
@ is presented. This

logic allows us to derive a set of actual and “unconflicted” obligations from a (pos-
sibly conflicting) ordered set of prima facie obligations. The MPm

@ -consequence
relation is compared to several other systems from the literature by means of
concrete examples.

Chapter 8 discusses two logics for a specific kind of abduction, called Abduc-
tion of Generalizations. The logics allow us to derive generalizations that explain
facts such as “all chocolate tastes sweet” or “all iron tools in this garage are cor-
roded”. Special attention is paid to a reconstruction of this pattern in terms of a
(prioritized) combination of singular fact abduction and inductive generalization.
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Chapter 9 is not about prioritized defeasible reasoning, but is used as a step-
ping stone to Chapter 10. In Chapter 9, a specific notion of relevance in the
theory of belief change is explained, and it is shown how various adaptive logics
allow us to model the internal and external dynamics of relevant belief revision.

Finally, Chapter 10 discusses the notion of relevance in a prioritized context,
and explains how we can generalize the logics from Chapter 9 in order to deal with
prioritized belief bases in an accurate and relevance-sensitive way. It also shows
how the idea of superposing adaptive logics can be translated to the context of
belief revision.

Shortcuts for the Selective Reader. I am aware that this thesis is fairly
lengthy, and that many chapters, especially those in Part I, might be rather hard
to digest for the reader who is not acquinted with the formal framework of adap-
tive logics. I have opted for a compact presentation of this framework, mainly
for reasons of space and since my own research is concerned with extensions and
applications of it.

For systematic reasons, the three generic formats of prioritized ALs, together
with their proof theory, semantics and metatheory are spelled out in the first
part of this thesis. In Part II, it will be assumed that the reader is acquinted
with the definitions and results from Part I. However, readers who are more inter-
ested in specific formats or applications of (prioritized) adaptive logics, may want
to restrict themselves to certain chapters. The following selections of chapters
are more or less self-contained, and can be read independently from the other
chapters:

• Chapters 2-6

• Chapters 2, 5, 7

• Chapters 2, 3, 8

• Chapters 2, 9, Appendix C

• Chapters 2, 3, 9, 10
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Generic Formats For
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Chapter 2

Flat Adaptive Logics

I am indebted to Peter Verdée, Mathieu Beirlaen and Joke Meheus for their
valuable comments on previous versions of this chapter.

In this chapter, the standard format of adaptive logics (henceforth ALs) and
its most salient properties are explained.1 This chapter contains no new material,
but merely summarizes and illustrates results from the literature and highlights
some specific facts that are relevant for the rest of this thesis. I refer to the
available literature for more details, examples and meta-theoretic proofs.2

The outline of this chapter is as follows. I will first present the basic ingre-
dients of every adaptive logic, and explain the general idea behind each of these
(Section 2.1). Next, I will show how we can use them to obtain a selection seman-
tics (Section 2.2), and a dynamic proof theory (Section 2.3). Both semantics and
syntax of the standard format are illustrated by means of two simple examples
in Section 2.4. In Section 2.5, various properties of the consequence relations of
flat adaptive logics are spelled out.

After this general introduction to the standard format, I will consider a few
specific topics that are of particular interest for the study of prioriotized adaptive
logics. First, some observations will be made about the relation between the two
strategies of flat adaptive logics in standard format (Section 2.6). Second, I
will discuss the role of the so-called “checked connectives” in adaptive proofs,
and establish some properties concerning a specific class of premise sets that
have such connectives in them (Section 2.7). The chapter ends with a couple
of generic lemmas that will shorten some proofs in subsequent chapters (Section
2.8).

Some Conventions Before we continue, let me introduce some general con-
ventions that will be used in the remainder of this thesis. All formulas will be

1Recall that I use the name flat ALs to denote ALs in standard format, in contradistinction
to the prioritized ALs introduced in subsequent chapters.

2Especially [15] and [21] can serve as introductions to the standard format. In [25], the
reader can find numerous examples and an extensive discussion of all the important results in
the field. Another highly recommendable piece of work is the recent [137], in which a wide
variety of applications of the standard format is studied.

15
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assumed to be finite strings in a recursively enumerable language. I will use
A,B,C, . . . as metavariables for formulas and Γ,∆,Θ, . . . as metavariables for
sets of formulas.3 Where N = {1, 2, . . .}, I will use i, j, k, . . . as metavariables for
members of N, and I, J,K, . . . as metavariables for initial subsequences of N.

In accordance with the traditional style of the Ghent group, I will use L,L′, . . .
to refer to specific languages, and W ,W ′, . . . to refer to the associated sets of
formulas. In this thesis, it is assumed that languages and sets of formulas are
infinite. Table A.1 in Appendix A gives an overview of all the logics and languages
used in this thesis.

I will use Γ `L A to denote that A is L-derivable from Γ. Let CnL(Γ) =df

{A | Γ `L A}. Logic L are conceived as functions that map every premise set Γ
to a consequence set CnL(Γ). I write Γ `L ∆ whenever Γ `L A for every A ∈ ∆,
and Γ a`L ∆ as an abbreviation for (Γ `L ∆ and ∆ `L Γ).

Where M is an L-model, M  A denotes that A is valid in M . M is an
L-model of Γ iff it is an L-model and M  A for all A ∈ Γ. The set of L-models
of Γ is denoted by ML(Γ). A is a semantic L-consequence of Γ, Γ |=L A iff A is
verified by all L-models of Γ.

Let LL be the language associated with the logic L. Then L is called a
Tarski-logic iff the following holds for every Γ ⊆ WL:

Reflexivity: Γ ⊆ CnL(Γ)

Transitivity: if Γ′ ⊆ CnL(Γ), then CnL(Γ′) ⊆ CnL(Γ)

Monotonicity: CnL(Γ) ⊆ CnL(Γ ∪ Γ′)

It is common knowledge that every Tarski-logic L has the Fixed Point prop-
erty, or alternatively, that Tarski-logics are idempotent : CnL(CnL(Γ)) = CnL(Γ).
L is said to be compact whenever the following holds for every Γ ⊆ WL: if
Γ `L A, then there are B1, . . . , Bn ∈ Γ, such that {B1, . . . , Bn} `L A. A premise
set Γ ⊆ WL is L-trivial iff CnL(Γ) = WL.

Let L be the language associated with both L and L′. L is at least as strong
as L′ iff for every Γ ⊆ W , CnL′(Γ) ⊆ CnL(Γ). L is stronger than L′ (L′ is weaker
than L) iff L is at least as strong as L′ and for some Γ ⊆ W , CnL′(Γ) ⊂ CnL(Γ).

As we will see below, (propositional) classical logic (henceforth CL) takes a
special place in the AL framework. In this thesis, I will use Lc to refer to the
language of propositional classical logic, which is obtained by adding the regular
connectives ⊥,¬,∧,∨,⊃,≡ to the set of sentential letters, S =df {p, q, r, . . .}.4

The associated set of formulas will be denoted by Wc. The set of literals of Wc

is denoted by W l
c =df S ∪ {¬A | A ∈ S}. A full axiomatization of CL can be

found in Appendix B.

2.1 General Characteristics of AL

As mentioned in Chapter 1, every logic AL is characterized by a triple:

3For some very specific sets of formulas, I will violate these conventions in order to stay in
line with the vocabulary that is common in the adaptive logic program. Such violations will
always be made explicit.

4As usual, > =df ⊥ ⊃ ⊥.



2.1. GENERAL CHARACTERISTICS OF AL 17

1. A lower limit logic LLL: a compact Tarski-logic that has a proof theory and
a characteristic semantics, and that includes classical logic

2. A set of abnormalities Ω: a set of formulas, characterized by a (possibly
restricted) logical form; or a union of such sets5

3. An adaptive strategy: Reliability or Minimal Abnormality

The strategy is indicated by a superscript: ALr for ALs that have Reliability
as their strategy, ALm for those that have Minimal Abnormality as strategy.
Many definitions and theorems are applicable to both classes of logics – in that
case, the generic name AL is used. I will also sometimes write ALx, where x
can be either r or m. The role of the strategy of an AL will become clear in the
next two sections, where the semantics and proof theory of ALr, resp. ALm are
defined.

Some examples might help the reader to grasp the intuitive meaning of each
of the first two elements of a flat adaptive logic. For instance, inconsistency-
adaptive logics usually have a paraconsistent lower limit logic, i.e. a logic that
does not trivialize (all) formulas of the formA∧∼A (I use ∼ for the paraconsistent
negation, not to be confused with the classical negation ¬). The set of abnormal-
ities of a prototypical inconsistency-AL contains all formulas of the form A∧∼A.
An example of such a system is the logic CLuNm, the propositional fragment
of which is presented at length in Section 2.4. CLuNm interprets premises “as
consistently as possible”. To see what this amounts to, consider the following
facts:

• {p,∼p} 0CLuNm q
• {p,∼p,∼p ∨ q} 0CLuNm q
• {p,∼p ∨ q} `CLuNm q
• {p,∼p, q,∼q ∨ r} `CLuNm r

In view of the first fact, CLuNm does not trivialize inconsistent premise sets. In
view of the other three, it only validates disjunctive syllogism in a “case-sensitive”
way.

Another simple example is the logic ILr of inductive generalization from [29]
– we will encounter a variant of this system in Chapter 8. Roughly speaking, the
lower limit logic of ILr is a classical predicate logic, and its set of abnormalities
contains all formulas of the form ∃xAx ∧ ∃x¬Ax. That is, from the viewpoint
of a logic of induction, it counts as an abnormality that one object has a given
property A, whereas another object does not have this property. This means
that ILr interprets premises “as uniformly as possible”, or in other words, that
it validates the rule ∃xAx ⊃ ∀xAx “as much as possible”. Again, this can be
illustrated by some simple examples:

• {Pa} `ILr ∀xPx
• {Pa,¬Pb} 0ILr ∀xPx
• {Pa,Qa,¬Pb,Qb} `ILr ∀xQx
• {Pa,Qa,¬Pb,¬Qb} `ILr ∀x(Px ⊃ Qx), ∀x(Qx ⊃ Px)

5Since it is assumed that L is infinite, Ω will also typically be an infinite set.
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In this case, the adaptive logic allows us to derive universal generalizations, unless
this leads to contradictions. How this is possible, will be explained below.

Let us now consider each of the three elements of every AL in standard for-
mat from a more abstract point of view, starting with the lower limit logic LLL.
This logic is obtained from a Tarski-logic LLLs, which is often a well-known
system from the literature – examples are CL (for ALs of induction and ab-
duction), the paraconsistent logic CLuN (for inconsistency-adaptive logics) or a
non-aggregative deontic logic such as Goble’s logic P (for deontic adaptive log-
ics). In this thesis, Kripke’s modal logic K will also often serve as lower limit
logic of adaptive systems. Henceforth, let Ls be the language of LLLs, and let
Ws be the set of closed formulas of Ls.

As mentioned in Chapter 1, the logic AL enriches its lower limit logic, by
considering certain formulas as abnormal, and by avoiding abnormalities “as
much as possible”. Under one interpretation of this phrase, abnormalities are
considered to be false by the adaptive logic, unless they are part of a minimal
(classical) disjunction of abnormalities that is LLLs-derivable from the premises
– this interpretation corresponds to the Reliability Strategy (see below). An-
other interpretation is slightly more complex, but also makes use of classical
disjunctions that are LLLs-derivable from the premise set.

However, such a construction requires that LLLs ranges over classical dis-
junctions. Also, to express the falsehood of an abnormality, we need a classical
negation. Since the standard format has the aim to encompass a very broad
range of systems, in which the connectives of LLLs can behave non-classically in
several ways, it is convenient to add a layer of classical connectives to the lower
limit logic, which can be used in the metatheory and generic definitions of ALs.
As will be explained in Section 2.7, this small amendment is also indispensable to
obtain a specific kind of completeness6 for all adaptive logics in standard format
(even if the connectives of LLLs behave classically).

The additional connectives are marked by a check: ¬̌, ∨̌, ∧̌, ⊃̌, ≡̌, and are
usually referred to as the checked connectives.7 The language Ľs is obtained
by extending Ls with the checked connectives, where it is assumed that these
symbols are not in Ls. W̌s is obtained by superimposing the checked connectives
on Ws, i.e. W̌s is the smallest set such that:

(i) Ws ⊂ W̌s

(ii) where A,B ∈ W̌s: ¬̌A,A ∨̌B,A ∧̌B,A ⊃̌B,A ≡̌B ∈ W̌s

Unless specified differently, I will henceforth use Γ as a metavariable for subsets
of W̌s.

To model inferences on the basis of Ľs, LLLs is upgraded to LLL : ℘(W̌s) →
℘(W̌s). As will become clear, LLL is a conservative extension of LLLs, i.e.
for every Γ ⊆ Ws, CnLLLs

(Γ) ∩ Ws = CnLLL(Γ) ∩ Ws. How LLL is obtained
precisely, requires some explanation.

6To be precise: for all Γ ⊆ Ws, Γ `AL A iff Γ |=AL A. However, for some Γ ⊆ W̌s and
A ∈ W̌s, Γ 6`AL A whereas Γ |=AL A. So the completeness of ALs is restricted to premise sets
that contain no checked connectives. Why this is so, is explained in Section 2.7.

7Obviously, the connectives ∧̌ and ⊃̌ can be defined from ∨̌ and ¬̌. It is not necessary to
add the connective ⊥̌ to the language of LLLs.
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For the LLL-semantics, we define a model validity relation  that extends
the validity relation s of LLLs, as follows. Let M be an LLLs-model. Define
(1) for all A ∈ Ws: M  A iff M s A, (2) for all A ∈ W̌s: M 6 A iff M  ¬̌A,
(3) for all A,B ∈ W̌s: (M  A or M  B) iff M  A ∨̌B, and likewise for
the other checked connectives. Henceforth, we say that M is an LLL-model of
Γ ⊆ W̌s, M ∈ MLLL(Γ) iff M is an LLLs-model and M  A for every A ∈ Γ.
We write Γ |=LLL A iff for all LLL-models M of Γ: M  A.

In the triple characterization of AL, a sound and complete axiomatization
for LLL is presupposed. Where LLLs is supraclassical, one can obtain the ax-
iomatization for LLL by a generic procedure – it suffices to make each checked
classical connective equivalent to its classical counterpart in Ls. This will be
illustrated in Section 2.4.2. However, if LLLs has weak or very non-standard
connectives, it becomes a lot tougher to find a generic procedure that gives a
sound and complete axiomatization for LLL. Nevertheless, for concrete cases,
the adaptive logician’s job of devising a syntax for LLL will usually be fairly
easy, as will be illustrated in Section 2.4.1.

Every logic AL is a function ℘(W̌s) → ℘(W̌s). Since AL was intended to
explicate defeasible reasoning processes on the basis of premises in Ls, premises
of AL are often assumed to be subsets of Ws. One possible interpretation of
the relation between AL, Ls and Ľs is that AL provides an explication of a
reasoning based on formulas in Ls, but that for this explication, it uses formulas
in Ľs — this will become clear when we present the AL-proof theory.

The set of abnormalities Ω ⊆ W̌s represents those formulas that AL assumes
to be false “as much as possible”, in view of the premises. As we saw before,
the phrase “as much as possible” can have various interpretations – every such
interpretation corresponds to an adaptive strategy.8

Every flat AL also has an upper limit logic ULL : ℘(W̌s) → ℘(W̌s), which
is obtained by considering all abnormalities to be false. In the remainder of this
thesis, let Θ¬̌ =df {¬̌A | A ∈ Θ} for any Θ ⊆ W̌s. Syntactically, ULL is defined
as follows: Γ `ULL A iff Γ ∪ Ω¬̌ `LLL A. Semantically, we speak of normal
models as those LLL-models M for which M  ¬̌A for every A ∈ Ω. Γ is a
normal premise set iff it has normal models; alternatively, iff Γ ∪ Ω¬̌ is LLL-
satisfiable. Finally, Γ |=ULL A iff for every normal model M of Γ, M  A. Note
that in view of these definitions, the upper limit logic trivializes every premise
set Γ that entails a (classical) disjuntion of abnormalities, since for all such Γ,
every LLL-model of Γ verifies at least one abnormality.

2.2 The AL-Semantics

As stipulated at the start of this chapter, the semantic consequence relations of
every logic L in this thesis is defined as a function of the set of all L-models of a
premise set. Hence, it suffices to specify what the AL-models of a given premise
set Γ are, in order to obtain the relation |=AL.

8Other strategies than Reliability and Minimal Abnormality are e.g. Counting, Normal
Selections and the Flip-Flop-Strategy. These are strictly speaking not part of the standard
format, but can be obtained from it under a translation – see [25, Chapter 6].
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As mentioned in the introduction, ALs have a semantics similar to Shoham’s
preferential semantics [133]: from the set of all LLL-models, AL selects a subset.
In most interesting cases, the set inclusion is proper. Also, whenever Γ has normal
models, then AL will select only these models.

Before we can explain the exact selection procedure, we first need a few extra
definitions. Where ∆ is a finite subset of Ω, Dab(∆) =df

ˇ∨∆ is called a Dab-
formula. Where ∆ = {A}, Dab(∆) denotes A; where ∆ = ∅, Dab(∆) denotes
the empty string. Where ∆ 6= ∅, Dab(∆) is a minimal Dab-consequence of Γ iff
Γ `LLL Dab(∆) and there is no ∆′ ⊂ ∆ for which Γ `LLL Dab(∆

′).
Where Dab(∆1), Dab(∆2), . . . are the minimal Dab-consequences of Γ, let

Σ(Γ) = {∆1,∆2, . . .}. We say that U(Γ) =df

⋃

Σ(Γ) is the set of unreliable
formulas with respect to Γ. In view of the preceding definitions and the fact that
LLL is idempotent, we can infer:

Fact 2.1 Σ(CnLLL(Γ)) = Σ(Γ), whence also U(CnLLL(Γ)) = U(Γ) and
Φ(CnLLL(Γ)) = Φ(Γ).

Where M is an LLL-model, let Ab(M) =df {B ∈ Ω | M  B}. We call
Ab(M) the abnormal part of M . Every logic AL selects a subset of models
M ∈ MLLL(Γ), in view of their abnormal part. The precise criterion for a model
to be selected depends on the strategy:

Definition 2.1 M ∈ MALr(Γ) iff (M ∈ MLLL(Γ) and Ab(M) ⊆ U(Γ)).

Definition 2.2 M ∈ MALm(Γ) iff (M ∈ MLLL(Γ) and there is no M ′ ∈
MLLL(Γ) such that Ab(M ′) ⊂ Ab(M)).

MALr(Γ) is called the set of reliable models, MALm(Γ) the set of ⊂-minimally
abnormal models, or more briefly, minimally abnormal models.9

Although the above definition of MALm(Γ) is more direct, we can also define
the semantics of Minimal Abnormality in terms of the minimal Dab-consequences
of Γ. This requires some notational preparation. Let Ψ = {∆i ⊆ Ω | i ∈ I} for a
given I ⊆ N. We say that ϕ ⊆ Ω is a choice set of Ψ iff for every i ∈ I, ϕ∩∆i 6= ∅.
For the border case where Ψ = ∅, this means that every set ϕ ⊆ Ω is a choice set
of Ψ, including the empty set.

ϕ is a ⊂-minimal choice set of Ψ iff there is no choice set ψ of Ψ such that
ψ ⊂ ϕ. In the context of the standard format, we speak of “minimal choice sets”
to refer to “⊂-minimal choice sets”. The following is proven in [25, Chapter 5]:

Fact 2.2 If every ∆ ∈ Ψ is finite, then Ψ has minimal choice sets. [25, Fact
5.2.1]

Φ(Γ) is the set of minimal choice sets of Σ(Γ). Note that when Σ(Γ) = ∅,
Φ(Γ) = {∅}. It is easily provable that U(Γ) =

⋃

Φ(Γ). Also, remark that since
all the members of Σ(Γ) are finite, Φ(Γ) 6= ∅ for every Γ ⊆ W̌s by Fact 2.2. The
following theorems are immediate consequences of Lemma 4 from [21]:

9Readers that are familiar with the standard format might wonder why the reference to the
subset-relation is made explicit – this will become clear in Chapter 5, where I will also speak
of “@-minimal” abnormal models.
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Theorem 2.1 M ∈ MALm(Γ) iff (M ∈ MLLL(Γ) and Ab(M) ∈ Φ(Γ)).

Theorem 2.2 If Γ has LLL-models, then Φ(Γ) = {Ab(M) |M ∈ MALm(Γ)}.

Note that in view of Theorem 2.1 and the preceding paragraph,Ab(M) ∈ Φ(Γ)
implies that Ab(M) ⊆ U(Γ). Also, U(Γ) = {A ∈ Ω | M  A for an M ∈
MALm(Γ)}. It follows immediately that every minimally abnormal model is a
reliable model:

Theorem 2.3 MALm(Γ) ⊆ MALr(Γ)

As can be observed from the above definitions, the AL-semantics is fairly
straightforward: we specify a selection criterion in terms of abnormal parts of
models, and we select all the LLL-models of Γ that obey this criterion. The real
challenge is to define a proof theory, i.e. a procedure in terms of inference rules
and an associated notion of derivability, that matches this semantic consequence
relation. This proof theory will be presented below. To see how it relates to
the semantic consequence relation, the following two theorems are of particular
interest:

Theorem 2.4 Γ |=ALr A iff there is a ∆ ⊂ Ω such that Γ |=LLL A ∨̌Dab(∆)
and ∆ ∩ U(Γ) = ∅

Theorem 2.5 Γ |=ALm A iff for every ϕ ∈ Φ(Γ), there is a ∆ ⊂ Ω such that
ϕ ∩ ∆ = ∅ and Γ |=LLL A ∨̌Dab(∆)

In the next section, we will see criteria for the membership of CnALr(Γ), resp.
CnALm(Γ), which parallel the above two theorems – see Theorems 2.6 and 2.7.

2.3 Proof Theory of AL

The adaptive proof theory mirrors the dynamic character of defeasible reasoning
forms, as discussed in Chapter 1: not only can new lines be added to any proof
(as is the case in any proof theory), but also, some derivations can be canceled
or retracted in view of other derivations in the proof. Every AL-proof consists
of lines that have four elements: a line number i, a formula A, a justification
(consisting of a series of line numbers and a derivation rule) and a condition
∆ ⊆ Ω. Where Γ is the set of premises, the inference rules are given by:
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PREM If A ∈ Γ:
...

...
A ∅

RU If A1, . . . , An `LLL B: A1 ∆1

...
...

An ∆n

B ∆1 ∪ . . . ∪ ∆n

RC If A1, . . . , An `LLL B ∨̌Dab(Θ): A1 ∆1

...
...

An ∆n

B ∆1 ∪ . . . ∪ ∆n ∪ Θ

The rule PREM states that a premise may be introduced at any line of
a proof on the empty condition. The unconditional rule RU states that, if
A1, . . . , An `LLL B and A1, . . . , An occur in the proof on the respective con-
ditions ∆1, . . . ,∆n, then we may add B on the condition ∆1 ∪ . . .∪∆n. RU also
allows us to introduce any LLL-theorem B on the condition ∅.

The strength of an adaptive logic comes with the conditional rule RC, which
works analogously to RU, but allows us to “push” abnormalities from the formula
to the condition. Put differently, if we can derive the formula A in disjunction
with one or more abnormalities, then RC states that we may derive A, relying
on the (defeasible) assumption that those abnormalities are false.

A stage of a proof can be seen as a sequence of lines, obtained by the appli-
cation of the above rules. s′ is an extension of a stage s iff every line in s occurs
in s′. A proof is a sequence of stages (s, s′, s′′, . . .). Adding lines to a proof by
applying the inference rules brings the proof to a next stage. New lines can be
added anywhere in the proof, as long as the inference rules are applied correctly
and each line is either obtained by the introduction of a premise or LLL-theorem,
or from lines that precede it.10

In view of the inference rules, the condition of any line l is necessarily finite,
and the following lemma holds:

Lemma 2.1 There is an AL-proof from Γ that contains a line at which A is
derived on a condition ∆ ⊂ Ω iff Γ `LLL A ∨̌Dab(∆). [21, Lemma 1]

Lemma 2.1 allows us to introduce a derived rule RD, which can be represented
as follows:

RD If A `LLL ¬̌B: A ∆
B Θ
Dab(∆) ∨̌Dab(Θ) ∅

10It is necessary to allow for inserting lines between existing lines in a proof, in order to be
able to extend a stage that consists of infinitely many lines.
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That is, if A is derived on the condition ∆ and B on the condition Θ,
then by the left-right direction of Lemma 2.1, Γ `LLL A ∨̌Dab(∆) and Γ `LLL

B ∨̌Dab(Θ). But then, if A `LLL ¬̌B, it follows that Γ `LLL Dab(∆) ∨̌Dab(Θ).
Hence by the right-left direction of Lemma 2.1, we may derive Dab(∆) ∨̌Dab(Θ)
on the empty condition in an AL-proof from Γ.

A distinctive feature of the adaptive proof theory is the marking definition –
see below. At every stage of a proof, this definition determines for each line in
the proof whether it is marked or not. If a line that has as its second element A is
marked at stage s, this indicates that according to our best insights at this stage,
A cannot be considered derivable. If the line is unmarked at stage s, we say that
A is derived at stage s of the proof. To prepare for the marking definitions, we
need some more conventions.

Where ∆ is a finite and non-empty subset of Ω, Dab(∆) is a Dab-formula at
stage s of a proof iff it is the second element of a line at stage s with an empty
condition. Dab(∆) is a minimal Dab-formula at stage s iff there is no other Dab-
formula Dab(∆′) at stage s for which ∆′ ⊂ ∆. Where Dab(∆1), Dab(∆2), . . . are
the minimal Dab-formulas at stage s of a proof, let Σs(Γ) = {∆1,∆2, . . .}. Let
Us(Γ) =df

⋃

Σs(Γ) and let Φs(Γ) be defined as the set of minimal choice sets of
Σs(Γ). By Fact 2.2, Φs(Γ) 6= ∅ at every stage s of a proof from Γ.

Definition 2.3 ALr-Marking: a line l is marked at stage s iff, where ∆ is its
condition, ∆ ∩ Us(Γ) 6= ∅.

Definition 2.4 ALm-Marking: a line l with formula A is marked at stage s iff,
where its condition is ∆: (i) there is no ϕ ∈ Φs(Γ) such that ϕ ∩ ∆ = ∅, or (ii)
for a ϕ ∈ Φs(Γ), there is no line at which A is derived on a condition Θ for which
Θ ∩ ϕ = ∅.

Put differently: where the strategy is Minimal Abnormality, a line with for-
mula A is unmarked at stage s iff its condition has an empty intersection with
at least one ϕ ∈ Φs(Γ), and for every ψ ∈ Φs(Γ), there is a line at which A is
derived on a condition ∆ such that ∆∩ψ = ∅. The difference between these two
marking definitions will be illustrated by means of two simple examples in the
next section.

As a line may be marked at stage s, unmarked at a later stage s′ and marked
again at a still later stage s′′, we also need to define a stable notion of derivability:

Definition 2.5 A is finally derived from Γ on line l of a finite stage s of an
AL-proof iff (i) A is the second element of line l, (ii) line l is unmarked at stage
s, and (iii) every extension of the proof at stage s, in which line l is marked may
be further extended in such a way that line l is unmarked again.

Definition 2.6 Γ `ALx A iff A is finally derived on a line of an ALx-proof from
Γ.

Note that, on the one hand, finiteness of the stage is a prerequisite for final
derivability – I return to this point in Section 2.7. On the other hand, extensions
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may be infinite, and for the Minimal Abnormality Strategy, infinite extensions
are necessary in order to warrant soundness of the proof theory.11

There is an interesting game-theoretic interpretation of adaptive proofs, in
terms of a proponent-opponent dialogue. If Γ `AL A, then the proponent only
needs a finite proof to argue in favor of A. Moreover, whatever the opponent’s
counterargument may be, the proponent can always reply in such a way that
this counterargument is defeated. If Γ 0AL A, then either the proponent cannot
produce a finite proof for A, or if he can, there is always a counterargument the
opponent can yield, that defeats every further argumentation pro A.

The following two theorems were already announced in Section 2.2. They
link the dynamic proof theory nicely to the static semantics for Reliability, resp.
Minimal Abnormality, and are therefore crucial for the proofs of soundness and
completeness:

Theorem 2.6 Each of the following holds: [21, Th. 6]

1. If Γ `ALr A, then there is a ∆ ⊂ Ω such that Γ `LLL A ∨̌Dab(∆) and
∆ ∩ U(Γ) = ∅

2. Where Γ ⊆ Ws: if there is a ∆ ⊂ Ω such that Γ `LLL A ∨̌Dab(∆) and
∆ ∩ U(Γ) = ∅, then Γ `ALr A

Theorem 2.7 Each of the following holds: [21, Th. 8]

1. If Γ `ALm A, then for every ϕ ∈ Φ(Γ), there is a ∆ ⊂ Ω such that ϕ∩∆ = ∅
and Γ `LLL A ∨̌Dab(∆)

2. Where Γ ⊆ Ws: if for every ϕ ∈ Φ(Γ), there is a ∆ ⊂ Ω such that ϕ ∩ ∆ = ∅
and Γ `LLL A ∨̌Dab(∆), then Γ `ALm A

Relying on Theorems 2.4 and 2.6, and the soundness and completeness of
LLL, we can immediately infer that ALr is sound and complete. Likewise, by
Theorems 2.5 and 2.7 and the soundness and completeness of LLL, ALm is sound
and complete. However, a small warning is in place: note that since the right-left
directions of Theorems 2.6 and 2.7 only hold for Γ ⊆ Ws, we cannot obtain a
general completeness theorem for ALs – this will be explained in Section 2.7.

2.4 Two Examples

Before we look at the generic metatheory of ALs, let us consider two exemplary
systems, one for reasoning with inconsistent premises, the other for reasoning
with defeasible background assumptions. These systems will help the reader to
get a better grip on the abstract definitions from the preceding sections, and will
also play a role in the remainder of this thesis.

2.4.1 The Logics CLuNm and CLuNr

The first example I will use is the inconsistency-adaptive logic CLuNm, which
was already mentioned in Section 2.1. For reasons of simplicity, I will only
consider the propositional fragment of this system.

11See [25, Section 4.9.2] for more details and illustrations of this fact.
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CLuNm is an adaptive logic based on the monotonic paraconsistent system
CLuN, which stands for “Classical Logic with gluts for the Negation”. Where
∼ is the paraconsistent negation, we obtain CLuN by adding the axiom A∨∼A
to all axioms that characterize the positive fragment of CL (see Appendix B),
and closing the resulting set under modus ponens. It can easily be verified that
CLuN invalidates disjunctive syllogism: {A,∼A ∨ B} 0CLuN B. CLuN+, the
lower limit logic of CLuNm, is obtained by enriching CLuN with the checked
connectives, as explained in Section 2.1.

Let me illustrate the way a logic LLL is obtained from a logic LLLs, for
the case of CLuNm. The regular connectives of CLuN are ⊥,∼,∨,∧,⊃,≡.
Except for the paraconsistent negation ∼, all these connectives behave classically.
Together with S (the set of sentential letters), this gives us the language L∼ and
the associated set of formulas W∼.

To obtain Ľ∼, we add the checked connectives, i.e. ¬̌, ∨̌, ∧̌, ⊃̌, ≡̌, which gives
us the language of CLuN+. The set W̌∼ is obtained by superimposing the
checked connectives, as described on page 18.

It remains to be specified which axioms we need to add to CLuN, in order to
obtain the logic CLuN+. First of all, every logic LLL contains the CL-axioms
for the checked connectives:

A⊃̌1 A ⊃̌(B ⊃̌A)
A⊃̌2 ((A ⊃̌B) ⊃̌A) ⊃̌A)
A⊃̌3 (A ⊃̌(B ⊃̌C)) ⊃̌((A ⊃̌B) ⊃̌(A ⊃̌C))
A∧̌1 (A ∧̌B) ⊃̌A

A∧̌2 (A ∧̌B) ⊃̌B

A∧̌3 A ⊃̌(B ⊃̌(A ∧̌B))
A∨̌1 A ⊃̌(A ∨̌B)
A∨̌2 B ⊃̌(A ∨̌B)
A∨̌3 (A ⊃̌C) ⊃̌((B ⊃̌C) ⊃̌((A ∨̌B) ⊃̌C))
A≡̌1 (A ≡̌B) ⊃̌(A ⊃̌B)
A≡̌2 (A ≡̌B) ⊃̌(B ⊃̌A)
A≡̌3 (A ⊃̌B) ⊃̌((B ⊃̌A) ⊃̌(A ≡̌B))
A¬̌1 A ⊃̌(¬̌A ⊃̌B)
A¬̌2 (A ⊃̌ ¬̌A) ⊃̌ ¬̌A

Moreover, for every specific logic LLL, we need to add a number of axioms
that link the checked connectives to the regular connectives of that logic. In the
current case, these axioms are:

A¬̌ ∼ ¬̌A ⊃̌∼A

A∨̌ ∨ (A ∨̌B) ≡̌(A ∨ B)
A⊃̌ ⊃ (A ⊃̌B) ≡̌(A ⊃ B)
A∧̌ ∧ (A ∧̌B) ≡̌(A ∧ B)
A≡̌ ≡ (A ≡̌B) ≡̌(A ≡ B)

Note that all checked connectives are equivalent to their unchecked counter-
parts, except ¬̌, which is stronger than ∼. We close the whole of these axioms
under the rule MP+: from A and A ⊃̌B, infer B.

A CLuN-model M is fully determined by an assignment function v, which
assigns a truth value to schematic letters and formulas of the form ∼A. The
valuation function vM determined by the model M is obtained by the usual
clauses, replacing the clause for the negation with the following:
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C∼ vM (∼A) = 1 iff vM (A) = 0 or v(∼A) = 1

This means that whenever A is false, ∼A has to be true in a model, but it
can be the case that a model verifies both A and ∼A, viz. when v(∼A) = 1.
The semantics of CLuN+ is obtained from the CLuN-semantics in the way
explained in Section 2.1, e.g. by letting M  ¬̌A iff M 6 A, M  A ⊃̌B iff
either M 6 A or M  B, etc.

Having introduced the lower limit logic CLuN+, we can now turn to the
adaptive logic based on it. The set of abnormalities of CLuNm is ΩCLuN =df

{A∧∼A | A ∈ W∼}. Hence contradictions (with respect to any formula A ∈ W∼)
are avoided as much as possible. As a result, CLuNm is much richer than CLuN,
without trivializing inconsistent premises sets Γ ⊆ W∼.

Consider the premise set Γ1 = {p,∼p ∨ q,∼q,∼p ∨ r, q ∨ r}. Note that the
following Dab-formula is CLuN+-derivable from Γ1, which implies that we are
dealing with an inconsistent premise set:

(p ∧ ∼p) ∨̌(q ∧ ∼q) (2.1)

On the semantic level, every CLuN+-model of Γ1 verifies either p ∧ ∼p or q ∧
∼q, or both. For every minimally abnormal CLuN+-model M of Γ1, either
Ab(M) = {p∧∼p} or Ab(M) = {q∧∼q}. Suppose that for some such model M ,
Ab(M) = {p ∧ ∼p}. In view of the premise set, M  ∼q and M  q ∨ r. Since
also M 6 q ∧∼q, M 6 q and M  r. I leave it to the reader to see that also the
second class of minimally abnormal models verify r. As a result, r is a semantic
CLuNm-consequence of Γ1.

Consider the following CLuNm-proof from Γ1:

1 p PREM ∅
2 ∼p ∨ q PREM ∅
3 ∼q PREM ∅
4 ∼p ∨ r PREM ∅
5 q ∨ r PREM ∅

Note that the fourth element is ∅, indicating that premises are introduced on
the empty condition. We may now derive r from lines 1 and 4:

6 (p ∧ ∼p) ∨̌ r 1,4;RU ∅
7 r 6;RC {p ∧ ∼p}

In the remainder of this thesis, I will denote the stage consisting of lines
1 − −n by stage n in concrete examples. At stage 7 of the proof, r is derived.
However, we can continue the proof as follows, showing that the condition on
line 7 is problematic:

6 (p ∧ ∼p) ∨ r 1,4;RU ∅
7 r 6;RC {p ∧ ∼p}X8

8 (p ∧ ∼p) ∨̌(q ∧ ∼q) 1,2,3;RU ∅
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Where i ∈ N, I will henceforth use X
i to denote the marking of a line at

stage i. At stage 8, line 7 is marked. Recall that in order to find out which
lines are marked at stage s, we had to look at the set Φs(Γ1). Since Σ8(Γ1) =
{{p ∧ ∼p, q ∧ ∼q}}, the minimal choice sets at stage 8 are ϕ1 = {p ∧ ∼p} and
ϕ2 = {q ∧ ∼q}.

Clearly, the condition of line 7 has an empty intersection with ϕ2. But r,
the formula on line 7, has not been derived on a condition that has an empty
intersection with ϕ1. Hence the marking definition for Minimal Abnormality
stipulates that line 7 is marked.

So how can line 7 become unmarked again? This is done by showing that r
can be derived in the proof on a yet different condition:

6 (p ∧ ∼p) ∨̌ r 1,4;RU ∅
7 r 6;RC {p ∧∼p}
8 (p ∧ ∼p) ∨̌(q ∧ ∼q) 1,2,3;RU ∅
9 r 3,5;RC {q ∧ ∼q}

Note that throughout the stages 8− 9, the set of minimal choice sets remains
the same, which means that lines 7 and 9 are unmarked at stage 9.

At stage 9 of the above proof, r is finally derived from Γ1. To see why, note
that the only minimal Dab-consequence of Γ1 is derived on line 8. Hence at
every later stage s of this proof, Φs(Γ1) = Φ9(Γ1). It follows that there is no
extension of the proof in which lines 7 and 9 are marked. By Definitions 2.5 and
2.6, Γ1 `CLuNm r.12

The difference with the Reliability Strategy can also be clarified by the above
example: in CLuNr, r is not finally derivable from Γ1. The reason is that from
stage 8 on, the set of unreliable formulas is {p∧∼p, q∧∼q}. In view of Definition
2.3, both lines 7 and 9 are marked if Reliability is the strategy. This is in agree-
ment with the CLuNr-semantics: there is a M ∈ MCLuNr(Γ)−MCLuNm(Γ)
for which Ab(M) = {p ∧ ∼p, q ∧ ∼q} and M 6 r.

2.4.2 The Logics Kr

1
and Km

1

The logics Kr
1 and Km

1 are very basic systems, which makes them very suitable
candidates to explain and study the behavior of adaptive logics from a metathe-
oretic point of view.13 They are based on Kripke’s minimal modal logic, which
I will call Ks for reasons that will become clear below. Let the standard modal
language (with the classical negation ¬ and the modal operator �) be denoted
by Lm, and let Wm be the associated set of well-formed closed formulas.14

12In cases where there are infinitely many minimal Dab-consequences of the premise set Γ,
it is possible that we never arrive at a finite stage s such that Γ `CLuNm A if and only if A is
derived on an unmarked line at stage s, and remains unmarked in every further extension. It
is for these cases that the definition of final derivability refers to (possibly infinite) extensions
of a proof.

13Some readers might wonder why there is a subscript 1 in the name of these two logics. The
reason will become clear in the next two chapters, where we discuss a whole range of logics
K

x

1
,Kx

2
, . . . and some ways to combine these systems.

14For the present purposes, we need not restrict the language in any way. However, as will
become clear, the intended application of Kr

1
and Km

1
are modeled by premise sets that consist

of formulas that have either the form A or ♦A, where A is a non-modal formula.
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Ks is axiomatized by the propositional fragment of CL together with the
following axioms:

K �(A ⊃ B) ⊃ (�A ⊃ �B)
RN if ` A then ` �A

As usually, ♦A =df ¬�¬A.
Ks-models are defined as pointed-Kripke frames with the standard valuations.

More precisely, a Ks-model M is a quadruple 〈W,R, v, w0〉, where W is a set
of possible worlds, R an accessibility relation on W , v : S × W → {0, 1} an
assignment function and w0 ∈ W the actual world. The valuation vM : Wm →
{0, 1} defined by the model M is characterized by:

C1 where A ∈ S, vM (A,w) = v(A,w)
C2 vM (¬A,w) = 1 iff vM (A,w) = 0
C3 vM (A ∨B,w) = 1 iff vM (A,w) = 1 or vM (B,w) = 1
C4 vM (A ∧B,w) = 1 iff vM (A,w) = 1 and vM (B,w) = 1
C5 vM (A ⊃ B,w) = 1 iff vM (A,w) = 0 or vM (B,w) = 1
C6 vM (�A,w) = 1 iff, vM (A,w′) = 1 for all w′ such that Rww′

Where M is a Ks-model, M  A iff vM (A,w0) = 1. We say that M is a
Ks-model of Γ iff M  A for every A ∈ Γ. Γ |=Ks

A iff all Ks-models of Γ verify
A.

As for CLuN, we have to upgrade Ks, in order obtain the LLL of our adaptive
logics. In line with the preceding, I use Ľm and W̌m to denote the extension of
Lm, resp. Wm with the checked connectives. An axiomatization for the enriched
logic, which I will call K, is obtained as follows: add to Ks all the axioms from
Section 2.4.1, but replace A¬̌ ∼ by

A¬̌ ¬ ¬̌A ≡̌ ¬A

and close the whole under MP+. In the remainder, I will not refer to Ks again,
but I will often refer to (adaptive logics based on) K, which, as should be clear
by now, is a conservative extension of Ks.

The adaptive logic Kr
1 is defined by the following triple:15

1. the lower limit logic K
2. the set of abnormalities ΩK

1 =df {♦A ∧ ¬A | A ∈ W l
c}

3. the Reliability Strategy

Kr
1 is intended to explicate reasoning from plausible knowledge, also referred

to as background assumptions. It is but a variation on an existing theme in the
adaptive logics program.16 That a formula A is plausible, is expressed by ♦A.
We thus translate the original set of background assumptions Γ into Γ♦ = {♦A |
A ∈ Γ}. We may also reason from facts together with plausible knowledge. In
this case, a premise set contains formulas of the form ♦A and A, where A is a
non-modal formula. Where A is a literal, the adaptive logic enables one to derive
A from ♦A, just in case ♦A ∧ ¬A does not occur in a minimal Dab-consequence

15Recall that Wl
c is the set of literals, i.e. sentential letters and their negation.

16A similar logic based on Feys’ modal logic T is presented in [32].
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of Γ. This makes sense in view of the fact that our plausible knowledge can be
contradicted by other plausible knowledge, or by a given set of facts.

Some readers might wonder why not just any formula of the form ♦A ∧
¬A counts as an abnormality. The reason is that, without the restriction to
literals, Kr

1 would be a so-called flip-flop logic. This is an adaptive logic which
is equivalent to its lower limit logic whenever the premises are abnormal (i.e.
whenever they entail at least one Dab-formula). Consider e.g. the premise set
Γff = {♦p,♦q,¬p}. Intuitively, we expect there to be only a problem with the
plausible knowledge p, since this is contradicted by the fact ¬p. However, the
following is a minimal disjunction that can be K-derived from Γff :

(♦q ∧ ¬q) ∨̌(♦(p ∨ ¬q) ∧ ¬(p ∨ ¬q))

If this would be a disjunction of abnormalities, then we would not be able to
derive q from Γff . This problem is overcome by restricting the abnormalities in
such a way that only literals can behave abnormally.17

Let us now take a look at the Kr
1-proof theory. Consider the following premise

set: Γ = {♦p,♦q,♦r,¬p∨¬q}. We start a Kr
1-proof from Γ by writing down the

premises:

1 ♦p PREM ∅
2 ♦q PREM ∅
3 ♦r PREM ∅
4 ¬p ∨ ¬q PREM ∅

Note that the fourth element is ∅, indicating that premises are derived on the
empty condition. We may now derive p from line 1, using RU and RC:

5 p ∨̌ ¬p RU ∅
6 p ∨̌(♦p ∧ ¬p) 1,5; RU ∅
7 p 6; RC {♦p ∧ ¬p} X

8

For the time being, ignore the X
8 at line 7. At stage 7 of the proof, there are no

unreliable formulas: U7(Γ) = ∅, and p is derived on an unmarked line. However,
we may immediately add the following line:

8 (♦p ∧ ¬p) ∨̌(♦q ∧ ¬q) 1,2,4; RU ∅

This means that U8(Γ) = {♦p∧¬p,♦q∧¬q}. As a consequence line 7 is marked at
stage 8 of the proof, which is indicated by the X

8. Moreover, since Γ 0K ♦q∧¬q,
the line will be marked in every extension of the proof. Nevertheless, we may
still apply RC to derive r on an unmarked line:

9 r ∨̌ ¬r RU ∅
10 r ∨̌(♦r ∧ ¬r) 3,9; RU ∅
11 r 10; RC {♦r ∧ ¬r}

17This restriction has no negative impact on the (conditional) derivability of formulas, since
whenever Γ `K ♦A, then Γ `K A ∨̌Dab(∆) for a ∆ ⊆ ΩK

1 . This follows immediately from
the fact that every A ∈ Wc has a conjunctive normal form

∧

i∈I

∨

j∈Ji
Bj , so that ♦A `K

A ∨̌ ˇ∨{♦Bj ∧ ¬Bj | j ∈ Ji, i ∈ I}.
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Line 10 is unmarked in every extension of the proof, since the only minimal
Dab-consequence of Γ is the formula on line 7, hence no new Dab-formula can
render ♦r∧¬r unreliable. By Definitions 2.5 and 2.6, we can infer that Γ `Kr

1
r.

The difference in strength between Reliability and Minimal Abnormality can
also be clarified by the above example: Γ `Km

1
p ∨ q, while Γ 0Kr

1
p ∨ q. The

K-models of Γ that verify ♦p∧¬p and ♦q∧¬q are not minimally abnormal, since
there are models that verify only one of both abnormalities.

This implies that there must be a Km
1 -proof in which p∨ q is finally derived.

Since the choice of the strategy only affects the marking in a proof, we may
simply continue the preceding proof to achieve this goal:

12 p ∨ q 7; RU {♦p ∧ ¬p}
13 q ∨̌(♦q ∧ ¬q) 2; RU ∅
14 q 13; RC {♦q ∧ ¬q)}X14

15 p ∨ q 14; RU {♦q ∧ ¬q)}

Note that throughout the stages 12-15, Φs(Γ) remains the same, that is,
Φs(Γ) = Φ(Γ) = {{♦p ∧ ¬p}, {♦q ∧ ¬q}}. Let us call the choice sets ϕ1 and
ϕ2 respectively. From stage 12 to stage 14, line 12 is marked. That is, as long
as p ∨ q is not derived on a line with condition ∆ such that ∆ ∩ ϕ1 = ∅, the
marking definition stipulates that line 11 is marked. However, at stage 15, line
12 is unmarked, because at that stage of the proof we know that p ∨ q is true
both when ♦p ∧ ¬p is false, and when ♦q ∧ ¬q is false. Line 14 will however be
marked in every extension of the proof, hence q is treated in exactly the same
way as p.

2.5 Metatheory of the Standard Format

In this section, I mention some of the most significant meta-theoretic properties
of the standard format. I merely recapitulate these to illustrate the merits of the
standard format, and in preparation for the new results that will be discussed
from the next chapter on. Where necessary, I will briefly explain the importance
and meaning of certain properties for the logics under consideration.

The Restriction to Ls. In Section 2.7, an example is presented of a Γ ⊆ W̌s

and A ∈ Ws for which Γ 0AL A, whereas Γ |=AL A. Hence completeness does not
hold for AL in general. Nevertheless, for all Γ ⊆ Ws, completeness is provable
– I will explain both the general incompleteness and the restricted completeness
of ALs in Section 2.7. As I will show there, some other properties such as e.g.
Fixed Point also have to be restricted to Γ ⊆ Ws.

This should not be seen as a fundamental problem for ALs, since as I explained
in Section 2.1, they were developed to explicate a reasoning process on the basis
of premise sets Γ ⊆ Ws. It is relevant though, especially for the proofs of other
metatheoretic properties such as Fixed Point and Cumulative Transitivity – see
below. Hence I will state the meta-theory about AL for any Γ ⊆ W̌s, whenever
possible. Recall that, unless specified differently, I use Γ to refer to an arbitrary
subset of W̌s.
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Some well-known properties. A number of well-known properties are inher-
ent to ALs in standard format, among which the following are the most salient
ones (I mention the original theorems in the literature between square brackets):

Theorem 2.8 For every Γ ⊆ Ws: Γ `AL A iff Γ |=AL A. (Soundness and
Completeness) [21, Corr. 2, Th. 9]

Theorem 2.9 Γ ⊆ CnAL(Γ). (Reflexivity) [21, Th. 11.2]

Theorem 2.10 For every Γ ⊆ Ws: CnAL(CnAL(Γ)) = CnAL(Γ). (Fixed
Point) [21, Th. 11.6, Th. 11.7]

Furthermore, for ALm, the Deduction Theorem holds:

Theorem 2.11 If Γ ∪ {A} `ALm B, then Γ `ALm A ⊃̌B. [21, Th. 14]

The Deduction Theorem does not hold for ALr – see [21, Theorem 13.3] for
a simple counterexample.

Reassurance and Strong Reassurance. In Section 2.2, it was explained that
every AL selects a subset of the LLL-models of Γ. Now suppose an LLL-model
M of Γ is not selected. In that case, it seems desirable to have as a property of
the logic that there is an LLL-model M ′ of Γ that is selected, and that is less
abnormal than M . This property is called Strong Reassurance in the literature.

Theorem 2.12 If M ∈ MLLL(Γ)−MAL(Γ), then there is an M ′ ∈ MAL(Γ)
such that Ab(M ′) ⊂ Ab(M). [21, Th. 4&5] (Strong Reassurance)

Note that the abnormal part-relation and ⊂ impose a partial order on the
set of all LLL-models: M ≺M ′ iff Ab(M) ⊂ Ab(M ′). Strong Reassurance boils
down to the claim that, for every Γ, the order ≺ is smooth with respect to the
set of LLL-models of Γ.18 It also entails that whenever Γ has LLL-models, Γ
has AL-models. The syntactic counterpart of this property states that unless Γ
is LLL-trivial, AL will not trivialize Γ.19 So we have:

Theorem 2.13 If Γ has LLL-models, then it has AL-models. (Semantic Reas-
surance)

Theorem 2.14 If Γ is not LLL-trivial, then Γ is not AL-trivial. (Syntactic
Reassurance)

18A partial order ≺ on a set X is smooth with respect to a set Y ⊆ X iff for all a ∈ Y either
a is ≺-minimal in Y , or there is a ≺-minimal element b ∈ Y for which b ≺ a.

19According to the conventions introduced at the start of this chapter, Γ is LLL-trivial iff
CnLLL(Γ) = W̌s.
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Cumulative Indifference. Suppose we have established for some Γ, A, that
Γ `AL A. In that case, it seems desirable that the AL-closure of Γ ∪ {A} is
not different from the AL-closure of Γ itself. That is, adding A as a premise
to Γ should not lead to a different consequence set. This is warranted by the
Cumulative Indifference principle:

Theorem 2.15 For every Γ ⊆ Ws: if Γ′ ⊆ CnAL(Γ), then CnAL(Γ) =
CnAL(Γ ∪ Γ′). (Cumulative Indifference) [21, Th. 11.10]

The Fixed Point property, i.e. that CnAL(Γ) = CnAL(CnAL(Γ)), is derivable
from Theorem 2.15 together with the reflexivity of AL (see Section 2.8 where this
is proven generically for any logic L). Cumulative Indifference is often divided in
two parts: Cautious Monotonicity (CnAL(Γ) ⊆ CnAL(Γ ∪ Γ′)) and Cumulative
Transitivity (CnAL(Γ) ⊇ CnAL(Γ∪Γ′)). The cautious monotonicity of ALs can
be proven for the more general case where Γ ⊆ W̌s, whereas their cumulative
transitivity only holds for Γ ⊆ Ws.

Relations Between Logics. The following theorem summarizes the difference
in strength between the different logics LLL, ALr, ALm and ULL:

Theorem 2.16 CnLLL(Γ) ⊆ CnALr(Γ) ⊆ CnALm(Γ) ⊆ CnULL(Γ).
[21, Th. 11.1]

Obviously, in all interesting cases, AL is stronger than LLL. Also, ALr is
often weaker than ALm, as the examples in Section 2.4 illustrated. A related
property is that if a premise set Γ is normal, then AL is equipowerful to ULL:20

Theorem 2.17 If Γ is normal, then CnAL(Γ) = CnULL(Γ) = CnLLL(Γ ∪ Ω¬̌).
[21, Th. 12.1]

Hence if AL can avoid abnormalities altogether, it will do so. Nevertheless, if
the premise set is not normal, it will still in most cases render more consequences
than LLL, without yielding triviality as ULL would. In other words, AL os-
cillates between LLL and ULL, adapting itself to the premises. Finally, AL is
both closed and invariant under LLL, as the following theorems state:

Theorem 2.18 Where Γ ⊆ Ws: CnLLL(CnAL(Γ)) = CnAL(Γ). [21, Th. 11.8]
(LLL-Closure)

Theorem 2.19 Where Γ ⊆ Ws: CnAL(CnLLL(Γ)) = CnAL(Γ). [21, Th. 15.2]
(LLL-Invariance)

Equivalent Premise Sets. In [33], it is argued that ALs have certain advan-
tages over numerous other formal approaches to defeasible reasoning methods.
The most important argument there is one concerning transparency: there are
various criteria to decide when two premise sets are AL-equivalent. For a lengthy
discussion, I refer to the original paper; here I simply mention the three crite-
ria for equivalence (the original Theorems from [33] are given between square
brackets).

20See page 19 for the definition of a normal premise set.
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Theorem 2.20 Where Γ,Γ′ ⊆ Ws, CnAL(Γ) = CnAL(Γ′) if one of the following
holds:

(C1) Γ′ ⊆ CnAL(Γ) and Γ ⊆ CnAL(Γ′) [Th. 6]
(C2) Where L is a Tarski-logic weaker than or identical to AL: CnL(Γ) =

CnL(Γ′) [Th. 7]
(C3) Where L is a Tarski-logic and for every Θ ⊆ Ws, CnAL(Θ) =

CnL(CnAL(Θ)): CnL(Γ) = CnL(Γ′) [Th. 7]

The second criterion can be strengthened with the aid of the following theo-
rem:

Theorem 2.21 Every monotonic logic that is weaker than or identical to AL is
weaker than or identical to LLL. (Maximality of LLL) [Th. 10]

In view of Theorem 2.20, we thus obtain:

Theorem 2.22 Where L is a monotonic logic weaker than or identical to LLL:
if Γ and Γ′ are L-equivalent, then they are AL-equivalent. (C2’)

Hence there are several shortcuts to decide whether Γ and Γ′ are AL-equivalent,
depending on the many different Tarski-logics weaker than LLL. In Chapter 5,
we will see that Theorems 2.20-2.22 can easily be generalized to the format of
lexicographic ALs, presented in that chapter.

2.6 Reliability versus Minimal Abnormality

In this section, I will adress some differences between Reliability and Minimal
Abnormality. As before, I will focus on what is important for the remainder of
this thesis.

First of all, as might be clear in view of the definitions for both strategies,
Reliability is clearly grounded in proof theoretic intuitions (whence the crucial
role of Us(Γ) and its abstract counterpart U(Γ)), whereas Minimal Abnormality
is most easily understood from a semantic perspective. This may help us to
understand some of the other differences between both strategies which I will
now discuss.

Another salient point is that Reliability is computationally less complex than
Minimal Abnormality, as has been shown in [79, 157]. This relates to a fact
mentioned in Section 2.3, i.e. that for the Reliability Strategy, it suffices to speak
of finite extensions of a proof in the definition of final derivability. Since every
finite proof (hence also every finite extension of a finite proof) has a Gödel num-
ber, and in view of the definition of final derivability, one can derive that ALr

is Σ0
3-complex.21 To the contrary, for logics ALm, it is possible to construct a Γ

such that CnALm(Γ) is Π1
1-complex – see [157] where this is done for CLuNm.

21Contrary to what the authors of [79] thought, we cannot do without infinite extensions in
the definition of final derivability for ALm. If only finite extensions are taken into account,
the proof theory is not sound with respect to the semantics – a counterexample can be found
in [25, Chapter 4, Section 4.9.2].
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Although computational complexity is not a central topic in the current thesis,
I will briefly return to this point in Chapter 4.

Third, Minimal Abnormality is often stronger than Reliability in a non-trivial
way. Although this point was already spelled out before (see Theorem 2.16) and
illustrated in Section 2.4, it is worthwhile stressing it another time. If an AL
is intended to approximate a given certain standard of normality – as embod-
ied by an upper limit logic – as much as possible, than it seems that Minimal
Abnormality is simply the best candidate to do this job.

From these three facts, we can conclude that we had and have very good
reasons to pay equal attention to adaptive logics that use the Reliability Strat-
egy, as to those that use the Minimal Abnormality Strategy. More specifically,
when devising logics that deal with prioritized defeasible reasoning forms, as will
be done in the next three chapters, the Minimal Abnormality-variants of these
systems should receive just as much attention as the Reliability-variants.

A last remark may perhaps seem more superficial than the previous ones, but
is of crucial importance for the next two chapters. For the Reliability Strategy, it
is possible to characterize the set of selected models in terms of a set of formulas
and LLL, as the following lemma states:

Lemma 2.2 M ∈ MALr(Γ) iff M ∈ MLLL(CnALr(Γ)). [137, Lemma 2.3.3]

For Minimal Abnormality, this is not possible: there are cases in which no
(possibly infinite) set of formulas suffices to characterize the set of ALm-models.
Hence it is not in general true that MALm(Γ) = MLLL(CnALm(Γ)).

Let me illustrate this by means of a concrete example, using the logic Km
1

from Section 2.4.2. In the remainder of this section, let !A abbreviate ♦A ∧ ¬A.
Let Γ = {♦pi | i ∈ N} ∪ {¬pi ∨ ¬pj | i, j ∈ N, i 6= j} – variations on this premise
set will be used throughout the first part of this thesis.

Note that by Definition 2.2, every Km
1 -model of Γ is a K-model. Also,

in view of the soundness of Km
1 , every Km

1 -model of Γ verifies every mem-
ber of CnKm

1
(Γ). It follows that MKm

1
(Γ) ⊆ MK(CnKm

1
(Γ)). In general,

MALm(Γ) ⊆ MLLL(CnALm(Γ)). However, the opposite direction of the set
inclusion is more problematic. In this particular case, we can show that there is
an M ∈ MK(CnKm

1
(Γ))−MKm

1
(Γ).

Consider an arbitrary K-model M of Γ, such that M  p1. It follows that
M  ¬pi for every i ∈ N − {1}, whence also M !pi for all i ∈ N − {1}. By the
same reasoning, every K-model M ′ that verifies p2, will verify all abnormalities
!pi with i ∈ N−{2}. So, any model must verify all abnormalities !pi but one. On
the other hand, it is possible to falsify all abnormalities A ∈ ΩK

1 − {!pi | i ∈ N}.
As a result, the set of minimal abnormal models of Γ is MKm

1
(Γ) = {M ∈

MK(Γ) | Ab(M) = {!pi | i ∈ N − k} for a k ∈ N}.
Now assume that (†) CnKm

1
(Γ) ∪ {!pi | i ∈ N} has no K-models. By the

compactness of K, it follows that for an n ∈ N, CnKm
1

(Γ) ∪ {!pi | i ≤ n} has no
K-models. By CL-properties, CnKm

1
(Γ) `K ¬̌

∧

{!pi | i ≤ n}. Since CnKm
1

(Γ)
is closed under K (see Theorem 2.18), we obtain that (‡) ¬̌

∧

{!pi | i ≤ n} ∈
CnKm

1
(Γ).

However, let m be an arbitary natural number such that m > n. Note that
there is an M ∈ MKm

1
(Γ) such that Ab(M) = {!pi | i ∈ N − {m}}. It follows
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that M 6 ¬̌
∧

{!pi | i ≤ n}. But then, by the soundness of Km
1 , ¬̌

∧

{!pi | i ≤
n} 6∈ CnKm

1
(Γ), which contradicts (‡).

Hence (†) fails: there is an M ∈ MK(CnKm
1

(Γ) ∪ {!pi | i ∈ N}). In view of
the preceding, M 6∈ MKm

1
(Γ), whence MKm

1
(Γ) 6= MK(CnKm

1
(Γ)).

For flat adaptive logics, this poses no genuine problem, and in no way does it
harm the soundness and completeness result for Minimal Abnormality. However,
it does show us that the selection of Minimal Abnormal models sometimes goes
beyond what can be expressed by means of a set of formulas, i.e. finite strings built
up from a denumerable language Ls. If we would allow for infinite disjunctions
in the language, we would be able to express the information “embodied in”
MKm

1
(Γ) by

∨

i∈N
pi. But since the consequence relation of ALm is defined as

a function that maps sets of finite formulas to sets of finite formulas, it cannot
carry over such information.

This fact will be important in the next two chapters, where, on the one hand,
the syntactic consequence relations of several flat ALs will be combined in a
specific way, and, on the other hand, minimal abnormal selections in terms of
several sets of abnormalities are combined. For the Reliability-variants of these
systems, this will pose no genuine problem, and soundness and completeness are
provable with the aid of Lemma 2.2. For the Minimal Abnormality-variants,
only a restricted form of soundness and completeness is available, in view of the
following Lemma:22

Lemma 2.3 If Φ(Γ) is finite and Γ ⊆ Ws, then M ∈ MALx

Γ iff (M ∈ MLLL
Γ

and M |= CnALx(Γ)). [137, Lemma 3.2.5]

2.7 About the Checked Connectives

2.7.1 The Problem

In this section, I present the example promised in Section 2.5, which shows that
adaptive logics are not always complete with respect to their semantics, unless we
restrict premise sets to formulas in Ws. Eventually, the example also shows why
several other metatheoretic properties are restricted to Γ ⊆ Ws. This observation
can almost immediately be carried over to the prioritized adaptive logics studied
in the next chapter. Hence, the reader should not be surprised to find that in the
remainder of this thesis, numerous theorems are preceded by this restriction.23

As in the previous section, I will make use of the (very simple) logics Kr
1 and

Km
1 . As before, let !A abbreviate ♦A∧¬A. The problematic premise set we will

consider is Γ = ∆1 ∪ ∆2 ∪ ∆3, where

∆1 = {(!q1 ∨̌ !q2) ⊃ (p ∨̌ !q1)}
∆2 = {!q1 ∨̌ !qi | i ∈ N − {1}}
∆3 = {(!q1 ∨̌ !qi+1) ⊃ !qi | i ∈ N − {1, 2}}

22In Chapter 6, we will see that Lemma 2.3 can be generalized to a broader class of premise
sets.

23To the best of my knowledge, the example I present is the first one that illustrates this fact
for both the Minimal Abnormality Strategy and the Reliability Strategy. An example for the
Minimal Abnormality Strategy can be found in [25, Section 4.9.3] and [137, Section 2.8].
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First of all, note that !q1 6∈ U(Γ). That is, for every formula !q1 ∨̌ !qi ∈ CnK(Γ)
with i 6= 1, we can K-derive !qi in view of ∆2 and ∆3. By Definition 2.1, this
means that (1) every Kr

1-model of Γ falsifies the abnormality !q1. Also, in view of
∆1 and ∆2, Γ `K p ∨̌ !q1, whence by the soundness of K, also (2) Γ |=K p ∨̌ !q1.
By (1) and (2), every Kr

1-model of Γ verifies p, whence Γ |=Kr
1
p. Since the

minimal abnormal models are a subset of the reliable models, also Γ |=Km
1
p.

Let me first explain why completeness fails for Kr
1. Suppose we want to derive

p in a Kr
1-proof from Γ. At first sight, we may try to derive it on the condition

!q1, as follows:

1 (!q1 ∨̌ !q2) ⊃ (p ∨̌ !q1) PREM ∅
2 !q1 ∨̌ !q2 PREM ∅
3 p ∨̌ !q1 1,2;RU ∅
4 p 3;RC {!q1}X

4

However, line 4 is marked in view of the Dab-formula on line 2, as indicated by
the X

4-sign. Let us now try to unmark this line, by showing that the Dab-formula
on line 2 is in fact not a minimal Dab-consequence of Γ:

1 (!q1 ∨̌ !q2) ⊃ (p ∨̌ !q1) PREM ∅
2 !q1 ∨̌ !q2 PREM ∅
3 p ∨̌ !q1 1,2;RU ∅
4 p 3;RC {!q1}X

7

5 (!q1 ∨̌ !q3) ⊃ !q2 PREM ∅
6 !q1 ∨̌ !q3 PREM ∅
7 !q2 5,6;RU ∅

Note that at stage 7, the Dab-formula on line 2 is no longer minimal in view
of the Dab-formula on line 7. However, to derive the latter, we had to introduce a
new Dab-formula that contains !q1, and that is minimal at stage 7. Hence again,
line 4 is marked. More generally, there is no finite proof in which we can derive
p on an unmarked line.

Only if we could write down an infinite proof, in which each !qi (i > 1)
is derived, then p would be derived on an unmarked line. However, since the
definition of final derivability stipulates that p has to be derived on a line at
a finite stage of a proof, such an infinite proof is simply a no-go. As a result,
Γ 0Kr

1
p. By the same reasoning, Γ 0Km

1
p.

It is worthwhile to stress that the real problem lies with the (philosophically
justified) requirement that we derive p on an unmarked line in a finite proof.24

In view of the preceding, it is fairly easy to see that every extension of the above
proof in which line 2 is marked, can be further extended (by infinitely many lines)
such that line 2 is unmarked. However, since line 2 is marked at stage 7, the first
condition of the definition of final derivability is not fulfilled.

24The philosophical justification for this requirement is pretty obvious, but let me just spell
it out for the skeptic reader. When reasoning in a specific context, we only have finitary means
to establish a certain result. We may jump to a meta-level, and at this meta-level speak of
infinite proofs, but even at this level we only have finitary means to do so. Hence if we want
proofs and provability to relate to reality somehow, finiteness of a proof is a prerequisite.
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Upon further inspection, this example also shows that the theorems of LLL-
Invariance, LLL-Closure, Fixed Point and Cautious Monotonicity fail for Γ ⊆ W̌s

– see Section 2.5 for the exact formulation of these properties. Let me explain in
a nutshell why this is so for Reliability – the reasoning is completely analogous
for Minimal Abnormality.

LLL-Invariance. Note that p ∨̌ !q1 ∈ CnK(Γ). Hence, if CnK(Γ) is our
premise set, we may simply introduce p ∨̌ !q1 as a premise and next derive
p on the condition {!q1} on the second line of our proof. In this very short
proof, p is derived on an unmarked line.

LLL-Closure. Note that ¬̌ !q1 ∈ CnKr
1
(Γ). That is, we can derive ¬̌ !q1∨!q1

on the empty condition by the rule RU, and on the second line of our proof,
(finally) derive ¬̌ !q1. Also, since p ∨̌ !q1 ∈ CnK(Γ), it follows by Theorem
2.16 that p ∨̌ !q1 ∈ CnKr

1
(Γ). But then p ∈ CnK(CnKr

1
(Γ)) − CnKr

1
(Γ).

Fixed Point. Immediate in view of the preceding paragraph, and the fact
that by Theorem 2.16, CnK(CnKr

1
(Γ)) ⊆ CnKr

1
(CnKr

1
(Γ)).

Cautious Monotonicity. Immediate in view of the preceding paragraph,
and the fact that CnKr

1
(Γ) ⊆ CnKr

1
(Γ).

2.7.2 How To Avoid It

At this point, the reader might become suspicious about the metatheoretic results
presented in Section 2.5: how is it possible that one can avoid the above problem
whenever Γ ⊆ Ws? The reason is rather straightforward. Recall that in Section
2.1, Dab-formulas were defined as checked disjunctions of abnormalities. Such
disjunctions however do not occur in any Γ ⊆ Ws. Hence, in order to introduce
them on a line in a proof from such Γ ⊆ Ws, one has to derive them from the
original premises. This allows the proponent of A to introduce all the premises
she needs to derive A, without being forced to introduce any Dab-formulas.25

Let me illustrate this with a variant of the above example. Let Γ′ = ∆′
1 ∪

∆′
2 ∪ ∆′

3, where

∆′
1 = {(!q1 ∨ !q2) ⊃ (p ∨ !q1)}

∆′
2 = {!q1 ∨ !qi | i ∈ N − {1}}

∆′
3 = {(!q1 ∨ !qi+1) ⊃ !qi | i ∈ N − {1, 2}}

Note that Γ′ ⊆ Wm, or in other words, Γ′ contains no checked connectives. We
may now apply exactly the same reasoning as before to derive p on line 4 of a
proof from Γ′:

1 (!q1 ∨ !q2) ⊃ (p ∨ !q1) PREM ∅
2 !q1 ∨ !q2 PREM ∅
3 p ∨̌ !q1 1,2;RU ∅
4 p 3;RC {!q1}

25More precisely: the proponent will only be forced to introduce formulas Dab(∆) where ∆ is
a singleton, i.e. abnormalities in themselves. Such abnormalities can however not be a problem
for the proponent – see the proof of Lemma 4.9.1 in [25, Chapter 4], or the proof for Lemma
5.5 in Chapter 5 of this thesis.
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Note that this time, line 4 is not marked. The reason is that the formula
on line 2 is not a Dab-formula – even though it is a (classical) disjunction of
abnormalities, it is not a checked disjunction of abnormalities. Intuitively, this
distinction can be justified as follows: in order for the formula on line 2 to have
an impact on the marking at stage 4, the reasoner has to realize that it “is”,
or perhaps more precise, that it implies a disjunction of abnormalities – more
intuitively still, that it indicates that there may be problems with some of our
previous inferences. However, at stage 4, all the reasoner has done is to use the
formula !q1∨ !q2, as if it were just one “block”, and applied modus ponens to this
block and the implicative formula on line 1.26

Hence by differentiating between (classical) disjunctions of abnormalities on
the one hand and Dab-formulas, or checked classical disjunctions of abnormali-
ties on the other, it becomes possible to overcome the problem sketched in the
previous section. Since no Γ ⊆ Ws contains checked formulas, completeness and
all the other problematic properties are regained for these premise sets.

2.7.3 A Specific Kind of Completeness

As I will now show, there is a specific class of premise sets Γ ⊆ W̌s for which AL
is also complete, i.e. those premise sets Γ that are closed under LLL. At first
sight, this result may seem to have little applications. However, it provides the
basis for several crucial steps in the proofs of lemmas and theorems in subsequent
chapters.

Lemma 2.4 For every finite ∆ ⊂ Ω, each of the following holds:

1. Γ |=LLL Dab(∆) iff Γ |=AL Dab(∆).27

2. Γ `LLL Dab(∆) iff Γ `AL Dab(∆). (Dab-conservativity)

Proof. Ad 1. (⇒) Immediate in view of the fact that every AL-model of Γ
is an LLL-model of Γ — see Definitions 2.1 and 2.2. (⇐) Suppose Γ |=AL

Dab(∆). Let M ∈ MLLL(Γ). If M ∈ MAL(Γ), it follows by the supposition
that M  Dab(∆). If M ∈ MLLL(Γ)−MAL(Γ), then by Theorem 2.12, there
is an M ′ ∈ MAL(Γ) such that Ab(M ′) ⊂ Ab(M). In view of the supposition,
M ′  Dab(∆), whence M ′  A for an A ∈ ∆. It follows immediately that also
M  A, whence M  Dab(∆).

Ad 2. (⇒) Immediate in view of item 1, the soundness of LLL and Theorem
2.16. (⇐) Immediate in view of item 1, the soundness of AL and the completeness
of LLL.

Lemma 2.5 Each of the following holds:

1. If Γ |=ALr A then there is a ∆ ⊆ Ω − U(Γ) such that Γ `LLL A.
2. If Γ |=ALm A, then for every ϕ ∈ Φ(Γ), there is a ∆ ⊆ Ω − ϕ such that

Γ |=LLL A ∨̌Dab(∆).

26My terminology refers to the translation of regular proofs into so-called “block proofs”,
which allows us to capture the amount of information embodied by a proof at a certain stage.
See [25, Section 4.10] for an introduction to this research area.

27Item 2 of this lemma is a semantic variant of the one for Theorem 10 in [21], but generalized
to every Γ ⊆ W̌s.
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Proof. Ad 1. Suppose Γ |=ALr A. Assume that for no ∆ ⊆ Ω − U(Γ), Γ `LLL

A ∨̌Dab(∆). By the compactness of LLL, there is an M ∈ MLLL(Γ) such that
M 6 A and M 6 Dab(∆) for every ∆ ⊆ Ω−U(Γ). It follows that Ab(M) ⊆ U(Γ),
whence M ∈ MALr(Γ). But then Γ 6|=ALr A — a contradiction.

Ad 2. Suppose Γ |=ALm A. Assume that there is a ϕ ∈ Φ(Γ) for which
there is no ∆ ⊆ Ω − ϕ such that Γ |=LLL A ∨̌Dab(∆). This implies that Γ
is LLL-satisfiable. By the compactness of LLL there is an M ∈ MLLL(Γ) for
which M 6 A and M 6 Dab(∆) for all ∆ ⊆ Ω − ϕ. Hence, M 6 B for all
B ∈ Ω − ϕ. Hence, Ab(M) ⊆ ϕ. By Theorem 2.1 there is an M ′ ∈ MALm(Γ)
for which Ab(M ′) = ϕ. Since M ′ is minimally abnormal, Ab(M) = Ab(M ′).
Hence, by Theorem 2.1, M ∈ MALm(Γ). This is a contradiction since M 6 A
and Γ |=ALm A.

Theorem 2.23 Where Γ = CnLLL(Γ): if Γ |=ALx A, then Γ `ALx A.

Proof. I prove the theorem for x = m – the Reliability case is analogous but
much simpler, and therefore safely left to the reader.

Suppose that (†) Γ = CnLLL(Γ) and (‡) Γ |=ALm A. By Fact 2.2, there
is a ϕ ∈ Φ(Γ). By (‡) and Lemma 2.5.2, there is a ∆ ⊆ Ω − ϕ such that
Γ |=LLL A ∨̌Dab(∆). By the completeness of LLL, Γ `LLL A ∨̌Dab(∆), whence
by (†), A ∨̌Dab(∆) ∈ Γ.

We start an ALm-proof from Γ as follows:

(a) introduce the premise A ∨̌Dab(∆) on line 1, and
(b) derive A on line 2, using the rule RC, on the condition ∆.

Let s2 be the stage consisting of these two lines.

Suppose line 2 is marked at stage s2. This implies that A ∨̌Dab(∆) is a
Dab-formula, whence also A is a Dab-formula. But then, by (‡) and Lemma 2.4,
Γ |=LLL A. By the completeness of LLL, Γ `LLL A whence by (†), A ∈ Γ. By
the reflexivity of ALm, A ∈ CnALm(Γ).

Suppose line 2 is not marked at stage s2. Suppose moreover that, in an
extension of the proof, line 2 is marked. In view of the preceding, we may further
extend the extended proof, such that (c) every minimal Dab-consequence of Γ is
derived in it, and (d) for every ϕ′ ∈ Φ(Γ), A is derived on a condition ∆′ that
has an empty intersection with ϕ′. Let s be the stage of the second extension. In
view of (c), Φs(Γ) = Φ(Γ). Hence in view of (d), line 2 is unmarked at stage s.
But then, by Definition 2.5, A is finally derived at line 2, whence by Definition
2.6, A ∈ CnALm(Γ).

By the (unrestricted) soundness of flat adaptive logics, we can infer:

Corollary 2.1 Where Γ = CnLLL(Γ): Γ `ALx A iff Γ |=ALx A.

From the preceding, we can also derive that for the same specific group of
premise sets, AL is closed under its lower limit logic:

Lemma 2.6 If Γ = CnLLL(Γ), then CnALx(Γ) = CnLLL(CnALx(Γ)).
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Proof. That CnALx(Γ) ⊆ CnLLL(CnALx(Γ)) is immediate in view of the re-
flexivity of LLL. For the other direction, suppose that (†) Γ = CnLLL(Γ)
and A ∈ CnLLL(CnALx(Γ)). By the soundness of LLL, (‡) A is true in ev-
ery M ∈ MLLL(CnALx(Γ)). By Definition 2.1, resp. 2.2 and the soundness
of ALx, every ALx-model of Γ is an LLL-model of CnALx(Γ). Hence by (‡),
Γ |=ALx A. By (†) and Theorem 2.23, Γ `ALx A.

2.8 Two Lemmas

In this section, I present two lemmas that will be useful in the remainder of
this thesis, in that they show how certain meta-theoretic properties mentioned
in Section 2.5 are easily derivable in the presence of others. The lemmas are
stated generically for any logic L – in subsequent chapters, they will be used to
prove certain properties of prioritized ALs. The proofs are mere generalizations
of proofs in [21] and [33] respectively.

Recall the property of Cumulative Transitivity: L is cumulatively transitive
iff, for every Γ′ ⊆ CnL(Γ): CnL(Γ∪Γ′) ⊆ CnL(Γ). As I will now show, whenever
L is cumulatively transitive and reflexive, then it is also idempotent:

Lemma 2.7 If L is reflexive and cumulatively transitive, then L is idempotent.

Proof. (CnL(Γ) ⊆ CnL(CnL(Γ))) Immediate in view of the reflexivity of L.
(CnL(CnL(Γ)) ⊆ CnL(Γ)) By the reflexivity of L, CnL(Γ) = Γ∪CnL(Γ). But

then CnL(CnL(Γ)) = CnL(Γ ∪ CnL(Γ)), whence by the cumulative transitivity
of L, CnL(CnL(Γ)) ⊆ CnL(Γ).

Recall criterion (C1) from Section 2.5: Γ and Γ′ are L-equivalent iff Γ ⊆
CnL(Γ′) and Γ′ ⊆ CnL(Γ). Also, recall the property of Cumulative Indifference:
L is cumulatively indifferent iff, where Γ′ ⊆ CnL(Γ), CnL(Γ ∪ Γ′) = CnL(Γ).

I will now prove that cumulative indifference implies that (C1) holds:

Lemma 2.8 If L is cumulatively indifferent, then L obeys criterion (C1) for
equivalence.

Proof. Suppose (1) Γ ⊆ CnL(Γ′) and (2) Γ′ ⊆ CnL(Γ). By cumulative indif-
ference and (1), CnL(Γ) = CnL(Γ ∪ Γ′). By cumulative indifference and (2),
CnL(Γ′) = CnL(Γ′ ∪ Γ). Hence CnL(Γ) = CnL(Γ′).



Chapter 3

Superpositions of Adaptive
Logics

I am indebted to Christian Straßer for many valuable comments on previous
versions of this chapter.

In this Chapter, I present the first of three formats of prioritized adaptive
logics: sequential superpositions of (flat) adaptive logics. This is by far the
oldest and most often applied format of the three – see [11] where the basic idea
of superposing ALs was presented, and see [24, 22, 19, 105, 139, 144, 13] for some
applications of this idea.

I will first present a generic definition for systems in this format, illustrate it
by means of some logics that deal with prioritized belief bases, and discuss some
properties that hold for all logics in this format (Section 3.1). In Section 3.2, I
will establish a couple of lemmas that are used throughout the next four chapters.
I will proceed with a discussion of the semantics of superpositions of ALs, and
present two previously unpublished proposals for their proof theory (Sections
3.3-3.5). Finally, I will give a short overview of some additional metatheoretic
results for these systems (Section 3.6).

As indicated in Chapter 1, much of what follows is based on joint work with
other logicians in the Ghent group; first and foremost Diderik Batens and Chris-
tian Straßer. Diderik Batens was the first to formulate the core ideas behind this
format, and made many important observations about it during the preparation
of his [25, Chapter 6]. Christian Straßer devoted a chapter to sequential super-
positions in his [137], numerous results of which are used in the current thesis.
He also contributed in a more concrete way to this chapter, in two respects.
First of all, he thoroughly checkread earlier drafts of it, providing suggestions for
improvements in various instances. Second, he is co-author of the paper [141],
which provided the basis for Section 3.5. Needless to say, all remaining flaws and
unclarities are mine.

41
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3.1 General Characteristics of SAL

3.1.1 The Syntactic Consequence Relation

Let AL1, AL2, . . . ,ALn be flat ALs in standard format. Then we may define
the consequence set, obtained by the sequential superposition of these flat ALs
as follows:

CnSAL(Γ) =df CnALn
(. . . (CnAL2

(CnAL1
(Γ)) . . .),

where the right . . . denotes a sequence of right brackets. So CnSAL(Γ) is the result
of applying first AL1 to Γ, next applying AL2 to CnAL1

(Γ), etc., and finally
applying ALn to CnALn−1

(. . . (CnAL2
(CnAL1

(Γ)) . . .). For the superposition of
infinitely many flat ALs, we need a slightly more technical definition – this will
be spelled out below.

Let LLL1,LLL2, . . . be the respective lower limit logics of AL1,AL2, . . .,
Ω1,Ω2, . . . their sets of abnormalities, and x1,x2, . . . their strategies. Before we
continue, I introduce a restriction. In this thesis, I will only consider sequential
superpositions in which LLL1 = LLL2 = . . .. This restriction is motivated by
historical and pragmatic reasons. All superpositions of ALs from the literature
– all those I am aware of – obey this restriction. Also, it seems much harder to
deal with sequential superpositions of ALs that have a different lower limit logic,
especially if one wants to obtain a unified proof theory (where the rules of the
lower limit logic can be applied at any point in a proof) and semantics (where
SAL-models are obtained by a selection on a given set of models ML(Γ), for a
monotonic logic L).

In the remainder, I use the metavariable SAL for all superpositions that
obey this restriction, and LLL to refer to the lower limit logic of all logics ALi.
Whenever x1 = x2 = . . ., I use the metavariable SALx, where x refers to the
strategy shared by all the flat ALs of the combined logic.1

Recall that I use I as a metavariable for an initial subsequence of N =
{1, 2, . . .}. To include the infinite case, it will also be useful to introduce a

metavariable for the supremum of I. Where I = {1, . . . , n}, let ~I =def n; where

I = N, let ~I =def ∞. The syntactic consequence relation of SAL, obtained by
the superposition of the sequence of flat adaptive logics 〈ALi〉i∈I , is defined as
follows:2

Definition 3.1 Let SAL0 =df LLL.
For every i ∈ I, let CnSALi

(Γ) =df CnALi
(. . . (CnAL2

(CnAL1
(Γ))) . . .).

CnSAL(Γ) =df lim sup
i→~I

CnSALi
(Γ) =

⋃

i∈I CnSALi
(Γ).3

Since the distinctive feature of ALs is their dynamic proof theory, some read-
ers might complain that SAL is not a genuine adaptive logic: defined as such,

1Most superpositions of ALs in the literature are of the format SALx. One notable exception
– the only one I am aware of – is discussed in [138]. However, since the metatheory of logics
SAL is not much more complicated then that of SAL

x, I decided to broaden the scope to all
logics SAL in this thesis.

2The precise formulation of this definition is due to Christian Straßer.
3Note that the sequence 〈CnSALi

(Γ)〉i∈I converges to its limes superior due to the fact that
the sequence is (by definition) monotonic – see Fact 3.1.2 below.
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CnSAL(Γ) is not a function of the proof theory. Indeed, combining flat adaptive
logics in the above way seems a rather abstract undertaking and has little to do
with the core business of adaptive logicians, i.e. to explicate defeasible reasoning
forms by means of dynamic proof theories. However, a semantics and proof the-
ory has been proposed for several logics in SAL-format – see e.g. [144, 11, 138].
In many cases, these proposals are adequate with respect to the above definition;
in other cases, problems arise, as we will shortly see. One of the motivations
behind the current chapter is to provide a generic proof theory for a very large
group of superpositions of ALs.

In other words, the above abstract definition is not the real solution to the
problem of how to capture prioritized defeasible reasoning in the AL framework –
it should rather be seen as a goal or working hypothesis for the adaptive logician,
as the consequence relation she or he may try to characterize by proof theoretic
and semantic means.

One crucial remark should be made, before I continue. In this and the next
chapter, prioritized ALs are studied, whose syntactic consequence relation is
defined in terms of the consequence relations of flat ALs. On the one hand,
where L is a logic obtained by such a combination, I will always use A ∈ CnL(Γ)
to denote that A is a member of the consequence set, obtained by combining
a number of flat ALs in a specific way. I will also define a proof theory, which
yields a derivability relation `L that is adequate with respect to CnL(Γ). On the
other hand, a semantic consequence relation |=L will be provided, which is not
always equivalent to the corresponding syntactic consequence relation – this will
be explained below. Nevertheless, I will use the same name L, because in many
cases, Soundness and Completeness can be guaranteed (in the same sense as for
flat ALs, see Section 2.5 in Chapter 2). So the reader should be warned that e.g.
the relations `SAL and |=SAL do not always coincide, and that we cannot always
transfer properties from the syntax to the semantics.

Note that every logic SALx can be characterized by a triple 〈LLL, 〈Ωi〉i∈I ,x〉,
where LLL is the lower limit logic shared by all the flat ALs in the combination,
each Ωi is the set of abnormalities of the logic ALi, and x is the strategy these
flat ALs have in common.

More Notational Conventions. Let me introduce some notational conven-
tions for the following chapters. Let I ⊆ N be given. For every i ∈ I, let Ωi ⊆ W̌s

be a set of abnormalities, i.e. a set of formulas characterized by one or several
logical forms. For all i ∈ I, let Ω(i) =df Ω1 ∪ . . .∪Ωi and let Ω[i] =df Ωi −Ω(i−1),
where it is is stipulated that Ω[1] =df Ω1. Let Ω =df

⋃

i∈I Ωi.

Unless specified differently, I will use the term Dab-formulas to refer to
any “checked” disjunction of the members of a finite ∆ ⊂ Ω. Likewise, I use
Φ(Γ) to denote the set of minimal choice sets of Σ(Γ) =df {∆ ⊂ Ω | Γ `LLL

Dab(∆) and for no ∆′ ⊂ ∆ : Γ `LLL Dab(∆)}. As before, let x ∈ {r,m}. I
will use ALx to refer to the flat adaptive logic that is characterized by the triple
〈LLL,

⋃

i∈I Ωi,x〉. Finally, I use Ab(M) to denote the set {A ∈ Ω | M  A} =
{A ∈ Ωi |M  A, i ∈ I}.

It will be useful to introduce metavariables for the Dab-consequences of Γ
associated with each priority level i ∈ I, and associated sets of unreliable formulas
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and minimal choice sets. Where i ∈ I, Dab(∆) is a minimal Dabi-consequence of
Γ iff ∆ ⊂ Ωi, Γ `LLL Dab(∆) and there is no ∆′ ⊂ ∆ for which Γ `LLL Dab(∆

′).
Where i ∈ I and Dab(∆1), Dab(∆2), . . . are the minimal Dabi-consequences of
Γ, let Σi(Γ) =df {∆1,∆2, . . .}, U i(Γ) =df

⋃

Σi(Γ) and define Φi(Γ) as the set of
minimal choice sets of Σi(Γ).

In the remainder, I will sometimes consider disjunctions of abnormalities up
to level i ∈ I. Dab(∆) is a minimal Dab(i)-consequence of Γ iff ∆ ⊂ Ω(i),
Γ `LLL Dab(∆) and there is no ∆′ ⊂ ∆ for which Γ `LLL Dab(∆′). Where
Dab(∆1), Dab(∆2), . . . are the minimal Dab(i)-consequences of Γ, let Σ(i)(Γ) =df

{∆1,∆2, . . .}, U (i)(Γ) =
⋃

Σ(i)(Γ) and define Φ(i)(Γ) as the set of minimal choice
sets of Σ(i)(Γ).

Where the logic SAL is associated with a sequence 〈Ωi〉i∈I and a lower limit
logic LLL, let the logics ALx

(i) be characterized by the triple 〈LLL,Ω(i),x〉.
I will use the metavariables SALx

(I) for logics obtained by the superposition of

logics 〈ALx
(i)〉i∈I , and SALx

(i) for the logic obtained by the superposition of logics

〈ALx
(j)〉j≤i.

3.1.2 Examples of Logics

In Section 2.4, we saw an example of the flat logics Kr
1 and Km

1 , which capture
reasoning with (possibly inconsistent or false) plausible knowledge. In these
systems, a formula A is either considered as a fact, or as a plausible statement,
the truth of which is presumed ceteris normalibus.

However, in real life, we often distinguish between different degrees of plau-
sibility. In this case, we may start from what is called a prioritized belief base,
i.e. a sequences of sets of beliefs, each associated with a distinct priority level.
Formally, a prioritized belief base is a set of the form Ψ = 〈Θ1,Θ2, . . .〉, where
each Θi is a set of formulas, and the index of the sets denotes their plausibility
degree: Θ1 is the set of most plausible beliefs, Θ2 of the second most plausible
beliefs, and so on.

Several ALs have been developed to explicate reasoning with prioritized belief
bases – see [32], [164] and [163]. These logics typically use a certain logical oper-
ator or a sequence of such operators to express that a belief has a certain degree
of plausibility. I will discuss only one such system here, in order to illustrate how
superpositions of ALs deal with prioritized defeasible reasoning.

As before, I restrict the logic to the propositional level, where W l
s denotes

the set of literals. To express the plausibility degree of a piece of information,
sequences of diamonds are used: ♦♦ . . .♦A. The longer the sequence, the less
plausible the information. A sequence of i diamonds will be abbreviated by ♦i.
Starting from a prioritized belief base Ψ = 〈Θ1,Θ2, . . .〉, we translate this into
the premise set Ψ♦ =

⋃

i∈N
{♦iA | A ∈ Θi}. In the examples below, we will

also consider some propositions as facts – these are represented by non-modal
formulas.

WhereA ∈ Wc, let !iA abbreviate ♦iA∧¬A. Let ΩK
i =df {♦iA∧¬A | A ∈ W l

c}
and ΩK

(i) =df ΩK
1 ∪ . . . ∪ ΩK

i . Where x ∈ {r,m}, we first define the logics Kx
i

as flat ALs in standard format, characterized by the triple 〈K,ΩK
i ,x〉. Likewise,
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the flat ALs Kx
(i) are characterized by the triple 〈K,ΩK

(i),x〉. If we superpose
some of these flat ALs, we obtain the the following systems:

SKr =df 〈K, 〈ΩK
i 〉i∈N, r〉

SKm =df 〈K, 〈ΩK
i 〉i∈N,m〉

SKr
(N) =df 〈K, 〈Ω

K
(i)〉i∈N, r〉

SKm
(N) =df 〈K, 〈ΩK

(i)〉i∈N,m〉

Note that these logics can deal with cases in which infinitely many priority
levels are used. However, in many cases, I will confine myself to the much simpler
logics that use only two priority levels, i.e.:4

SK2r =df 〈K, 〈ΩK
i 〉i≤2, r〉

SK2m =df 〈K, 〈Ω
K
i 〉i≤2,m〉

SK2r
(2) =df 〈K, 〈ΩK

(i)〉i≤2, r〉

SK2m
(2) =df 〈K, 〈ΩK

(i)〉i≤2,m〉

Let us consider some examples of premise sets, to illustrate how these logics
deal with prioritized beliefs.

Example 3.1 Let Γe1 = {♦p,♦♦q,¬p∨¬q}. Note that Γ has no minimal Dab1-
consequences Dab(∆). As a result, we can finally Kr

1-derive p from Γ, on the
condition {♦p∧¬p}. But then also ¬q is a Kr

1-consequence of Γ. Hence ♦♦q∧¬q
is a minimal Dab2-consequence of CnKr

1
(Γ). This implies that we cannot derive

q in a Kr
2-proof from CnKr

1
(Γ). To summarize, p,¬q ∈ CnSK2r(Γ). By the same

reasoning, p,¬q ∈ CnSK2m(Γ).

Example 3.2 Let Γe2 = {♦p,♦q,♦♦r,¬p∨¬q,¬p∨¬r}. Note that the following
Dab-formulas are K-derivable from Γe2:

(1) !1p ∨̌ !1q
(2) !1p ∨̌ !2r

In view of (1), neither p nor q are Kr
1-derivable from Γe2. This also means that

we cannot derive !2r from Γe2 by the first logic of the superposition. As a result,
there is no Dab2-formula Dab(∆), such that Dab(∆) ∈ CnKr

1
(Γe2). But then

the abnormality !2r is considered reliable by the logic Kr
2, in view of CnKr

1
(Γe2).

Hence we may finally Kr
2-derive r and ¬p from CnKr

1
(Γe2), on the condition

{!2r}. By the same reasoning, r,¬p ∈ CnSK2m(Γe2).

Example 3.3 Let Γe3 = {♦p,♦q,♦♦r,¬p ∨ ¬q,¬p ∨ ¬r,¬q ∨ ¬r}. Note that in
addition to (1) and (2), we may also K-derive the Dab-formula !1q ∨ !2r from
Γe3. This means that now also ¬q can be SK2r-derived from Γe3: r,¬p,¬q ∈
CnSK2r(Γe3). On the other hand, we can Km

1 -derive !2r from Γe3, on the condi-
tions {!1p} and {!1q}. As a result, ¬r ∈ CnSK2m(Γe3).

4It is noteworthy that most if not all the metatheoretic difficulties concerning prioritized
ALs already pop up in this simplified case. This is most apparent in view of Appendix C, where
a number of negative claims about prioritized ALs in various formats are established.
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In view of the third example, SK2r and SK2m are incomparable. Roughly
speaking, this can be explained as follows. If we superpose logics, then the first
logic may allow us to derive certain Dab-formulas Dab(∆), where ∆ ⊂ Ω2, which
in turn block the derivation of formulas by the second logic. If the first logic has
Minimal Abnormality as its strategy, then this results in more such Dab-formulas,
whence we will be able to derive less by the second logic in the superposition.

The second example deserves a bit more explanation for the case of SK2m.
Note that since Γe2 `K !1p ∨ !1q, neither p nor q can be finally Km

1 -derived
from Γe2. Only p ∨ q is a Km

1 -consequence of this premise set, since it can
be derived on the conditions {!1p} and {!1q}. As we have seen, ¬p is a Km

2 -
consequence of CnKm

1
(Γe2). Since Km

2 is closed under K, it follows that q ∈
CnKm

2
(CnKm

1
(Γe2)) = CnSK2m(Γe2).

This fact may appear to some as counterintuitive: with the aid of a less
plausible belief r, we are suddenly able to decide that q is the case, and that
p is false, although it is just as plausible as q. Compare this also to Γ4 =
{♦p,♦¬p,♦♦p}. By the same reasoning as for Γe2, p ∈ CnSK2x(Γ4) for x ∈
{r,m}. So eventually, less plausible beliefs may allow us to choose sides in a
conflict between more plausible ones. This can be explained by the fact that the
second logic in the superposition does not take into account abnormalities of the
first logic: !1p ∨ !2r is not a Dab-formula for Kx

2, since !1p 6∈ ΩK
2 .

Similar examples can be constructed for any logic SAL = 〈LLL, 〈Ωi〉i∈I ,x〉,
where for some i, i + 1 ∈ I: Ωi 6⊆ Ωi+1. Of course, it depends on the specific
application context of a logic SAL whether this is seen as a problem or rather
as an advantage for the system. If it is the aim of SAL to make maximal use
of the (prioritized) information that is available, then it may be justified that
information with a lower priority degree allows us to choose sides between two
higher ranked sources of information. If conflicts between high authorities are
considered a sufficient reason to drop a certain belief or obligation – regardless
of what lower ranked authorities say –, then we should make our logic behave
accordingly.

In any case, if one does consider this behavior as problematic, there is a
straightforward solution, i.e. to replace the logics SK2r and SK2m by their two
weaker nephews SK2r

(2) and SK2m
(2).

5

Let me briefly show what happens to Γe2 in the case of SK2r
(2). Since the

first logic in the superposition is the same as that of SK2r, it suffices to look at
the second. Note that !1p ∨̌ !2r is a minimal Dab-consequence of Γ, and both !1p
and !2r are in ΩK

1 ∪ ΩK
2 . Hence !2r is an unreliable abnormality for the second

logic. As a result, we are no longer able to derive r, whence we also cannot derive
¬p and q.

3.1.3 Basic Facts and Theorems

Before I present the semantics of sequential superpositions, let me discuss a
number of properties that follow from Definition 3.1 and the metatheory of flat

5It will be shown in Chapter 6 that indeed, every logic SAL
r is always at least as strong

as the corresponding logic SALr

(I)
, and that every logic SALm is at least as strong as the

corresponding logic SAL
m

(I)
whenever Σ(Γ) has only finitely many minimal choice sets.
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ALs. As will become clear, their proofs are but a matter of routine. Nevertheless,
each of these properties will be used in the proof of other, less obvious theorems
of this and subsequent chapters.

The following is immediate in view of Definition 3.1, Theorem 2.16, and the
reflexivity of each logic ALi:

Fact 3.1 Each of the following holds:

1. CnSAL1
(Γ) = CnAL1

(Γ)
2. for all i ∈ I, CnSALi−1

(Γ) ⊆ CnSALi
(Γ)

3. Γ ⊆ CnSAL(Γ)
4. for all i ∈ I, CnSALi

(Γ) ⊆ CnSAL(Γ)
5. for all i ∈ I, Γ ⊆ CnSALi

(Γ)
6. for all i ∈ I, CnLLL(Γ) ⊆ CnSALi

(Γ)
7. CnLLL(Γ) ⊆ CnSAL(Γ)

Recall that every flat adaptive logic AL is closed under LLL (see Theorem
2.18). I now prove a similar result for SAL:

Theorem 3.1 Where Γ ⊆ Ws, each of the following holds:

1. for every i ∈ I, CnSALi
(Γ) = CnLLL(CnSALi

(Γ)).
2. CnSAL(Γ) = CnLLL(CnSAL(Γ)). (LLL-closure)

Proof. Ad 1. (i = 1) Immediate in view of Theorem 2.18 and Fact 3.1.1.
(i ⇒ i + 1) By Definition 3.1, CnSALi+1

(Γ) = CnALi+1
(CnSALi

(Γ)). Hence
by the induction hypothesis and Lemma 2.6,

CnSALi+1
(Γ) = CnLLL(CnALi+1

(CnSALi
(Γ))) (3.1)

By (3.1) and Definition 3.1, CnSALi+1
(Γ) = CnLLL(CnSALi+1

(Γ)).
Ad 2. That CnSAL(Γ) ⊆ CnLLL(CnSAL(Γ)) is immediate in view of the

reflexivity of LLL. Suppose that A ∈ CnLLL(CnSAL(Γ)). By Definition 3.1 and
the compactness of LLL, there is an i ∈ I such thatA ∈ CnLLL(

⋃

j≤i CnSALj
(Γ)),

whence by Fact 3.1.3, A ∈ CnLLL(CnSALi
(Γ)). By item 1., A ∈ CnSALi

(Γ),
whence by Definition 3.1, A ∈ CnSAL(Γ).

Another property that can easily be transferred from AL to SAL is the
property of LLL-invariance:

Theorem 3.2 Where Γ ⊆ Ws: CnSAL(Γ) = CnSAL(CnLLL(Γ))

Proof. By the LLL-invariance of AL1 (see Theorem 2.19), CnAL1
(Γ) =

CnAL1
(CnLLL(Γ)). The rest is immediate in view of Definition 3.1.

The following property follows almost immediately for SAL, in view of the
reassurance that is guaranteed for each of the logics ALi:

Theorem 3.3 If Γ is not LLL-trivial, then CnSAL(Γ) is not LLL-trivial. (Syn-
tactic Reassurance)
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Proof. I prove that for every i ∈ I, CnSALi
(Γ) is not LLL-trivial – the rest

is immediate in view of Definition 3.1 and the compactness of LLL. (i = 1)
Immediate in view of the Reassurance of AL1. (i⇒ i+ 1) Immediate in view of
the induction hypothesis and the Reassurance of ALi+1.

Finally, we can prove a simple equivalence criterion for all superpositions of
ALs:

Theorem 3.4 If Γ,Γ′ ⊆ Ws and Γ and Γ′ are LLL-equivalent, then they are
SAL-equivalent.

Proof. Suppose the antecedent holds. Then by Theorem 2.22, CnAL1
(Γ) =

CnAL1
(Γ′). The rest is immediate in view of Definition 3.1.

3.2 Some Crucial Lemmas

Several proofs in the remainder of this thesis rely on one crucial lemma and a
number of other lemmas that can easily be derived from it. To facilitate the
reading of this chapter, their proofs will be presented in this separate section. To
prepare for the crucial lemma, one lemma about minimal choice sets needs to be
established first:

Lemma 3.1 Where (1) Σ = {∆1,∆2, . . .} is a set of sets and (2) ϕ is a choice
set of Σ: (3) for every A ∈ ϕ, there is a ∆ ∈ Σ for which ∆ ∩ ϕ = {A} iff (4) ϕ
is a minimal choice set of Σ.

Proof. Suppose (1) and (2) hold. (⇒) Suppose (3) holds, and consider a ϕ′ ⊂ ϕ
and a B ∈ ϕ,B 6∈ ϕ′. By (3), there is a ∆ ∈ Σ for which ∆∩ϕ = {B} and hence
∆ ∩ ϕ′ = ∅. This implies that ϕ′ is not a choice set of Σ. As a result, ϕ is a
minimal choice set of Σ. (⇐) Suppose (3) is false, whence there is a B ∈ ϕ such
that, for no ∆ ∈ Σ, ϕ ∩ ∆ = {B}. In that case for every ∆ for which B ∈ ∆,
there is a C ∈ ϕ − {B} such that C ∈ ∆. Hence ϕ − {B} is a choice set of Σ,
hence ϕ is not a minimal choice set of Σ.

Recall that Σ(i)(Γ) denotes the set of all sets ∆ for which Dab(∆) is a minimal
Dab(i)-consequence of Γ, and that Φ(i)(Γ) is the set of minimal choice sets of

Σ(i)(Γ). In the remainder, I will establish a specific relation between the sets
Φ(i)(Γ) and Φ(i+1)(Γ) for all i, i + 1 ∈ I; this will also enable me to show the
relation between each of the sets Φ(i)(Γ) and Φ(Γ).

Note that for each ∆ ∈ Σ(i+1)(Γ) − Σ(i)(Γ), ∆ ∩ Ω[i+1] 6= ∅, i.e. ∆ contains
abnormalities of priority level i+1 that do not belong to any lower priority level.

Where i ∈ I and ϕ ∈ Φ(i)(Γ), let Φ
[i+1]
ϕ (Γ) be the set of minimal choice sets of

{

∆ ∩ Ω[i+1] | ∆ ∈ Σ(i+1)(Γ) − Σ(i)(Γ), ϕ ∩ ∆ = ∅
}

.6

Lemma 3.2 Where i ∈ I: for all ϕ ∈ Φ(i)(Γ) and all ϕ′ ∈ Φ
[i+1]
ϕ (Γ), ϕ ∪ ϕ′ ∈

Φ(i+1)(Γ).

6The precise definition of this set greatly benefited from some comments by Christian
Straßer. He also contributed to the proof for Lemma 3.2, which originally appeared in Section
4 of [149].
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Proof. Let ∆ ∈ Σ(i+1)(Γ). Suppose ∆ ∩ ϕ = ∅. Then ∆ /∈ Σ(i)(Γ) since
ϕ ∈ Φ(i)(Γ). Hence, ∆ ∈ Σ(i+1)(Γ) − Σ(i)(Γ). In this case ∆ ∩ Ω[i+1] 6= ∅. Hence

ϕ′ ∩ ∆ 6= ∅, since ϕ′ ∈ Φ
[i+1]
ϕ . Hence ϕ ∪ ϕ′ is a choice set of Σ(i+1)(Γ).

By the right-left direction of Lemma 3.1 and the fact that ϕ ∈ Φ(i)(Γ), for
every A ∈ ϕ there is a ∆ ∈ Σ(i)(Γ) such that ∆ ∩ ϕ = {A}. Moreover, for all
these ∆, ϕ′ ∩ ∆ = ∅, since ϕ′ ⊆ Ω[i+1]. Finally, Σ(i)(Γ) ⊆ Σ(i+1)(Γ), which gives
us:

(1) for every A ∈ ϕ there is a ∆ ∈ Σ(i+1)(Γ) such that ∆ ∩ (ϕ ∪ ϕ′) = {A}.

From the right-left direction of Lemma 3.1: for every A ∈ ϕ′, there is a Θ such
that Θ∩ϕ′ = {A}, where Θ = ∆∩Ω[i+1] for a ∆ ∈ Σ(i+1)(Γ). Since ϕ′ ⊆ Ω[i+1],

∆ ∩ ϕ′ = {A}. Moreover, in view of the definition of Φ
[i+1]
ϕ , ∆ ∩ ϕ = ∅. Hence

we have:

(2) for every A ∈ ϕ′, there is a ∆ ∈ Σ(i+1)(Γ) such that ∆ ∩ (ϕ ∪ ϕ′) = {A}.

By (1) and (2): for every A ∈ ϕ ∪ ϕ′, there is a ∆ ∈ Σ(i+1)(Γ) such that
∆∩ (ϕ∪ϕ′) = {A}. By the left-right direction of Lemma 3.1, ϕ∪ϕ′ is a minimal
choice set of Σ(i+1)(Γ), hence ϕ ∪ ϕ′ ∈ Φ(i+1)(Γ).

Lemma 3.3 Where i, i+ 1 ∈ I: for every ϕ ∈ Φ(i)(Γ), there is a ψ ∈ Φ(i+1)(Γ)
for which ψ ∩ Ω(i) = ϕ.

Proof. Suppose ϕ ∈ Φ(i)(Γ). Let ϕ′ be an arbitrary element in Φ
[i+1]
ϕ . Note

that ϕ′ ⊆ Ω[i+1]. Define ψ = ϕ ∪ ϕ′. The lemma follows immediately in view of
Lemma 3.2.

It is important to observe that Lemma 3.3 holds for all sequences of sets of
abnormalities 〈Ωj〉j∈J . That is, we may also apply it to sequences of the form
〈Ωi,Ω〉 and to sequences of the form 〈Ωi,Ωi+k〉 . Hence we can derive:

Lemma 3.4 For all i ∈ I and for every ϕ ∈ Φ(i)(Γ), there is a ψ ∈ Φ(Γ) for
which ψ ∩ Ω(i) = ϕ.

Lemma 3.5 For all i, i + k ∈ I and for every ϕ ∈ Φ(i)(Γ), there is a ψ ∈
Φ(i+k)(Γ) for which ψ ∩ Ω(i) = ϕ.

From the preceding, we can derive the following lemma which concerns the
cardinality of Φ(i)(Γ) and Φ(Γ):

Lemma 3.6 For every i ∈ I, the cardinality of Φ(i)(Γ) is never greater than that
of Φ(Γ).

Proof. Let i ∈ I and consider ϕ, ψ ∈ Φ(i)(Γ), with ϕ 6= ψ. By Lemma 3.4, there
is a ϕ′ ∈ Φ(Γ) : ϕ′ ∩ Ω(i) = ϕ and a ψ′ ∈ Φ(Γ) : ψ′ ∩ Ω(i) = ψ. As a result,
ϕ′ 6= ψ′.
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3.3 A Semantics for SAL

In this section, the semantics for sequential superpositions is discussed. As will
become clear, most of the metatheoretic results I will present here follow almost
immediately from properties that were established by Christian Straßer in his
[137]. The only real novelty is that I include superpositions of infinitely many
flat ALs, relying on the last lemma of the preceding section.

3.3.1 Sequential Superposition of Selections

The general idea of the SAL-semantics was already described in [11]. Just as
the syntactic consequence relation of SAL is defined in terms of a superposition
of consequence relations of flat ALs – whence we apply different standards of
normality sequentially –, its semantics is defined in terms of a superposition of
selections imposed on the set of LLL-models of Γ. We first select models in view
of AL1, from the resulting set, we select a subset in view of AL2, etc. Of course,
how the selection is performed exactly, depends on the strategy.

The selection procedure is most easily understood when applied to superpo-
sitions of ALs that use the Minimal Abnormality Strategy. Where SALm is
characterized by the sequence of flat adaptive logics 〈ALm

i 〉i∈I , we first select
the LLL-models of Γ that verify a minimal set of abnormalities from Ω1. From
the resulting set, we select those that verify a minimal set of abnormalities from
Ω2, etc.

To include superpositions where some or all of the flat ALs use Reliability,
we need a few definitions. First of all, we define the set of i-minimally abnormal
models in a set M of LLL-models of Γ, as follows:

Definition 3.2 Where M ⊆ MLLL(Γ): Mini(M) =df {M ∈ M | there is no
M ′ ∈ M : Ab(M ′) ∩ Ωi ⊂ Ab(M) ∩ Ωi}.

Recall that the selection of the ALr-models of Γ proceeds in terms of the set U(Γ).
If we want to carry forward such a selection within the sequential procedure, we
have to define a set of unreliable formulas after a given step. As explained in
Section 2.2, the set of unreliable formulas in view of Γ is identical to the set of
abnormalities that are verified by at least one model M ∈ MALm(Γ) (see page
21). Similarly, after the (i − 1)th selection step in the recursive procedure, we
may define unreliable formulas for the logic ALi as those abnormalities that are
are verified by at least one i-minimally abnormal model in MSALi−1

(Γ):

Definition 3.3 For every i ∈ I: ΨS
i (Γ) =df {A ∈ Ωi | M  A for an M ∈

Mini(MSALi−1
(Γ))}.

The preceding definitions finally allow us to define the set of SAL-models of
Γ ⊆ W̌s:

Definition 3.4 MSAL0
(Γ) =df MLLL(Γ). For every i ∈ I:

(i) if xi = r: MSALi
(Γ) =df {M ∈ MSALi−1

(Γ) | Ab(M) ⊆ ΨS
i (Γ)}

(ii) if xi = m: MSALi
(Γ) =df Mini(MSALi−1

(Γ)).
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MSAL(Γ) =df lim inf
i→~I

MSALi
(Γ) =

⋂

i∈I MSALi
(Γ).7

In view of Definitions 2.2 and 3.4, we can immediately infer:

Fact 3.2 MSALm
1

(Γ) = MALm
1

(Γ) = MALm
(1)

(Γ).

Example 3.4 Consider again Γe3 = {♦p,♦q,♦♦r,¬p∨¬q,¬p∨¬r,¬q∨¬r} from
Example 3.3. Recall that Γe3 has the following minimal Dab-consequences:

!1p ∨̌ !1q
!1p ∨̌ !2r
!1q ∨̌ !2r

Let us first take a look at how the SK2m-semantics deals with this case.
After the first selection, only those models M ∈ MK(Γe3) are selected for which
either Ab(M) ∩ ΩK

1 = {!1p} or Ab(M) ∩ ΩK
1 = {!1q}. This implies that each

of these models verifies !2r. As a result, after the second selection, we obtain
MSK2m(Γe3) = {M ∈ MK(Γe3) | Ab(M) = {!1p, !2r} or Ab(M) = {!1q, !2r}}.

Compare this to the SK2r-semantics. In this case, some models M ∈
MK(Γe3) for which Ab(M) = {!1p, !1q} are selected after the first round. Among
the latter, there are models which falsify every member of ΩK

2 . As a result,
Min2(MKr

1
(Γe3)) = {M ∈ MK(Γe3) | Ab(M) = {!1p, !1q}}. This implies that

ΨS
2 (Γ) = ∅. But then also MSK2r(Γe3) = {M ∈ MK(Γe3) | Ab(M) = {!1p, !1q}}.

In the remainder, I will show that the syntactic SALr-consequence relation
is adequate with respect to the set of SALr-models. For the more generic format
SAL, I will establish a restricted kind of adequacy. Both proofs are easily ob-
tained through generalizations of results from [137], where these properties were
proven for all cases where I = {1, . . . , n} for an n ∈ N.

3.3.2 Adequacy With Respect to CnSAL(Γ)

Note that the following holds:

Theorem 3.5 Where Γ ⊆ Ws: if

for every i ∈ I, MLLL(CnSALi
(Γ)) = MSALi

(Γ) (3.2)

then Γ |=SAL A iff A ∈ CnSAL(Γ)

Proof. Suppose (3.2) holds. Relying on Definition 3.1, (3.2) and Definition
3.4 consecutively, we have: MLLL(CnSAL(Γ)) = MLLL(

⋃

i∈I CnSALi
(Γ)) =

⋂

i∈I MLLL(CnSALi
(Γ)) =

⋂

i∈I MSALi
(Γ) = MSAL(Γ). Hence:

MLLL(CnSAL(Γ)) = MSAL(Γ) (3.3)

(⇒) Suppose Γ |=SAL A. By (3.3), A is true in everyM ∈ MLLL(CnSAL(Γ)).
Hence A ∈ CnLLL(CnSAL(Γ)), whence by Theorem 3.1.2, A ∈ CnSAL(Γ).

7Note that the sequence 〈MSALi
(Γ)〉i∈I converges to its limes inferior due to the fact that

the sequence is (by definition) monotonic (MSALi+1
(Γ) ⊆ MSALi

(Γ) for all i ∈ I).
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(⇐) Suppose A ∈ CnSAL(Γ), whence by the reflexivity of LLL, A ∈
CnLLL(CnSAL(Γ)). This implies that A is true in everyM ∈ MLLL(CnSAL(Γ)).
By (3.3), Γ |=SAL A.

Recall that every logic SALr is obtained by the sequential superposition of
logics 〈ALr

i 〉i∈I .

Lemma 3.7 Where Γ ⊆ Ws: for every i ∈ I, MLLL(CnSALr
i
(Γ)) = MSALr

i
(Γ).

[137, Lemma 3.2.3.]

Corollary 3.1 Where Γ ⊆ Ws: Γ |=SALr A iff A ∈ CnSALr(Γ).

Lemma 3.8 Where Γ ⊆ Ws and i ∈ I: If Φ(i)(Γ) is finite, then
MLLL(CnSALi

(Γ)) = MSALi
(Γ). [137, Theorem 3.2.2, item (i)]

Lemma 3.9 Where Γ ⊆ Ws and i ∈ I: if Φ(Γ) is finite, then
MLLL(CnSALi

(Γ)) = MSALi
(Γ).

Proof. Suppose Φ(Γ) is finite. By Lemma 3.6, for every i ∈ I, Φ(i)(Γ) is finite.
Hence by Lemma 3.8, for every i ∈ I, MLLL(CnSALi

(Γ)) = MSALi
(Γ).

From the preceding lemmas, we can show that whenever Φ(Γ) is finite, then
soundness and completeness (restricted to premise sets in Ws) holds for all logics
SAL. Thus soundness and completeness of SAL depends on the Dab-formulas
that can be derived from Γ. In the subsequent section, a counterexample is
given for unrestricted soundness and completeness of SAL with respect to its
semantics.

Corollary 3.2 Where Γ ⊆ Ws and Φ(Γ) is finite, each of the following holds:

1. for every i ∈ I, Γ |=SALi
A iff A ∈ CnSALi

(Γ)
2. Γ |=SAL A iff A ∈ CnSAL(Γ)

3.3.3 No Unrestricted Adequacy for SAL

I will now briefly show why we cannot generalize the above result and prove that
for every premise set Γ ⊆ Ws, the SAL-semantics is adequate with respect to
CnSAL(Γ). Although my argument uses a logic in the format SALm, it can
easily be generalized to all superpositions where a logic ALm

i is applied before
another logic ALx

i+1.
Let the logic SK2m be defined as before, i.e. by the superposition of the logics

Km
1 = 〈K,ΩK

1 ,m〉 and Km
2 = 〈K,ΩK

2 ,m〉. I will now show that SK2m is not in
general sound or complete with respect to its semantics.

Proposition 3.1 There are Γ, A such that Γ |=SK2m A, but A 6∈ CnSK2m(Γ).

Proof.8 Let Γc = {!1pi ∨ !1pj | i, j ∈ N, i 6= j}∪{!1pi ∨ !2qi ∨ r | i ∈ N}. Note that
every Km

1 -model of Γc falisifies exactly one abnormality !1pi. After the second

8The original version of this example is given by Diderik Batens in his [25, Chapter 6].
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selection, every selected model will moreover falsify all the abnormalities !2qi. It
follows that for every M ∈ MSK2m(Γc), M  r.

However, r 6∈ CnSK2m(Γc). To see why, suppose r ∈ CnSK2m(Γc). Hence
r ∈ CnKm

2
(CnKm

1
(Γc)). By Theorem 2.6.1, there is a ∆ ⊂ ΩK

2 such that
CnKm

1
(Γc) `K r ∨̌Dab(∆), whence by the LLL-closure of Km

1 , r ∨̌Dab(∆) ∈
CnKm

1
(Γc).

Since ∆ is finite, there is an i ∈ N: for every j ≥ i, !2qj 6∈ ∆. Let M be a
K-model of Γc for which each of the following holds:

• M 6!1pi
• for every k 6= i: M !1pk
• for every A ∈ ΩK

2 − {!2qi}: M 6 A
• M 6 r
• M !2qi

I leave it to the reader to prove that such a model M exists, that it is a Km
1 -model

of Γc, and that it does not verify r ∨̌Dab(∆). By the soundness of Km
1 , it follows

that r ∨̌Dab(∆) 6∈ CnKm
1

(Γc) — a contradiction.

Proposition 3.2 There are Γ, A such that A ∈ CnSK2m(Γ), but Γ 6|=SK2m A.

Proof. Let Γs = {!1pi ∨ !1pj | i, j ∈ N, i 6= j} ∪ {!1pi ∨ !2qi | i ∈ N} ∪ {!2q1 ∨ r}.
Since CnKm

1
(Γs) has no minimal Dab2-consequences, ¬̌!2qk ∈ CnKm

2
(CnKm

1
(Γs))

for every k ∈ N. By the reflexivity of SK2m, !2q1 ∨ r ∈ CnSK2m(Γs). By the
LLL-closure of SK2m, it follows that r ∈ CnSK2m(Γs).

However, Γs 6|=SK2m r. To see why, note that every Km
1 -model M of Γs

falsifies exactly one abnormality !1pi, whence it verifies one abnormality !1qi.
In particular, there is a model M1 ∈ MKm

1
(Γs) such that each of the following

holds:

• M1 !2q1
• M1 6 r
• M1 6 A for all A ∈ ΩK − {!2q1}

Assume that there is an M ∈ MKm
1

(Γs) such that Ab(M)∩ΩK
2 ⊂ Ab(M1)∩ΩK

2 .
It follows that M 6!2qi for every i ∈ N. But then M !1pi for every i ∈ N,
whence M 6∈ MKm

1
(Γs) — a contradiction.

It follows that M1 ∈ MSK2m(Γs). As a result, Γs 6|=SK2m r.

3.3.4 Semantic Reassurance

Before closing this section, let me briefly consider the question whether the su-
perposition of semantic selections for SAL satisfies the Semantic Reassurance
property: if Γ has LLL-models, then it has adaptive models. As shown in Chap-
ter 2, flat adaptive logics have this property – this follows immediately from the
theorem of Strong Reassurance (see Theorem 2.12).

In Section 3.6.1, I will discuss the notion of Strong Reassurance in the context
of sequential selections of models. But let us first consider the much more basic
property Reassurance. This property does not hold for SAL in general. Consider
the following example:
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Example 3.5 Let Γr = {!1pi∨!1pj | i, j ∈ N, i 6= j}∪{!1pi∨!2qj | i, j ∈ N, j ≥ i}.
Note that MSKm

1
(Γr) = {Mk ∈ MK(Γr) | k ∈ N, Ab(Mk) ∩ ΩK

1 = {!1pi | i ∈
N − {k}}}. Note that the following holds:

Ab(M1) ∩ ΩK
2 = {!2qi | i ∈ N}

Ab(M2) ∩ ΩK
2 = {!2qi | i ∈ N − {1}}

Ab(M3) ∩ ΩK
2 = {!2qi | i ∈ N − {1, 2}}

Ab(M4) ∩ ΩK
2 = {!2qi | i ∈ N − {1, 2, 3}}

...

Hence for every i ∈ N, Ab(Mi) ∩ ΩK
2 ⊂ Ab(Mi+1) ∩ ΩK

2

So the problem is that, once we superpose semantic selections according to
the Minimal Abnormality Strategy, we can encounter infinite sequences of models
M1,M2, . . ., where each model Mi+1 is less abnormal than Mi with respect to
one of the sets Ωk. In the above example, MSK2m(Γr) = ∅.

As will be shown in Chapter 6, logics in the SALm
(I)-format do have the

Semantic Reassurance property. Also, as I will now briefly show, SAL-logics
satisfy Semantic Reassurance in exactly those cases where they are sound and
complete with respect to their semantics.

Theorem 3.6 If Γ is LLL-satisfiable, and

1. for every i ∈ I, xi = r, or
2. Φ(Γ) is finite

then MSAL(Γ) 6= ∅.

Proof. Suppose Γ is LLL-satisfiable, and either 1 or 2 holds. By the sound-
ness of LLL, Γ is not LLL-trivial. By Theorem 3.3, CnSAL(Γ) is not LLL-
trivial, whence MLLL(CnSAL(Γ)) 6= ∅. By Corollary 3.1 and 3.2 respectively,
MSAL(Γ) = MLLL(CnSAL(Γ)). Putting everything together, MSAL(Γ) 6= ∅.

3.4 A Proof Theory for SAL

3.4.1 The Quest for a Proof Theory

In [11], an attractive proof theory is proposed for a specific class of superpositions
of ALs, i.e. the logics SALr and SALm where (†) for all i, j ∈ I, i 6= j: Ωi∩Ωj =
∅. This proof theory is very similar to that of flat adaptive logics: the same generic
rules are used, with a conditional rule that allows one to push abnormalities to
the condition; a marking definition determines which lines are in and which are
out at a given stage s of the proof; the notions of derivability at a stage and final
derivability are exactly the same as for flat ALs.

The proof theory from [11] has a certain intuitive appeal. Whether or not
a line is marked is defined recursively. If the user of a logic wants to find out
whether or not a line is marked or not at stage s, she can follow a sequential
marking procedure. Roughly speaking, such a procedure goes as follows: at a
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stage s, mark lines according to a first marking criterion. This criterion solely
depends on the lines that have been derived on the empty condition. In view of
the lines that remain unmarked after this first step, we obtain a new marking
criterion, which then allows us to determine a third marking criterion, etc. Lines
that remain unmarked at the end of the whole procedure are said to be unmarked
at stage s.

For logics of the format SALr that obey restriction (†), this proof theory is
sound and complete with respect to both the semantic and the syntactic conse-
quence relation of SALr. However, for the SALm-logics of this specific class,
soundness with respect to the consequence relation fails for certain (fairly simple)
premise sets – I will return to this point in Section 3.5.1.

If we remove restriction (†), several difficulties arise even in the case of SALr.
In [25], Diderik Batens proposes a generic proof theory for these two classes of
sequential superpositions. For SALr, this proof theory is adequate with respect
to CnSALr(Γ). However, for SALm, there are Γ, A such that A is derivable from
Γ in a proof, whereas A 6∈ CnSALm(Γ).9

Christian Straßer made a different attempt to characterize some sequential
superpositions by a dynamic proof theory in his [137]. On the one hand, Straßer
broadens the scope to include superpositions of ALs with mixed strategies. On
the other hand, Straßer restricts himself again to logics that obey (†), and only
considers the case in which I = {1, . . . , n}. Again, for all logics SALr, this proof
theory is adequate, whereas for the Minimal Abnormality-variants and those
with mixed strategies, Straßers proposal faces the same problem as Batens’ older
proposal.

In this and the next section – which is based on joint work with Christian
Straßer –, I will present two proposals of generic proof theories for all logics SAL,
and prove them to be adequate with respect to the syntactic consequence relation
of SAL. Although I consider this an important achievement, a small warning is
in place. In order to obtain full adequacy for the general case of superpositions,
it turns out that some traditional conceptions have to be overthrown. In the first
proposal, these conceptions have to do with the reasons for marking lines in an
adaptive proof. In the second proposal, the concept of an adaptive proof itself is
changed, be it in a rather conservative way. Since both proof theories have their
own advantages and disadvantages, I decided to present both here.

3.4.2 Recursive Unmarking

The generic rules for the first proposal are exactly those of the flat adaptive logic
ALx = 〈LLL,

⋃

i∈I Ωi,x〉 – see page 21. For the rule RC, this implies that we
may push abnormalities of any priority level to the condition. So for instance,
where each Bi ∈ Ωi, and A ∨̌B5 ∨̌B2 is derived on the condition {B3}, we may
apply RC and obtain a line on which A is derived, on the condition {B3, B5, B2}.

Hence, although SAL is the result of the sequential application of each of
the logics ALi, in an SAL-proof, we can apply all these logics at the same time

9An example is Γc from Section 3.3.3. Let `B
SK2m denote the derivability relation defined by

Batens, when applied to the specific logic SK2m. It can be shown that Γc `B
SK2m r, whereas

r 6∈ CnSK2m(Γc).
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or in whatever order we want to apply them. It is the marking definition and
the definition of final derivability that warrant that this seemingly very liberal
proof theory still renders the right outcome, viz. a derivability relation that is
adequate with respect to CnSAL(Γ). As the definition of final derivability is the
same as for flat ALs, I will mainly focus on the marking definition for SAL in
this section, or rather, the sequential procedure of unmarking that allows us to
determine which formulas can be considered derived at a given stage, and which
not.

The overall idea behind this procedure is the following: whenever our best
insights at stage s indicate that A ∈ CnSALi

(Γ), then we are allowed to i-unmark
at least one line at which A is derived. However, recall that

CnSALi
(Γ) = CnALi

(CnSALi−1
(Γ))

Thus, having good reasons to assume that A ∈ CnSALi
(Γ) means having good

reasons to assume certain things about CnSALi−1
(Γ). So if we want to obtain a

reasonable estimate of CnSAL(Γ), we should start with CnAL1
(Γ), next consider

CnAL1
(CnAL2

(Γ)), and so on. Put differently, we should start by unmarking
lines in view of the first logic in the superposition, next in view of the second
logic and the lines that have been unmarked so far, and so on.

Before we turn over to the exact marking definitions, let us try to give an
idea of what they look like, by means of an object-level proof. Recall that SK2r

was defined as the superposition of the logics 〈K,ΩK
i , r〉i≤2. The following is a

SK2r-proof from Γp1 = {♦p,♦♦q,♦♦r,¬p ∨ ¬r}:

1 ♦p PREM ∅ –0

2 ♦♦q PREM ∅ –0

3 (p ∧ q) ∨̌ !1p ∨̌ !2q 1,2;RU ∅ –0

4 (p ∧ q) ∨̌ !2q 3;RC {!1p} –1

5 p ∧ q 4;RC {!1p, !2q} –2

6 ♦♦r PREM ∅ –0

7 ¬p ∨ ¬r PREM ∅ –0

8 !1p ∨̌ !2r 1,6,7;RU ∅ –0

9 !2r 8;RC {!1p} –1

10 r ∨̌ !2r 6;RU ∅ –0

11 r 10;RC {!2r} X

The symbol –i indicates that at the current stage, a line is i-unmarked. The
above result is obtained as follows. We start by marking all lines with a non-
empty condition, i.e. lines 4, 5, 9 and 11. All other lines contain K-consequences
of the premise set, whence they also follow by the prioritized adaptive logic. Lines
with an empty condition are said to be 0-unmarked.

In the second step of the procedure, we look at all the minimal Dab1-formulas,
i.e. disjunctions of abnormalities A ∈ Ω1, that have been derived on the empty
condition. This gives us the set SU1

11(Γ) = ∅ — note that the formula on line 8
is not a Dab1-formula since it contains an abnormality of level two, viz. !2r. We
1-unmark all lines with a condition Θ ⊂ Ω1 −

SU1
11(Γ). This means that lines 4

and 9 are 1-unmarked, indicating that at this stage, we have sufficient reasons to
assume e.g. that p ∈ CnKr

1
(Γp1) and that !2¬r ∈ CnKr

1
(Γp1).
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To prepare for the third and final step of the procedure, we consider all Dab2-
formulas that are derived on a line that is unmarked after the preceding step –
recall that Dab(∆) is a Dab2-formula iff ∆ ⊂ Ω2. In the current case, there is
only one such formula, viz. the one on line 10. From this, we obtain a second set
of unreliable formulas: SU2

11(Γ) = {!2r}. Finally, we 2-unmark all lines on which
a formula B is derived on a condition ∆ ⊂ Ω, such that for a Θ ⊂ ∆ ∩ ΩK

2 , each
of the following holds:

(a) B ∨̌Dab(Θ) has been derived on a line that was 1-unmarked, with condition
∆ − Θ

(b) Θ ∩ SU2
11(Γ) = ∅

As is clear from requirement (b), in order for a line with condition ∆ to
become 2-unmarked, not only ∆ ∩ Ω2 has to be reliable, but also other formulas
have to be derived on an unmarked line in the proof. This requirement reflects
the recursive character of CnSK2r = CnKr

2
(CnKr

1
(Γ)).

Now consider line 5. Let ∆ = {!1p, !2q} and let Θ = {!2q}. Note that (a)
is fulfilled in view of line 4 and that (b) is fulfilled since !2q /∈ SU2

11(Γp1). This
means that line 5 is 2-unmarked, indicating that according to our best insights at
stage 11, p ∧ q ∈ CnSK2r(Γ). On the other hand, line 11 cannot be 2-unmarked,
since its condition has a non-empty intersection with SU2

11(Γp1). Hence line 11
is marked at stage 11.

Note that a line can be 2-unmarked without being 1-unmarked. However, as
we will see below, whenever a line is i-unmarked for an i ∈ I, then it is also
j-unmarked for all j ∈ I such that j > i.

In order to derive p ∧ q on an unmarked line, it is crucial that we proceed
stepwise. That is, we first have to derive (p∧q) ∨̌ !1p ∨̌ !2q on the empty condition.
Then we have to derive (p ∧ q) ∨̌ !2q on the condition {!1p}, and only after that
we should push !2q to the condition. If we would e.g. push both abnormalities !1p
and !2q to the condition at once, the resulting line would become marked as long
as there is no 1-unmarked line l with formula (p∧ q) ∨̌ !2q and condition {!1p}. I
will return to this point below.

Suppose now that we add the premise ¬p ∨ ¬q. Obviously, there has to be a
way to render line 5 marked, once this additional premise is introduced. Consider
the following continuation of the proof:

...
...

...
...

4 (p ∧ q) ∨̌ !2q 3;RC {!1p} –1

5 p ∧ q 4;RC {!1p, !2q} X
...

...
...

...
12 ¬p ∨ ¬q PREM ∅ –0

13 !1p ∨̌ !2q 1,2,12;RU ∅ –0

14 !2q 13;RC {!1p} –1

At this stage of the proof, !2q becomes unreliable. More formally, SU2
14(Γ) =

{!2r, !2q}, whence line 5 cannot be 2-unmarked at stage 14. Again, it is very
important to note that in the SAL-proof theory, Dab-formulas can (and often
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have to be) derived on a non-empty condition – this will be the case in the second
proposal as well (see infra).

Enough with the example, let us now turn to the definitions for the first
proposal. For every i ∈ I, we define prioritized counterparts of the sets Σs(Γ),
Us(Γ) and Φs(Γ) from the standard format:

Definition 3.5 A line is 0-marked iff it has a non-empty condition. Otherwise
we say it is 0-unmarked. For every i ∈ I:

• Dab(∆) is a Dabi-formula at stage s iff ∆ ⊂ Ωi and Dab(∆) is derived at an
(i− 1)-unmarked line at stage s (see below).

• Dab(∆) is a minimal Dabi-formula at stage s iff there is no ∆′ ⊂ ∆ such that
Dab(∆′) is a Dabi-formula at stage s.

• Where 〈Dab(∆)〉j∈J are the minimal Dabi-formulas at stage s, SΣis(Γ) =df

{∆j | j ∈ J}.
• SU is(Γ) =df

⋃

SΣis(Γ).
• SΦis(Γ) is the set of minimal choice sets of SΣis(Γ).

The preceding definition goes hand in hand with two marking definitions, one
for each strategy:

Definition 3.6 (i-unmarking for xi = r) A line with formula A and condi-
tion ∆ ⊂ Ω(i) is i-unmarked at stage s iff there is a Θ ⊆ ∆ ∩ Ωi such that (a)
A ∨̌Dab(Θ) is derived on an (i−1)-unmarked line with condition ∆−Θ at stage
s, and (b) Θ ∩ SU is(Γ) = ∅.

Definition 3.7 (i-unmarking for xi = m) A line with formula A and condi-
tion ∆ ⊂ Ω(i) is i-unmarked at stage s iff each of the following holds:

(i) there is a Θ ⊆ ∆ ∩ Ωi such that

(i.a) A ∨̌Dab(Θ) is derived on an (i − 1)-unmarked line with condition
∆ − Θ at stage s, and

(i.b) for a ϕ ∈ SΦis(Γ), ϕ ∩ Θ = ∅

(ii) for every ϕ′ ∈ SΦis(Γ), A is derived on a condition ∆′ at stage s such that
there is a Θ′ ⊂ ∆′ ∩ Ωi for which

(ii.a) A ∨̌Dab(Θ′) is derived on an (i − 1)-unmarked line with condition
∆′ − Θ′ at stage s, and

(ii.b) ϕ′ ∩ Θ′ = ∅.

A line is i-marked iff it is not i-unmarked. We say that line l is unmarked
at stage s iff there is an i ∈ I such that l is i-unmarked at stage s. Note that
although I introduced the above definitions in terms of an unmarking-procedure,
whether or not a line is marked at stage s is determined by a recursive definition
and does in no way depend on choices made by the user of the logic.

The following lemma mirrors the fact that where i, i + 1 ∈ I, CnSALi
(Γ) ⊆

CnSALi+1
(Γ):

Lemma 3.10 For every i ∈ I: if line l is (i− 1)-unmarked at stage s, then line
l is i-unmarked at stage s.
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Proof. Immediate in view of the Definitions 3.6, resp. 3.7 — let Θ = ∅ and for
xi = m, let Θ′ = Θ.

In view of this lemma, we may alternatively stipulate that a line l is unmarked
at stage s iff there is an i ∈ I, such that for all j ∈ I with j ≥ i, line l is j-
unmarked.

To find out which lines are marked at stage s and which not, one starts by
0-marking all lines with a non-empty condition, next 1-unmarking lines in view of
the minimal Dab1-formulas at stage s (and in view of the appropriate strategy).
After that, one can 2-unmark lines in view of the minimal Dab2-formulas at stage
s, and of other formulas that are derived on 1-unmarked lines. And so on, until
it is no longer possible to unmark any further line. It can easily be verified that
for a finite stage s, this procedure stops at a finite point.

To complete the proof theory, we still have to define final derivability for
SAL. In the remainder of this thesis, the definition of the derivability relation
will be taken from the standard format. Hence where PAL is any prioritized
adaptive logic from this thesis, we have:

Definition 3.8 A is finally derived from Γ on line l of a finite stage s of a PAL-
proof iff (i) A is the second element of line l, (ii) line l is unmarked at stage s,
and (iii) every extension of the proof at stage s, in which line l is marked may
be further extended in such a way that line l is unmarked again.

Definition 3.9 Γ `PAL A iff A is finally derived on a line of a PAL-proof from
Γ.

Together with the format-specific marking definition, Definitions 3.8 and 3.9
yield the derivability relation `SAL. In the next section, I show that `SAL

is sound and complete with respect to CnSAL(Γ). To finish this section, let me
illustrate the above definitions with one example – this time with a superposition
of logics that have the Minimal Abnormality Strategy.

Example 3.6 Let Γ = {¬p ∨ ¬q,¬p ∨ ¬s,♦(p ∧ q),♦♦(p ⊃ r),♦♦s}. Recall
that the logic SK2m

(2) is defined as the superposition of Km
1 = 〈K,ΩK

1 ,m〉 and

Km
2 = 〈K,ΩK

1 ∪ ΩK
2 ,m〉. By the first logic in the superposition, we can finally

derive p ∨ q. By the second logic, we can finally derive p ∨ s and p ⊃ r. Since
CnSK2m

(2)
(Γ) is closed under K, it follows that e.g. also q ∨ r ∈ CnSK2m

(2)
(Γ). I

will now show how this formula can be finally derived in an SK2m
(2)-proof from

Γ:

1 ¬p ∨ ¬q PREM ∅ –0

2 ¬p ∨ ¬s PREM ∅ –0

3 ♦(p ∧ q) PREM ∅ –0

4 ♦♦(q ⊃ r) PREM ∅ –0

5 ♦♦s PREM ∅ –0

6 (p ∧ q) ∨̌ !1p ∨̌ !1q 3;RU ∅ –0

7 p ∧ q 6;RC {!1p, !1q} X

8 ♦p 3;RU ∅ –0

9 ♦q 3;RU ∅ –0
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10 !1p ∨̌ !1q 1,3;RU ∅ –0

11 (p ∨ q) ∨̌ !1p 8;RU ∅ –0

12 p ∨ q 11;RC {!1p} –1

13 (p ∨ q) ∨̌ !1q 8;RU ∅ –0

14 p ∨ q 13;RC {!1q} –1

At stage 14, only line 7 is marked. Note that line 7 is only marked from stage
10 on, in view of the formula on line 10. Let me briefly explain why lines 12
is 1-unmarked – the reasoning is analogous for line 14. Note that SΣ1

14(Γ) =
{{!1p, !1q}}, whence SΦ1

14(Γ) = {{!1p}, {!1q}}. Hence, in order for line 12 to be
unmarked, Definition 3.7 stipulates that, first of all, the following must hold:

(i) there is a Θ ⊆ {!1p} such that (i.a) (p ∨ q) ∨̌Dab(Θ) is derived on a 0-
unmarked line with condition {!1p}−Θ at stage 14, and (i.b) either Θ∩ϕ = ∅
for a ϕ ∈ SΦ1

14(Γ).

This holds trivially for Θ = {!1p} and ϕ = {!1q}, in view of line 11. The second
requirement for line 12 to be unmarked reads as follows: for every ϕ′ ∈ SΦ1

14(Γ),
p ∨ q should derived on a condition ∆′ ⊂ Ω1 such that, for a Θ′ ⊆ ∆′:

(ii.a) Θ′ ∩ ϕ = ∅
(ii.b) (p ∨ q) ∨̌Dab(∆′ − Θ′) is derived on a 0-unmarked line at stage 14

This requirement too is fulfilled – where ϕ′ = {!1p}, let ∆′ = Θ′ = {!1q}. Note
that lines 11 and 13 are crucial for line 12 to be 1-unmarked.

Let us now extend the above proof in order to derive q ∨ r:

...
...

...
...

15 ♦♦(¬p ∨ r) 4;RU ∅ –0

16 ♦2¬p ∨ ♦2r 15;RU ∅ –0

17 (¬p ∨ r) ∨̌ !2¬p ∨̌ !2r 16;RU ∅ –0

18 ¬p ∨ r {!2¬p, !2r} ∅ –1

19 q ∨ r 12,18;RU {!1p, !2¬p, !2r} X

20 q ∨ r 14,18;RU {!1q, !2¬p, !2r} X

One could think that at stage 20, lines 19 and 20 should be unmarked. It can
easily be verified that SΦ2

20(Γ) = SΦ1
20(Γ) = SΦ1

14(Γ) = {{!1p}, {!1q}}. However,
condition (b) in the definition of unmarking for Minimal Abnormality is not
fulfilled. It is only fulfilled in the following extension of the proof:

...
...

...
...

19 q ∨ r 12,18;RU {!1p, !2¬p, !2r} –2

20 q ∨ r 14,18;RU {!1q, !2¬p, !2r} –2

21 (q ∨ r) ∨̌ !1p ∨̌ !2¬p ∨̌ !2r 3,4;RU ∅ –0

22 (q ∨ r) ∨̌ !1q ∨̌ !2¬p ∨̌ !2r 3,4;RU ∅ –0

23 (q ∨ r) ∨̌ !2¬p ∨̌ !2r 21;RC {!1p} –1

24 (q ∨ r) ∨̌ !2¬p ∨̌ !2r 22;RC {!1q} –1
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The above example illustrates that, in order to finally derive a formula A
in an SAL-proof, a number of intermediate and seemingly redundant steps are
required. However, this requirement is indispensable for the soundness and com-
pleteness of the SAL-proof theory with respect to CnSAL(Γ).10 I will return to
this point at the end of this section.

3.4.3 Adequecy of `SAL

Some Useful Properties. I start with a theorem and lemma that follow im-
mediately from the definition of SAL and properties of the standard format, but
are of vital importance in the current context.

Theorem 3.7 Where Γ = CnLLL(Γ), each of the following holds:

1. Γ `ALr A iff there is a ∆ ⊂ Ω such that Γ `LLL A ∨̌Dab(∆) and ∆∩U(Γ) = ∅
2. Γ `ALm A iff for every ϕ ∈ Φ(Γ), there is a ∆ ⊂ Ω such that ϕ ∩ ∆ = ∅ and

Γ `LLL A ∨̌Dab(∆)

Proof. Immediate in view of the (unrestricted) soundness and completeness of
ALx whenever Γ = CnLLL(Γ), Theorems 2.6.1 and 2.7.1, and Lemma 2.5.

Lemma 3.11 Each of the following holds:

1. Where i ∈ I and xi = r: if A ∈ CnSALi
(Γ), then there is a ∆ ⊂ Ω(i) such that

Γ `LLL A ∨̌Dab(∆), and for a Θ ⊆ ∆∩ Ωi, each of the following holds:

(a) A ∨̌Dab(Θ) ∈ CnSALi−1
(Γ)

(b) Θ ∩ U i(CnSALi−1
(Γ)) = ∅

2. Where i ∈ I and xi = m: if A ∈ CnSALi
(Γ), then for every ϕ ∈

Φi(CnSALi−1
(Γ)), there is a ∆ ⊂ Ω(i) such that Γ `LLL A ∨̌Dab(∆), and

for a Θ ⊆ ∆ ∩ Ωi, each of the following holds:

(a) A ∨̌Dab(Θ) ∈ CnSALi−1
(Γ)

(b) Θ ∩ ϕ = ∅

3. If A ∈ CnSAL(Γ), then there is a ∆ ⊂ Ω such that Γ `LLL A ∨̌Dab(∆).

Proof. Ad 1. (i = 1) Immediate in view of Theorem 2.6.1— let Θ = ∆.
(i ⇒ i + 1) Suppose A ∈ CnSALi+1

(Γ) and xi+1 = r. By Theorem 2.6.1,
CnSALi

(Γ) `LLL A ∨̌Dab(Θ) for a Θ ⊆ Ωi+1 −U i+1(CnSALi(Γ)). By the LLL-
closure of CnSALi

(Γ), A ∨̌Dab(Θ) ∈ CnSALi
(Γ). But then by the induction

hypothesis, Γ `LLL A ∨̌Dab(Θ) ∨̌Dab(Θ′) for a Θ′ ⊂ Ω(i), whence (Θ ∪ Θ′) ⊂
Ω(i+1).

Ad 2. Analogous to the reasoning for item 1 – replace Theorem 2.6.1 by
Theorem 2.7.1.

Ad 3. Suppose A ∈ CnSAL(Γ). By Definition 3.1, there is an i ∈ I such that
A ∈ CnSALi

(Γ). The rest is immediate in view of items 1 and 2.

10Of course, one cannot argue that it is impossible to develop a generic proof theory for SAL

without this requirement, using exactly the same format of proofs as flat ALs. However, a
significant number of previous proposals all turned out to be either not sound or incomplete,
in view of examples such as Γc and Γs from Section 3.3.3.
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The stage g. Before we turn to the metaproof for the adequacy of `SAL, it is
worthwhile to take a closer look at two crucial concepts that are used in it. The
first is the infinite stage g. For every A and ∆ ⊂ Ω such that Γ `LLL A ∨̌Dab(∆),
A is derived on the condition ∆ at stage g.

To see how the stage g can be reached for any Γ ⊆ Ws, let CnLLL(Γ) =
{A1, A2, . . .}. Note that every Ai ∈ CnLLL(Γ) corresponds to finitely many
formulas of the form B ∨̌Dab(∆): B1

i ∨̌Dab(∆
1
i ), . . . , B

ni

i ∨̌Dab(∆ni

i ). For in-
stance, the formula (p ∧ q) ∨̌ !1p ∨̌ !2q corresponds to exactly three formulas of
the form B ∨̌Dab(∆): (p ∧ q) ∨̌Dab(!1p, !2q), (p ∧ q) ∨̌ !1p ∨̌Dab({!2q}), and
((p ∧ q) ∨̌ !1p ∨̌ !2q) ∨̌Dab(∅) — recall that “∨̌Dab(∅)” denotes the empty string.

By the compactness of LLL, for every such Ai, there are C1
i , . . . , C

mi

i ∈ Γ
such that {C1

i , . . . , C
mi

i } `LLL Ai. Hence {C1
i , . . . , C

mi

i } `LLL B1
i ∨̌Dab(∆

1
i )

. . . , and {C1
i , . . . , C

mi

i } `LLL Bni

i ∨̌Dab(∆ni

i ). This means we can arrive at
stage g as follows:

1 C1
1 PREM ∅

...
...

...
...

m1 Cm1
1 PREM ∅

m1+1 B1
1 1,. . . ,m1;RC {∆1

1}
...

...
...

...
m1+n1 Bn1

1 1,. . . ,m1;RC {∆n1
1 }

m1+n1+1 C1
2 PREM ∅

...
...

...
...

m1+n1+m2 Cm2
2 PREM ∅

m1+n1+m2+1 B1
2 m1+n1+1,. . . ,m1+n1+m2;RC {∆1

2}
...

...
...

...
m1+n1+m2+n2 Bn2

2 m1+n1+1,. . . ,m1+n1+m2;RC {∆n2
2 }

...
...

...
...

As we will see below, a formula A is derived on an unmarked line at stage g

iff A ∈ CnSAL(Γ). This point can be made more precise if we first define the set
of i-derived formulas at stage s. Where s is the stage of an SAL-proof from Γ,
SΛis(Γ) is the set of all formulas A such that A is derived on an i-unmarked line
at stage s.

Below, it is shown that SΛig(Γ) = CnSALi
(Γ) for all i ∈ I – see Lemma

3.12. In other words, the set of formulas that are derived on an i-unmarked line
converges towards CnSALi

(Γ) as we derive more and more formulas.11 In view of
Definition 3.1, the set of formulas that are derived on an unmarked line converges
towards CnSAL(Γ) as we derive more and more formulas in a proof.

I end this paragraph with a number of facts about g, which will be used in
the remainder:

Fact 3.3 For every i ∈ I: If a line l is i-(un)marked in a proof at stage g, then
it is i-(un)marked in every further extension of this proof.

11Of course, the speed by which we converge towards CnSALi
(Γ) depends on the specific

moves we make throughout the proof, which may be optimized by specific heuristic devices.
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Fact 3.4 Each of the following holds:

1. Γ `LLL A ∨̌Dab(∆) iff A is derived on the condition ∆ at stage g.
2. Where Θ ⊆ ∆: A is derived on the condition ∆ at stage g iff A ∨̌Dab(Θ) is

derived on the condition ∆ − Θ at stage g

Fact 3.5 SΣ1
g(Γ) = Σ1(Γ) = Σ1(CnLLL(Γ)).

Fact 3.6 SΣis(Γ) = {∆ ⊂ Ωi | Dab(∆) ∈ SΛi−1
s (Γ) and for no ∆′ ⊂ ∆ :

Dab(∆′) ∈ SΛi−1
s (Γ)}.

Adequacy of the Stage g The following lemma states that at stage g, all
formulas derived on an unmarked line are SAL-consequences of Γ, and vice
versa.

Lemma 3.12 Where Γ ⊆ Ws, each of the following holds for every i ∈ I:

1a. SΣig(Γ) = Σi(CnSALi−1
(Γ)), whence also

1b. SU ig(Γ) = U i(CnSALi−1
(Γ)) and

1c. SΦig(Γ) = Φi(CnSALi−1
(Γ))

2. SΛig(Γ) = CnSALi
(Γ)

Proof. (i = 1) Ad 1. This is Fact 3.5.
Ad 2. (x1 = r) The following are equivalent in view of (1) Definition 3.6, (2)

item 1b and Fact 3.4.1, (3) Theorem 2.6 and the fact that SAL0 = LLL:

• A ∈ SΛ1
g(Γ)

• A is derived on the condition ∆ ⊆ Ω1 − SU1
g (Γ) at stage g

• there is a ∆ ⊆ Ω1 − U1(CnSAL0
(Γ)) such that A ∨̌Dab(Θ) ∈ CnSAL0

(Γ)
• A ∈ CnSAL1

(Γ)

(x1 = m) The following are equivalent in view of (1) Definition 3.7, (2) item
1c and Fact 3.4.1, (3) Theorem 2.7 and the fact that SAL0 = LLL:

• A ∈ SΛ1
g(Γ)

• for every ϕ ∈ SΦ1
g(Γ), A is derived on a condition ∆ ⊆ Ω1 −ϕ at stage g, and

A ∨̌Dab(∆) is derived on a 0-unmarked line at stage g

• for every ϕ ∈ Φ1(CnSAL0
(Γ)), there is a ∆ ⊆ Ω1 −ϕ such that A ∨̌Dab(∆) ∈

CnSAL0
(Γ)

• A ∈ CnSAL1
(Γ)

(i ⇒ i + 1) Ad 1. In view of (1) Fact 3.6, (2) item 2 of the induction
hypothesis and (3) the LLL-closure of CnSALi

(Γ), the following are equivalent
for every ∆ ⊂ Ωi+1:

• ∆ ∈ SΣi+1
g (Γ)

• Dab(∆) ∈ SΛig(Γ), and for no ∆′ ⊂ ∆: Dab(∆′) ∈ SΛig(Γ)
• Dab(∆) ∈ CnSALi

(Γ), and for no ∆′ ⊂ ∆: Dab(∆′) ∈ CnSALi
(Γ)

• ∆ ∈ Σi+1(CnSALi
(Γ))
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Ad 2. (xi+1 = r) The following are equivalent in view of (1) Definition 3.6,
(2) Fact 3.4.2 and item 2 of the induction hypothesis, (3) item 1b, (4) Lemma
3.11.1 and Theorem 3.7.1:

• A ∈ SΛi+1
g (Γ)

• A is derived on a condition ∆ ⊂ Ω(i+1) at stage g, and there is a Θ ⊆ ∆∩Ωi+1

such that (a)A ∨̌Dab(Θ) is derived on an i-unmarked line with condition ∆−Θ
at stage g, and (b) Θ ∩ SU i+1

g (Γ) = ∅.
• Γ `LLL A ∨̌Dab(∆) for a ∆ ⊂ Ω(i+1), and there is a Θ ⊆ ∆ ∩ Ωi+1 such that

(a) A ∨̌Dab(Θ) ∈ CnSALi
(Γ), and (b) Θ ∩ SU i+1

g (Γ) = ∅.
• Γ `LLL A ∨̌Dab(∆) for a ∆ ⊂ Ω(i+1), and there is a Θ ⊆ ∆ ∩ Ωi+1 such that

(a) A ∨̌Dab(Θ) ∈ CnSALi
(Γ), and (b) Θ ∩ U i+1(CnSALi

(Γ)) = ∅.
• A ∈ CnSALi+1

(Γ)

(xi+1 = m) The following are equivalent in view of (1) Definition 3.7, (2)
Fact 3.4.2 and item 2 of the induction hypothesis, (3) item 1c, (4) Lemma 3.11.2
and Theorem 3.7.2:

• A ∈ SΛi+1
g (Γ)

• for every ϕ ∈ SΦi+1
g (Γ): A is derived on a condition ∆ ⊂ Ω(i+1) at stage

g, and there is a Θ ⊆ ∆ ∩ Ωi+1 such that (a) A ∨̌Dab(Θ) is derived on an
i-unmarked line with condition ∆ − Θ at stage g, and (b) Θ ∩ ϕ = ∅.

• for every ϕ ∈ SΦi+1
g (Γ): Γ `LLL A ∨̌Dab(∆) for a ∆ ⊂ Ω(i), and there is a

Θ ⊆ ∆ ∩ Ωi+1 such that (a) A ∨̌Dab(Θ) ∈ CnSALi
(Γ), and (b) Θ ∩ ϕ = ∅.

• for every ϕ ∈ Φi+1(CnSALi
(Γ)), Γ `LLL A ∨̌Dab(∆) for a ∆ ⊂ Ω(i), and there

is a Θ ⊆ ∆∩Ωi+1 such that (a) A ∨̌Dab(Θ) ∈ CnSALi
(Γ), and (b) Θ∩ϕ = ∅.

• A ∈ CnSALi+1
(Γ)

The Finite Stage Lemma for SAL. In order to obtain a proof of adequacy,
it does not suffice to just prove that the infinite proof at stage g corresponds to
CnSAL(Γ). As for flat ALs, we also need to show that whenever A ∈ CnSAL(Γ),
then the proponent can derive A in a finite proof from Γ, on an unmarked line.
For the SAL-proof theory, this is a rather complex matter, in view of the recursive
character of the marking definitions.

Lemma 3.13 Where Γ ⊆ Ws: if A ∈ CnSAL(Γ), then there is a finite SAL-
proof from Γ in which A is derived on an unmarked line.

Proof. Suppose that A ∈ CnSAL(Γ). If A ∈ CnLLL(Γ), let n = 0. Otherwise, let
i1 ∈ I be such that (?1) A ∈ CnSALi1

(Γ) − CnSALi1−1
(Γ). By Theorem 2.6.1,

resp. Theorem 2.7.1, the following holds:

(?r1) Where xi1 = r: CnSALi1−1
(Γ) `LLL A ∨̌Dab(∆1), for a ∆1 ⊆ Ωi1 −

U i1(CnSALi1−1
(Γ))

(?m1 ) Where xi1 = m: CnSALi1−1
(Γ) `LLL A ∨̌Dab(∆1), for a ∆1 ⊆ Ωi1 − ϕ,

for a ϕ ∈ Φi1(CnSALi1−1
(Γ))
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If A ∨̌Dab(∆1) ∈ CnLLL(Γ), let n = 1. Otherwise, let i2 < i1 be such
that (?2) A ∨̌Dab(∆1) ∈ CnSALi2

(Γ) − CnSALi2−1
(Γ). By Theorem 2.6.1, resp.

Theorem 2.7.1, the following holds:

(?r2) Where xi2 = r: CnSALi2−1
(Γ) `LLL A ∨̌Dab(∆1) ∨̌Dab(∆2), for a ∆2 ⊆

Ωi2 − U i2(CnSALi2−1
(Γ))

(?m2 ) Where xi2 = m: CnSALi2−1
(Γ) `LLL A ∨̌Dab(∆1) ∨̌Dab(∆2), for a ∆2 ⊆

Ωi2 − ϕ, for a ϕ ∈ Φi2(CnSALi2−1
(Γ))

Repeating the same reasoning finitely many times, we obtain that there are
i1, . . . , in ∈ I and ∆1 ⊂ Ωi1 , . . . ,∆n ⊂ Ωin , such that (i) A ∨̌Dab(∆1∪. . .∪∆n) ∈
CnSAL0

(Γ), and (ii) for every k ≤ n:

(?k) A ∨̌Dab(∆1 ∪ . . . ∪ ∆k−1) ∈ CnSALik
(Γ) − CnSALik−1

(Γ)

(?mk ) Where xik = r: CnSALik−1
(Γ) `LLL A ∨̌Dab(∆1 ∪ . . . ∪ ∆k), for a ∆k ⊆

Ωik − U ik(CnSALik−1
(Γ))

(?rk) Where xik = m: CnSALik−1
(Γ) `LLL A ∨̌Dab(∆1), for a ∆k ⊆ Ωik − ϕ,

for a ϕ ∈ Φik (CnSALik−1
(Γ))

In view of (i) and the compactness of LLL, there is a Γ′ = {B1, . . . , Bm} ⊆ Γ
such that Γ′ `LLL A ∨̌Dab(∆1 ∪ . . .∪∆n). Hence we may start an SAL-proof p

from Γ as follows:

1 B1 PREM ∅
...

...
...

...
m Bm PREM ∅
m+1 A ∨̌Dab(∆1 ∪ . . . ∪ ∆n) 1,. . . ,m;RU ∅
m+2 A ∨̌Dab(∆1 ∪ . . . ∪ ∆n−1) m+1;RC ∆n

...
...

...
...

m+n A ∨̌Dab(∆1) m+n-1;RC ∆2 ∪ . . . ∪ ∆n

m+n+1 A m+n;RC ∆1 ∪ . . . ∪ ∆n

Let s be the stage consisting of line 1 up to line m+n+1. In the remainder
of this proof, I will show by a reductio that line m+n+1 is unmarked at stage s.
So assume that (†) line m+n+ 1 is marked at stage s. By Lemma 3.10, (†1) for
every i ≤ i1, line m+ n+ 1 is i-marked at stage s.

Proposition 3.1 There is no k ≤ n such that A ∨̌Dab(∆1 ∪ . . . ∪ ∆k) is a
Dabi1-formula.

Subproof. Suppose that for a k ≤ n, A ∨̌Dab(∆1 ∪ . . . ∪ ∆k) is a Dabi1 -formula.
It follows that A is also a Dabi1 -formula. But then, since A ∈ CnSALi1

(Γ)
and by the Dab-conservativity of ALi1 (see Lemma 2.4.2), we can derive that
A ∈ CnSALi1−1

(Γ), which contradicts (?1).
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Proposition 3.2 Let Θ1 = {B1, . . . , Bm} ∩ Ωi1 . Then each of the following
holds:12

1. SU i1s (Γ) = Θ1

2. Θ1 ⊆ U i1(CnSALi1−1
(Γ))

3. SΦi1s (Γ) = {Θ1}
4. For every ϕ ∈ Φi1(CnSALi1−1

(Γ)): Θ1 ⊆ ϕ

Subproof. By (†1), Proposition 3.1 and Definition 3.5, the only minimal Dabi1 -
formulas at stage s (if any) are Bi with i ≤ m. Since these are members of Ws,
they are Dab-singletons Dab({D}), with D ∈ Γ. From this, we can immediately
derive items 1 and 3. Items 2 and 4 are immediate in view of the fact that
{B1, . . . , Bm} ∈ Γ and the reflexivity of SALi1−1.

By (†1), line m+ n+ 1 is i1-marked at stage s. Hence in view of Definitions
3.6 and 3.7, one of the following holds:

(‡1) line m+ n is (i1 − 1)-marked
(‡r1) xi1 = r and ∆1 ∩ SU i1s (Γ) 6= ∅
(‡m1 ) xi1 = m and there is a ϕ ∈ SΦi1s (Γ) such that ∆1 ∩ ϕ 6= ∅

However, (‡r1) is excluded in view of Proposition 3.2.1-2 and (?r1). Likewise, (‡m1 )
is excluded in view of Proposition 3.2.3-4 and (?m1 ). It follows that line m+ n is
(i1 − 1)-marked at stage s. Hence, since i2 < i1 and by Lemma 3.10:

(†2) for every i ≤ i1 − 1: line m+ n is i-marked at stage s.

By the same reasoning as in the proof of Proposition 3.1, relying on the
Dab-conservativity of ALi2 and (?2), we can derive:

Proposition 3.3 There is no k ≤ n − 1 such that A ∨̌Dab(∆1 ∪ . . . ∪ ∆k) is a
Dabi2 -formula.

Hence by the same reasoning as in the proof of Proposition 3.2, relying on (†1),
(†2) and Proposition 3.3, we can derive:

Proposition 3.4 Let Θ2 = {B1, . . . , Bm} ∩ Ωi2 . Then each of the following
holds:

1. SU i2s (Γ) = Θ2

2. Θ2 ⊆ U i2(CnSALi2−1
(Γ))

3. SΦi2s (Γ) = {Θ2}
4. For every ϕ ∈ Φi2(CnSALi2−1

(Γ)): Θ2 ⊆ ϕ

By (†2) and since i2 < i1, line m+ n is i2-marked. In view of Definitions 3.6
and 3.7, one of the following holds:

(‡2) line m+ n− 1 is (i2 − 1)-marked
(‡r2) xi2 = r and ∆2 ∩ SU i2s (Γ) 6= ∅
(‡m2 ) xi2 = m and there is a ϕ ∈ SΦi2s (Γ) such that ∆2 ∩ ϕ 6= ∅

12Items 2 and 4 of this proposition are used below, in the proof of Theorem 3.9 below.
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However, (‡r2) is excluded in view of Proposition 3.4.1 and (?r2). Likewise, (‡m2 )
is excluded in view of Proposition 3.4.3 and (?m2 ). It follows that line m+ n− 1
is (i2 − 1)-marked at stage s. Hence also:

(†3) for every i ≤ i2 − 1: line m+ n− 1 is i3-marked at stage s.

Repeating this reasoning n times, we can derive that line m+ 1 is in-marked
at stage s. But this contradicts the fact that the condition of line m+1 is empty.

Soundness and Completeness The preceding results finally allow us to prove
the adequacy of `SAL. We first prove soundness, next completeness.

Theorem 3.8 Where Γ ⊆ Ws: if Γ `SAL A, then A ∈ CnSAL(Γ).

Proof. Suppose Γ `SAL A. By Definitions 3.8 and 3.9, A is derived on an
unmarked line l of a finite SAL-proof p from Γ. Suppose we extend p up to
stage g. If l is marked in this extension, then by Fact 3.3, l is marked in every
further extension of the proof, which contradicts the fact that A is finally derived
on line l. Hence line l is unmarked at stage g. It follows that for an i ∈ I, line l is
i-unmarked at stage g, whence A ∈ SΛig(Γ). By Lemma 3.12.2, A ∈ CnSALi

(Γ),
whence by Definition 3.1, A ∈ CnSAL(Γ).

Theorem 3.9 Where Γ ⊆ Ws: if A ∈ CnSAL(Γ), then Γ `SAL A.

Proof. Suppose A ∈ CnSAL(Γ). Let p be the same proof as the one constructed
in the proof of Lemma 3.13. It follows that A is derived on the i1-unmarked line
m+n+1 at stage s of that proof. Also, A ∈ CnSALi1

(Γ). Let ∆ = ∆1∪ . . .∪∆n.
Suppose line m+n+1 is marked in an extension of the proof. We further ex-

tend the proof up to stage g. By (?r1), resp. (?m1 ), A ∨̌Dab(∆1) ∈ CnSALi1−1
(Γ),

whence by Lemma 3.12.2, A ∨̌Dab(∆1) ∈ SΛi1−1
g (Γ). Hence (†) A ∨̌Dab(∆1) is

derived on an (i1 − 1)-unmarked line at stage g, on the condition ∆ − ∆1.
(xi1 = r) By (?r1), ∆1 ∩ U i1(CnSALi1−1

(Γ)) = ∅. By Lemma 3.12.1b, ∆1 ∩
SU i1g (Γ) = ∅. By (†) and Definition 3.6, line m + n + 1 is i1-unmarked at stage
g. By Definitions 3.8 and 3.9, Γ `SAL A.

(xi1 = m) By (?m1 ), ∆1 ∩ ϕ = ∅ for a ϕ ∈ Φi1(CnSALi1−1
(Γ)). By Lemma

3.12.1c, ϕ ∈ SΦi1g (Γ).

Since A ∈ CnSALi1
(Γ), also A ∈ SΛig(Γ) by Lemma 3.12.2. Hence by Defini-

tion 3.7, for every ϕ′ ∈ SΦig(Γ), A is derived on a condition ∆′ at stage g such
that there is a Θ′ ⊂ ∆′ ∩ Ωi for which

(ii.a) A ∨̌Dab(Θ′) is derived on an (i−1)-unmarked line with condition ∆′−Θ′

at stage g, and
(ii.b) ϕ′ ∩ Θ′ = ∅.

By Definition 3.7, line m + n + 1 is i1-unmarked at stage g. By Definitions 3.8
and 3.9, Γ `SAL A.
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3.4.4 Towards the Second Proposal

As already announced in Section 3.4.1, the first proposal has a certain non-
standard aspect, even though the format of its proof is very similar to that
of flat ALs. That is, the marking definition sometimes requires us to retract
certain inferences, seemingly without there being a reason to do so. Consider the
following SK2r-proof from Γp1:

1 ♦p PREM ∅ –0

2 ♦♦q PREM ∅ –0

3 p ∧ q 5; RU {!1p, !2q} X

Note that the inference to line 3 is perfectly valid: since {♦p,♦♦q} `K

(p ∧ q) ∨̌ !1p ∨̌ !2q, we can apply RC and push both !1p and !2q to the condi-
tion in one fell swoop. Note also that no Dab-consequences have been derived
so far. Nevertheless, line 3 is marked, since requirement (a) of the definition of
2-unmarking for Reliability is violated. Not so in the following continuation of
the proof:

1 ♦p PREM ∅ –0

2 ♦♦q PREM ∅ –0

3 p ∧ q 5; RU {!1p, !2q} –2

4 (p ∧ q) ∨̌ !1p ∨̌ !2q 1,2;RU ∅ –0

5 (p ∧ q) ∨̌ !2q 4;RC {!1p} –1

That is, by adding lines 4 and 5, we have ensured that (p∧ q) ∨̌ !2q is derived
on a 1-unmarked line. This way, requirement (a) is fulfilled.

This aspect of the SAL-proof theory may strike some as counterintuitive.
Indeed, in most approaches to defeasible reasoning, an assumption is only with-
drawn as soon as we have good reasons to think that upholding the assumption
will result in triviality or the violation of certain constraints. But if we have
not yet derived any Dab-consequence (as in the proof at stage 3), then how can
we have reasons to think so? Is the first proposal not fairly unnatural from this
viewpoint? And does this make it unfit to explicate prioritized reasoning, or
should we at least try to remedy this shortcoming?

I will not answer these (very general) questions here. In my opinion, what
is most disadvantageous about the first proposal is the fact that it requires the
user to make more inferences than at first sight seems to be necessary (see also
Example 3.6), and that the unmarking procedure is rather demanding: to find
out whether a formula is derived or not at stage s, one has to take not only
the sets of unreliable formulas resp. sets of minimal choice sets into account, but
also whether other formulas have been derived on unmarked lines.13 It was this

13To some extent, this is already the case for the marking in flat ALs that use the Minimal
Abnormality Strategy. However, in that case we only need to consider the question whether
the same formula A has been derived on other conditions, in order to see whether a line l is
marked. In Definitions 3.6 and 3.7, one has to take into account the derivation of the same
formula A in disjunction with some abnormalities, which cannot be fully determined in view
of the condition of line l.
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tiresome procedure in particular that motivated the transition to a new proof
format, which allows for much simpler marking definitions.

Nevertheless, the SAL-proof theory does have a great advantage, i.e. that it
uses the same proof format as flat adaptive logics. To see why this is important,
consider the relation between logics ALx = 〈LLL,

⋃

i∈I Ωi,x〉 and logics SALx.
It is very plausible that in some contexts, we make a transition from ALx to
SALx. For instance, starting with a set of beliefs, we may first reason with
these beliefs without taking into account the specific degree of plausibility of
each belief. After a while, we may see that certain beliefs are problematic in
view of the facts at hand. Hence at that point, we have to retract some of these
beliefs. However, we can also start taking into account the priority degrees of
our beliefs, hoping that this will allow us to uphold some of the beliefs that are
involved in a conflict.

In this and similar cases, we do not start to reason again from scratch; rather,
we build further on what has been derived so far, but interpret it differently. This
shift in interpretation of the same evidence corresponds to a shift in the marking
definitions that are applied to (extensions of) the same proof. As we will see
below, such a transition cannot always be easily modeled in the format that is
spelled out in the next section.

3.5 Another Proof Theory for SAL

This section is based on the paper “Proof Theories for Superpositions of Adaptive
Logics” (in preparation), which is co-authored by Christian Straßer.

3.5.1 Conditions As Sequences

The proof format The proof format of the second proposal is nearly identical
to the one of flat ALs. Again, a line is a quadruple consisting of a line number,
a formula, a justification and a condition. The only difference concerns the last
element. A condition is not just a finite set of abnormalities, but instead a
sequence of sets of abnormalities 〈∆i〉i∈I where (i) each ∆i is a subset of Ωi,
and (ii)

⋃

i∈I ∆i is a finite set. Note that since
⋃

i∈I ∆i is finite, we can always
represent 〈∆i〉i∈I by a finite string, e.g. by 〈∆1, . . . ,∆n, ∅, . . .〉, where the second
“. . .” denotes a sequence of finitely or infinitely many times ∅, depending on the
cardinality of I. In the following, we write ∆ for 〈∆i〉i∈I , ∅ for the sequence
〈∅, ∅, . . .〉,

⋃

∆ for
⋃

i∈I ∆i and Dab(∆) for Dab(
⋃

i∈I ∆i).
14

Suppose we have the following line in a proof15

l A k1, . . . , kn; R 〈∆1,∆2, ∅, . . .〉

where ∆1 6= ∅ 6= ∆2. Suppose moreover that line l is unmarked. The idea
is that A is derived on the assumption that no abnormality in ∆1 ∪ ∆2 is true.
Hence, we make use of the defeasible reasoning forms represented by both AL1

and AL2. Moreover, in case A is finally derived at line l (see the definition

14The number of members in ∅ will of course depend on the cardinality of I.
15We use R as a metavariable for the generic inference rules.
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below), then A is a consequence of the superposition of AL2 on AL1, since no
defeasible assumptions were made that correspond to ALs higher in the sequence
of SAL.

The generic inference rules In order to realize this idea we will again make
use of three generic rules and marking definitions.

Similar as in flat adaptive proofs we will need to merge the conditions of two
or more lines. In the flat case we could just take the union of the respective sets
of abnormalities. This idea can easily be generalized to the sequential case in the
following way: ∆ d Θ =df 〈∆i ∪ Θi〉i∈I . For instance,

〈{A,B}, {C}, ∅〉 d 〈∅, {D}, {E}〉 = 〈{A,B}, {C,D}, {E}〉

As in the proof theory of flat ALs, we make use of three generic rules: a
premise introduction rule PREM, an unconditional rule RU, and a conditional
rule RC. Let us start with the first two:

PREM If A ∈ Γ:
...

...
A ∅

RU If A1, . . . , An `LLL B: A1 ∆1

...
...

An ∆n

B ∆1 d . . . d ∆n

As in the flat case, by the rule PREM premises can be introduced on the empty
condition (which is now a sequence of empty sets). Also, the unconditional rule
RU is analogous to the flat case. In case B is derivable from A1, . . . , An in the
lower limit logic, we may derive B also in an adaptive proof from A1, . . . , An
whereby the conditions ∆i on which the Ai’s were derived are carried forward
and merged to ∆1 d . . . d ∆n.

The generic conditional rule for our proof theory also closely resembles the
conditional rule of Section 2.3:

RC If A1, . . . , An `LLL B ∨̌Dab(Θ): A1 ∆1

...
...

An ∆n

B ∆1 d . . . d ∆n d Θ

Suppose we are able to derive B ∨̌Dab(Θ1∪. . .∪Θn) in LLL from A1, . . . , An,
where each Θi ⊂ Ωi. In that case the proof theory allows us to defeasibly derive
B from A1, . . . , An, namely on the assumption that none of the abnormalities in
Θ1 ∪ . . . ∪ Θn is true. This is realized by merging Θ = 〈Θ1, . . . ,Θn, ∅, . . .〉 with
all the conditions on which the Ai’s were derived.

In case some Ωi’s are intersecting, this can have an interesting consequence.
Suppose for instance that C1 ∈ Ω1 ∩ Ω2 and that C2 ∈ Ω2 \ Ω1. Suppose
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furthermore that A1, A2 `LLL B ∨̌(C1 ∨̌C2). Then the following lines can occur
in a proof:

l1 A1 . . . ∆1

l2 A2 . . . ∆2

l3 B l1, l2; RC ∆1 d ∆2 d 〈{C1}, {C2}, ∅, . . .〉
l4 B l1, l2; RC ∆1 d ∆2 d 〈∅, {C1, C2}, ∅, . . .〉

Note that RC allows for both inferences, the one at line l3 and the one at line
l4, and hence leaves room for a choice. We will return to this point at the end of
this section, and show that in some cases, it is crucial to warrant the completeness
of the proof theory with respect to the syntactic consequence relation of SAL.

This relates to another important aspect of the new proof format. On the
one hand, we can easily translate every proof in this format into a proof in
the standard format, simply replacing each sequential condition ∆ with the set
⋃

∆. This can easily be seen in view of the above definition of the generic rules.
However, for a given proof p in the standard format, there is not always just
one unique proof p

′ in the new format which corresponds to p. This is only the
case if for all i, j ∈ I such that i 6= j, Ωi ∩ Ωj = ∅ — we will consider this
special case below. As a result, the transition from a “flat interpretation” of a
proof to a “prioritized interpretation” (see also Section 3.4.4), is not always as
straightforward as was the case with the first proposal for an SAL-proof theory.

To disambiguate between the two proposals, we will call every proof that is
the result of applications of the above three generic rules an SAL′-proof. In the
remainder, we will spell out the marking definitions for SAL′-proofs, and show
how this gives us the derivability relation `SAL′ .

Preparing for the marking definitions As in the case of flat ALs, lines in
an SAL′-proof are marked at a certain stage of the proof in order to signify that
the corresponding inference is retracted at that stage.

For each level i ∈ I we will state i-marking definitions. If a line in an SAL′-
proof is i-marked for an i ∈ I, then this means the line is retracted at the given
stage of the proof.

As before, we introduce some conventions to simplify the marking definitions:

Definition 3.10 Let s be the stage of an SAL′-proof from Γ.

• We call Dab(∆) a minimal Dab1-formula at stage s in case (i) Dab(∆) has
been derived on the condition ∅ at stage s, and (ii) there is no ∆′ ⊂ ∆ such
that Dab(∆′) has been derived on the condition ∅ at stage s.

Where ∆ ⊆ Ωi+1, Dab(∆) is a minimal Dabi+1-formula at stage s in case
(i) Dab(∆) has been derived at some line l on a condition 〈Θ1, . . . ,Θi, ∅, . . .〉
at stage s, (ii) line l is not i-marked at stage s (see below for the marking
definition), and (iii) for no ∆′ ⊂ ∆, Dab(∆′) has been derived at an i-
unmarked line on a condition 〈Θ′

1, . . . ,Θ
′
i, ∅, . . .〉 at stage s.

• Where 〈Dab(∆)〉j∈J are the minimal Dabi-formulas at stage s, CΣis(Γ) =df

{∆j | j ∈ J}.
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• CU is(Γ) =df

⋃

CΣis(Γ)

• CΦis(Γ) is the set of all minimal choice sets of CΣis(Γ)

i-Marking for Reliability Now we are able to the define the i-marking at a
stage s. Let us begin with the marking definition for the Reliability Strategy.

Definition 3.11 (i-marking for Reliability) A line l with condition ∆ is i-
marked at stage s iff (a) l is (i− 1)-marked at stage s, or (b) ∆i ∩ CU is(Γ) 6= ∅.

In case i = 1, the above marking definition refers to 0-marking: we stipulate
for this case that no line is 0-marked.

Before we turn to the i-marking definition for Minimal Abnormality, let us
illustrate the generic inference rules and the above marking definition by means of
a simple example. Recall that the logic SK2r is defined as the superposition of the
logic Kr

2 on the logic Kr
1. Now consider the premise set Γp1 = {♦p,♦♦q,♦♦r,¬p∨

¬r}. According to this premise set, p, q and r are all three plausible, but p is
more plausible than the other two propositions. However, we also know that
either p or r is false. Hence we can expect that the prioritized logic will only
allow us to finally derive p, and hence by disjunctive syllogism ¬r. Also, since q
is not involved in the conflict, we expect it to be finally derivable. This can be
done as follows.

We start by introducing the premises on the condition 〈∅, ∅〉:

1 ♦p PREM 〈∅, ∅〉
2 ♦♦q PREM 〈∅, ∅〉
3 ♦♦r PREM 〈∅, ∅〉
4 ¬p ∨ ¬r PREM 〈∅, ∅〉

By the rule RC, we may subsequently derive p, q and r from the first three
premises – note that Γp1 `K p ∨̌ !1p, Γp1 `K q ∨̌ !2q and Γp1 `K r ∨̌ !2r:

5 p 1;RC 〈{!1p}, ∅〉
6 q 2;RC 〈∅, {!2q}〉
7 r 3;RC 〈∅, {!2r}〉

At line 5, we “pushed” the abnormality !1p to the first member of the condi-
tion; at lines 6 and 7, we “pushed” the abnormalities !2q resp. !2r to the second
member of the condition. To understand the rule RU, consider the following
continuation of the proof, in which the conditions of line 5 and 6 are merged:16

8 p ∧ q 5,6;RU 〈{!1p}, {!2q}〉

Let us now turn to the marking definitions. We use Xi to denote that a line
is j-marked for all j ≥ i. To avoid clutter, we will only represent the marks
at one stage; where k is the last line in the example proof, the displayed marks
represent marking at stage k.

In order to render line 7 marked, we first have to derive the Dab2-formula
!2r. This is done as follows:

16Note that it is also possible to derive p ∧ q from lines 1 and 2, using the rule RC.
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1 ♦p PREM 〈∅, ∅〉
2 ♦♦q PREM 〈∅, ∅〉
3 ♦♦r PREM 〈∅, ∅〉
4 ¬p ∨ ¬r PREM 〈∅, ∅〉
5 p 1;RC 〈{!1p}, ∅〉
6 q 2;RC 〈∅, {!2q}〉
7 r 3;RC 〈∅, {!2r}〉 X2

8 p ∧ q 5,7;RU 〈{!1p}, {!2q}〉
9 !1p ∨̌ !2r 1,3,4;RU 〈∅, ∅〉
10 !2r 9;RC 〈{!1p}, ∅〉

Let us discuss the marking procedure at stage 10 step by step. First of all,
note that at stage 10, no Dab1-formula has been derived on the condition 〈∅, ∅〉.17

This means that CΣ1
10(Γp1) = ∅, whence also CU1

10(Γp1) = ∅. As a result, no line
is 1-marked at stage 10.

Now consider line 10 and its formula !2r. This is a Dab2-formula, derived on
a condition of the form 〈∆, ∅〉. Moreover, line 10 is not 1-marked. As a result, !2r
is a minimal Dab2-formula at stage 10. This implies that CΣ2

10(Γp1) = {{!2r}},
whence CU2

10(Γp1) = {!2r}. As a result, line 7 is 2-marked at stage 10, as indicated
by the symbol X2.

As a matter of fact, p, q and p ∧ q are finally derived in this proof from
Γp1. That is, no Dab1-formula is derivable from this premise set, and the only
minimal Dab2-formula that can be derived from Γp1 is !2r. This means that in
every extension of the proof, the marking of lines 1-10 remains unchanged.

i-Marking for Minimal Abnormality The i-marking for Minimal Abnor-
mality is slightly more complicated:

Definition 3.12 (i-marking for Minimal Abnormality) A line l with for-
mula A and condition ∆ is i-marked at stage s iff (a) l is (i−1)-marked at stage
s, or (b) one of the following conditions hold:

(i) there is no ϕ ∈ CΦis(Γ) such that ∆i ∩ ϕ 6= ∅

(ii) for a ϕ ∈ CΦis(Γ): there is no line l′ that is not (i− 1)-marked at stage s,
with formula A and condition 〈Θ1, . . . ,Θi,∆i+1,∆i+2, . . .〉, and Θi∩ϕ = ∅.

Requirement (ii) may strike some as surprising. The marking condition has
a prospective character since it also takes into account sets of abnormalities in
∆ that are of higher levels than i. Naively it may be expected that requirement
(ii) reads as follows:

(ii’) for a ϕ ∈ CΦis(Γ): there is no line l′ that is not (i− 1)-marked at stage s,
with formula A and condition Θ such that Θi ∩ ϕ = ∅.

Let us interpret Definition 3.12 in terms of an argumentation game. Suppose
our proponent derives formula A on the condition ∆ at stage s. The i-marking

17The formula on line 9 is not a Dab1-formula, since it contains the abnormality !2r which
is not a member of ΩK

1 .
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concerns the question whether the defeasible assumption that corresponds to level
i in the superposition is feasible. The minimal choice sets of CΣis(Γ) offer mini-
mally abnormal interpretations (in terms of abnormalities in Ωi) of the premises
at the given stage s. That is, they offer possible counter-arguments against the
defeasible assumption ∆ of line l. However, there is a slight complication in-
volved.

The assumptions used in order to derive A may involve abnormalities of lower
and higher levels than i. Concerning the lower levels we adopt a bottom-up
approach. In case one of the defeasible assumptions at a lower level is not feasible
we rely on the marking corresponding to the lower level to retract the line. In this
sense the i-marking procedure safely ignores the defeasible assumptions belonging
to lower levels. However, the i-marking is sensitive with respect to the defeasible
assumptions that belong to higher levels.

The idea is as follows. According to point (i) there should be at least one
minimally abnormal interpretation ϕ ∈ CΦis(Γ) in which the ith defeasible as-
sumption is valid, i.e., ∆i ∩ϕ = ∅. Moreover, for each counter-argument, i.e., for
each ϕ ∈ CΦis(Γ) for which ∆i ∩ ϕ 6= ∅, our proponent should be able to defend
herself in the following way. She should be able to produce an argument such
that the ith defeasible assumption is valid in ϕ and such that all the higher level
defeasible assumptions are the same as in her original argument at line l (see
point (ii)).

It is crucial that in her defense, the proponent uses the same higher level
defeasible assumptions as in her original argument. Let us demonstrate this by a
simple example. As before, we use a K-based prioritized logic with only two levels
of abnormalities. This time however, we consider the Minimal Abnormality-
variant, i.e. SK2m.

Let Γp2 = {♦p,♦q,♦♦r,♦♦s,¬p∨¬q,¬p∨¬r,¬q∨¬s}. Note that the following
disjunctions of abnormalities are K-derivable from Γp2:

(i) !1p ∨̌ !1q
(ii) !1p ∨̌ !2r
(iii) !1q ∨̌ !2s

However, (ii) and (iii) are neither Dab1-formulas nor Dab2-formulas. The follow-
ing SK2m-proof shows how we can derive Dab2-formulas from Γp2:

1 ♦p PREM 〈∅, ∅〉
2 ♦q PREM 〈∅, ∅〉
3 ♦♦r PREM 〈∅, ∅〉
4 ♦♦s PREM 〈∅, ∅〉
5 ¬p ∨ ¬q PREM 〈∅, ∅〉
6 ¬p ∨ ¬r PREM 〈∅, ∅〉
7 ¬q ∨ ¬s PREM 〈∅, ∅〉
8 !1p ∨̌ !1q 1,2,5;RU 〈∅, ∅〉
9 !1p ∨̌ !2r 1,3,6;RU 〈∅, ∅〉
10 !1q ∨̌ !2s 2,4,7;RU 〈∅, ∅〉
11 !2r ∨̌ !2s 9;RC 〈{!1p}, ∅〉
12 !2r ∨̌ !2s 10;RC 〈{!1q}, ∅〉
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Note that CΣ1
12(Γp2) = {{!1p, !1q}}, whence CΦ1

12(Γp2) = {{!1p}, {!1q}}. This
means that we cannot finally derive !2r on the condition 〈{!1p}, ∅〉, since we
cannot exclude the case where !1p is the only true abnormality of level 1. For the
same reason, we cannot finally derive !2s. However, the disjunction of both level
2-abnormalities is finally derived at stage 12. This follows immediately from the
fact that !1p ∨̌ !1q is the only minimal Dab1-consequence of Γp2. Also, it can easily
be verified that !2r ∨̌ !2s is the only minimal Dab2-consequence of CnKm

1
(Γp2).

In view of the preceding, it is easy to see that the sets CΣ1
s(Γp2) and CΣ2

s(Γp2)
remain stable from stage 12 on. Put differently, (†) in every further stage s of
the proof,

(†1) CΦ1
s(Γp2) = CΦ1

12(Γp2) = {{!1p}, {!1q}}
(†2) CΦ2

s(Γp2) = CΦ2
12(Γp2) = {{!2r}, {!2s}}

Let us now return to the prospective character of clause (ii) in Definition 3.12.
Consider the following extension, in which the (arbitrarily chosen) formula t is
derived:

...
...

...
...

9 !1p ∨̌ !2r 1,3,6;RU 〈∅, ∅〉
10 !1q ∨̌ !2s 2,4,7;RU 〈∅, ∅〉
...

...
...

...
13 t ∨̌ !1p ∨̌ !2r 9;RU 〈∅, ∅〉
14 t 13;RC 〈{!1p}, {!2r}〉 X1

15 t ∨̌ !1q ∨̌ !2s 10;RU 〈∅, ∅〉
16 t 15;RC 〈{!1q}, {!2s}〉 X1

Since we obtained lines 13 and 15 by the rule of addition, we can make a
similar move with any formula A ∈ W̌s instead of t. Let Θ be the condition of
line 14. In view of lines 14 and 16 and (†), the following facts hold:

(i.t1) there is a ϕ ∈ SΦ1
16(Γp2) such that Θ1 ∩ ϕ = ∅ (viz. ψ1 = {!1q})

(ii.t1)’ for every ϕ ∈ SΦ1
16(Γp2), A is derived on a condition Θ′ such that Θ′

1∩ϕ =
∅ at stage 16

(i.t2) there is a ϕ ∈ SΦ2
16(Γp2) such that Θ2 ∩ ϕ = ∅ (viz. ψ2 = {!2s})

(ii.t2)’ for every ϕ ∈ SΦ2
16(Γp2), A is derived on a condition Θ′ such that Θ′

2∩ϕ =
∅ at stage 16

In other words, replacing clause (ii) with (ii)’ in the definition of i-marking for
Minimal Abnormality, would imply that lines 14 and 16 are not marked at stage
16 of the proof. Moreover, in view of (†), these lines would not be marked in any
further extension of the proof.

This is where the prospective character of Definition 3.12 comes in play. That
is, it is not the case that for every ϕ ∈ SΦ1

16(Γp2), t is derived on a condition
〈∆, {!2r}〉 such that ∆ ∩ ϕ = ∅ – this requirement fails for {!1p}, which is a
minimal choice set of level 1. Similarly, t is not derived on a condition 〈∆, {!2s}〉
such that ∆ ∩ {!1q} = ∅. As a result, lines 14 and 16 are 1-marked at stage
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16. Moreover, there is no way to extend this proof such that these lines are not
1-marked.

Recall the remark at the beginning of this section that the proof theories
proposed in [11] and [137] are not sound with respect to SALm, even in very
simple (finite) cases and under the assumption that for every i, j ∈ I such that
i 6= j, Ωi ∩ Ωj = ∅. The above example is one of those cases. What was lacking
in those earlier proposals, is precisely the prospective character of marking for
Minimal Abnormality.

The following continuation of the proof shows how the formula (p∧s)∨(q∧r)
can be finally SK2m-derived from Γp2. In this case, requirement (ii) of Definition
3.12 is fulfilled for both i = 1 and i = 2, whence lines 19-22 are neither 1-marked
nor 2-marked.

...
...

...
...

17 p ∧ s 1,4;RC 〈{!1p}, {!2s}〉 X1

18 q ∧ r 2,3;RC 〈{!1q}, {!2r}〉 X1

19 (p ∧ s) ∨ (q ∧ r) 17;RU 〈{!1p}, {!2s}〉
20 (p ∧ s) ∨ (q ∧ r) 18;RU 〈{!1q}, {!2r}〉
21 (p ∧ s) ∨ (q ∧ r) 9;RU 〈{!1p}, {!2r}〉
22 (p ∧ s) ∨ (q ∧ r) 10;RU 〈{!1q}, {!2s}〉

Of course, to finish this second proposal for a generic proof theory, we have
to define final derivability. As before, this is given by Definitions 3.8 and 3.9 (see
page 59). In the remainder, we use `SAL′ to denote the resulting derivability
relation.

A Special Case To end this section, we consider the special case in which for
all i, j ∈ I for which i 6= j we have Ωi 6= Ωj .

18 In this case the logical form of
an abnormality A unambiguously determines an i ∈ I such that A ∈ Ωi. This
means in turn that we do not need to represent the condition of lines in the proof
in terms of sequences of sets of abnormalities but can instead just represent them
by means of sets of abnormalities in

⋃

i∈I Ωi.
We can then adjust the i-marking in the following way. Where ∆ ⊂ Ωi, we

say that Dab(∆) is a Dabi-formula at stage s iff (i) Dab(∆) is derived at a line l
with condition Θ ⊂ Ω1 ∪ . . . ∪ Ωi−1 and (ii) line l is not (i− 1)-marked at stage
s. Dab(∆) is a minimal Dabi-formula at stage s iff there is no ∆′ ⊂ ∆ such that
Dab(∆′) is a Dabi-formula at stage s. Then we adjust the marking definitions
as follows:

Definition 3.13 (i-marking for Reliability, special case) A line l with con-
dition ∆ is i-marked at stage s iff (a) it is (i−1)-marked, or (b) ∆∩CU is(Γ) 6= ∅.

Definition 3.14 (i-marking for Minimal Abnormality, special case) A
line l with formula A and condition ∆ is i-marked at stage s iff (a) it is (i− 1)-
marked, or (b) one of the following conditions hold:

18Most superpositions in the literature fall within this class. The only exceptions I know of
can be found in [24]. However, as we will see in Section 3.6, there are several meta-theoretic
reasons to prefer other superpositions, e.g. those in which Ωi ⊂ Ωi+1 for every i, i + 1 ∈ I.
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(i) there is no ϕ ∈ CΦis(Γ) such that ∆ ∩ ϕ 6= ∅, or
(ii) there is a ϕ ∈ CΦis(Γ) such that there is no line l′ that is not (i − 1)-

unmarked at stage s, with formula A and condition Θ such that Θ ∩ ϕ = ∅,
and Θ ∩ (Ωi+1 ∪ Ωi+2 ∪ . . .) = ∆ ∩ (Ωi+1 ∪ Ωi+2 ∪ . . .).

Note that even in this special case, we cannot do without the prospective
character of the marking definition for Minimal Abnormality – this follows im-
mediately from the example Γp2 which we discussed above.

Let us now briefly show by an example why we need to represent conditions
as sequences in the more general case. Consider the superposition-logic SKP,
which defined as follows:

CnSKP(Γ) = CnKr
1
(CnKr

2
(CnKr

1
(Γ)))

Note that in this specific superposition, Ω1 = Ω3 = ΩK
1 . Let Γp3 = {♦p,♦q,

♦♦r,¬p ∨ ¬q,¬p ∨ ¬r}. Note that the following are minimal Dab-consequences
of Γp3:

(i) !1p ∨̌ !1q
(ii) !1p ∨̌ !2r

In view of (i), both !1p and !1q are unreliable for the first logic in the superposition.
This means that we cannot finally derive !2r on the condition {!1p} in a Kr

1-proof
from Γp3. More generally, !2r /∈ CnKr

1
(Γp3). Hence this is a reliable abnormality

in view of the second logic in the superposition. Since also !1p ∨̌ !2r ∈ CnKr
1
(Γ), it

follows that we can derive !1p on the condition !2r in a Kr
2-proof from CnKr

1
(Γp3).

But then !1p ∨̌ !1q is no longer a minimal Dab-formula for the third logic in the
superposition, whence q is finally Kr

1-derivable from ♦q on the condition {!1q},
and hence q ∈ CnSKP(Γp3).

The following proof illustrates the fact that q is not Kr
1-derivable from Γp3,

but only from CnKr
2
(CnKr

1
((Γp3)), whence it is SKP-derivable from Γp3:

1 ♦p PREM 〈∅, ∅, ∅〉
2 ♦q PREM 〈∅, ∅, ∅〉
3 ♦♦r PREM 〈∅, ∅, ∅〉
4 ¬p ∨ ¬q PREM 〈∅, ∅, ∅〉
5 ¬p ∨ ¬r PREM 〈∅, ∅, ∅〉
6 !1p ∨̌ !1q 1,2,4;RU 〈∅, ∅, ∅〉
7 !1p ∨̌ !2r 1,3,5;RU 〈∅, ∅, ∅〉
8 !1p 7;RC 〈∅, {!2r}, ∅〉
9 q 2;RC 〈{!1q}, ∅, ∅〉 X1

10 r 3;RC 〈∅, {!2r}, ∅〉
11 q 2;RC 〈∅, ∅, {!1q}〉

Note that CU1
11(Γp3) = {!1p, !1q}. This explains why line 9 is 1-marked: the

first member of its condition contains the abnormality {!1q}, which is unreliable
at level 1. Since CΣ2

11(Γp3) = ∅, lines 8 and 10 are not 1- or 2-marked. But
this means that !1p, the formula derived on line 8, is a Dab3-formula at stage
11 of the proof. Hence, !1p ∨̌ !1q is no longer a minimal Dab3-formula at stage
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11, whence CU3
11(Γp3) = {!1p}. The last crucial move takes place at line 11.

Here, q is derived, but this time by pushing !1q to the third set in the condition
– note that this is perfectly in line with the generic rule RC, which leaves room
for choice in this case. Since {!1q}∩CU3

11(Γp3) = ∅, line 11 is unmarked and will
remain so in every further extension of the proof.

3.5.2 Metatheory for the Second Proposal

First of all, note that the following facts hold:

Fact 3.7 Γ `LLL A ∨̌Dab(∆) iff there is an SAL′-proof from Γ in which A is
derived on the condition ∆.

Fact 3.8 If a line l with condition 〈∆1, . . . ,∆i, ∅, . . .〉 is not i-marked, then it is
not j-marked for any j > i.

Adequacy of the infinite stage d As was the case in the metatheory of the
first proposal, we will refer to the stage at which everything is derived that can
be derived from Γ, on every possible condition. Let us call this stage d. By the
same reasoning as for the stage g, it can easily be inferred that the stage d exists
and that every proof can be extended up to this stage. Note that the following
holds:

(†) If there is an SAL′-proof in which A is derived on the condition 〈∆i〉i∈I ,
then A is derived on the condition 〈∆i〉i∈I at stage d

Fact 3.9 CΣid(Γ) = Σi(CnLLL(Γ))

Lemma 3.14 Where Γ ⊆ Ws, each of the following holds for every i ∈ I:

1a. CΣid(Γ) = Σi(CnSALi−1
(Γ)), whence also

1b. CU id(Γ) = U i(CnSALi−1
(Γ)) and

1c. CΦid(Γ) = Φi(CnSALi−1
(Γ))

2. there is a line l with formula A and condition 〈∆j〉j∈I that is not i-marked
at stage d iff A ∨̌Dab(∆i+1 ∪ ∆i+2 ∪ . . .) ∈ CnSALi

(Γ).

Proof. (i = 1) Ad 1. Immediate in view of Fact 3.9.
Ad 2. Immediate in view of item 1 and the construction of d.

(i ⇒ i + 1) Ad 1. Where ∆ ⊂ Ωi+1, the following are equivalent in view of
(1) the definition of CΣid(Γ), (2) item 2 of the induction hypothesis, (3) the fact
that CnSALi

(Γ) is LLL-closed and (4) the definition of Σi(Γ):

• ∆ ∈ CΣi+1
d (Γ)

• Dab(∆) is derived on an i-unmarked line with condition 〈Θ1, . . . ,Θi, ∅, ∅, . . .〉
at stage d, and for no ∆′ ⊂ ∆: Dab(∆′) is derived on an i-unmarked line with
condition 〈Θ′

1, . . . ,Θ
′
i, ∅, ∅, . . .〉 at stage d

• Dab(∆) ∈ CnSALi
(Γ), and for no ∆′ ⊂ ∆: Dab(∆′) ∈ CnSALi

(Γ)
• Dab(∆) ∈ CnLLL(CnSALi

(Γ)), and there is no ∆′ ⊂ ∆, such that Dab(∆′) ∈
CnLLL(CnSALi

(Γ))
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• ∆ ∈ Σi+1(CnSALi
(Γ)).

Ad 2. xi+1 = r. At stage d, each of the following are equivalent in view of
(1) Definition 3.11, (2) item 1b, (3) item 2 of the induction hypothesis and (4)
Theorem 3.7.1 and the fact that CnSALi

(Γ) is LLL-closed:

• there is a line l with formula A and condition 〈∆j〉j∈I that is not (i+1)-marked
• there is a line l with formula A and condition 〈∆j〉j∈I that is not i-marked,

and ∆i+1 ∩ CU i+1
d (Γ) = ∅

• there is a line l with formula A and condition 〈∆j〉j∈I that is not i-marked,
and ∆i+1 ∩ U i+1(CnSALi

(Γ)) = ∅
• There are ∆i+1 ⊂ Ωi+1,∆i+2 ⊂ Ωi+2, . . . , such that A ∨̌Dab(∆i+1 ∪ ∆i+2 ∪
. . .) ∈ CnSALi

(Γ) and ∆i+1 ∩ U
i+1(CnSALi

(Γ)) = ∅
• There are ∆i+2 ⊂ Ωi+2,∆i+3 ⊂ Ωi+3, . . . , such that A ∨̌Dab(∆i+2 ∪ ∆i+3 ∪
. . .) ∈ CnSALi+1

(Γ)

xi+1 = m. At stage d, each of the following are equivalent in view of (1) Def-
inition 3.12, (2) item 1c, (3) item 2 of the induction hypothesis and (4) Theorem
3.7.2 and the fact that CnSALi

(Γ) is LLL-closed:

• there is a line l with formula A and condition 〈∆j〉j∈I that is not (i+1)-marked
• there is a line l with formula A and condition 〈∆j〉j∈I such that

(a) l is not i-marked,
(b) ∆i+1 ∩ ϕ = ∅ for a ϕ ∈ CΦi+1

d (Γ), and
(c) for every ϕ ∈ CΦi+1

d (Γ): A is derived on a line lϕ with condition
〈Θ1, . . . ,Θi+1,∆i+2,∆i+3, . . .〉 such that Θi+1 ∩ ϕ = ∅, and each line
lϕ is not i-marked

• there is a line l with formula A and condition 〈∆i〉i∈I such that

(a) l is not i-marked,
(b) ∆i+1 ∩ ϕ = ∅ for a ϕ ∈ Φi+1(CnSALi

(Γ)), and
(c) for every ϕ ∈ Φi+1(CnSALi

(Γ)): A is derived on a line lϕ with condition
〈Θ1, . . . ,Θi+1,∆i+2,∆i+3, . . .〉 such that Θi+1 ∩ ϕ = ∅, and each line lϕ
is not i-marked

• There are ∆i+2 ⊂ Ωi+2,∆i+3 ⊂ Ωi+3, . . . , such that for every ϕ ∈
Φi+1(CnSALi

(Γ)), A ∨̌Dab(Θi+1 ∪ ∆i+2 ∪ ∆i+3 ∪ . . .) ∈ CnSALi
(Γ) for a

Θi+1 ⊆ Ωi+1 − ϕ
• A ∨̌Dab(∆i+2 ∪ ∆i+3 ∪ . . .) ∈ CnSALi+1

(Γ)

Lemma 3.15 A ∈ CnSAL(Γ) iff A is derived on an unmarked line at stage d.

Proof. (⇒) Suppose A ∈ CnSAL(Γ), whence there is an i ∈ I: A ∈ CnSALi
(Γ).

By Lemma 3.14, A is derived on a line l at stage d, with condition ∆ =
〈∆1, . . . ,∆i, ∅, ∅, . . .〉, and line l is not i-marked at stage d. It follows that there
is no j ≤ i such that line l is j-marked at stage d. Also, by Fact 3.8, line l is not
k-marked for any k > i. As a result, line l is not marked at stage d.
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(⇐) Suppose A is derived on an unmarked line at stage d. Let
〈∆1, . . . ,∆i, ∅, ∅, . . .〉 be the condition of line l. Then since line l is not i-marked
at stage d, we can derive by item 2 from Lemma 3.14 that A ∈ CnSALi

(Γ),
whence A ∈ CnSAL(Γ).

Soundness and Completeness

Theorem 3.10 Where Γ ⊆ Ws: if Γ `SAL′ A, then A ∈ CnSAL(Γ).

Proof. Suppose Γ `SAL′ A. By Definitions 3.8 and 3.9, A is derived on an
unmarked line l of a finite SAL′-proof p from Γ. Suppose we extend p up to
stage d. If l is marked in this extension, then l is marked in every further extension
of the proof, which contradicts the fact that A is finally derived on line l. Hence
line l is unmarked at stage d. By Lemma 3.15, A ∈ CnSAL(Γ).

Theorem 3.11 Where Γ ⊆ Ws: if A ∈ CnSAL(Γ), then Γ `SAL′ A.

Proof. Suppose A ∈ CnSAL(Γ). By Lemma 3.15, (†) A is derived on an unmarked
line l with condition 〈∆i〉i∈I at stage d. In view of Lemma 3.15 and the marking
definitions, we can infer that for all i ∈ I:

(†r) where xi = r: ∆i ∩ U i(CnSALi−1
(Γ)) 6= ∅

(†m) where xi = m: ∆i ∩ ϕ 6= ∅, for a ϕ ∈ Φi(CnSALi−1
(Γ))

By Fact 3.7, Γ `LLL A ∨̌Dab(
⋃

i∈I ∆i), whence by the compactness of LLL,
there is a Γ′ = {B1, . . . , Bm} ⊆ Γ such that Γ′ `LLL A ∨̌Dab(

⋃

i∈I ∆i).
Let the SAL′-proof p be constructed as follows. At line 1 we introduce the

premise B1 by PREM, . . . , and at line m we introduce the premise Bm by PREM.
At line m + 1 we derive A by RC, on the condition 〈∆i〉i∈I . Let s be the stage
consisting of lines 1 up to m+ 1.

Since Γ′ ⊆ Γ ⊆ Ws, for every i ∈ I, all Dabi-formulas that are derived at
stage s (if any) are singletons C ∈ Ωi. Moreover, by the reflexivity of each logic
SALi, for every such C, C ∈ CnSALi−1

(Γ), whence also C ∈ U i(CnSALi−1
(Γ))

and C ∈ ϕ for every ϕ ∈ Φi(CnSALi−1
(Γ)). Hence for every i ∈ I:

(‡r) CU is(Γ) ⊆ U i(CnSALi−1
(Γ))

(‡m)
⋃

CΦis(Γ) ⊆ ϕ for every ϕ ∈ Φi(CnSALi−1
(Γ))

By (†r), (†m), (‡r) and (‡m), we can infer that there is no i ∈ I such that line
m+ 1 is i-marked at stage s.

Suppose that line m+ 1 is marked in an extension of the proof. In that case,
we may further extend the proof up to stage d, whence in view of (†), line m+1 is
again unmarked in the second extension. By Definitions 3.8 and 3.9, A is finally
derived at stage s.

3.6 Some More Metatheoretic Properties

To end this chapter, I will discuss some additional meta-theoretic properties of
SAL, each of which shall also be considered for the two alternative formats of
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prioritized ALs in Chapters 4 and 5. In Section 3.6.1, a specific property of the
SAL-semantics is discussed. In the next two sections, I consider the syntactic
consequence relation, as given by Definition 3.1.

3.6.1 Strong Reassurance

In Section 3.3.4, we saw that logics in SALm-format do not in general have the
Semantic Reassurance property, but that this property holds whenever Φ(Γ) is
finite. So how about Strong Reassurance? In fact, this is a rather problematic
notion in the context of prioritized consequence relations. That is, there are
several different ways to justify the fact that a given model M ∈ MLLL(Γ) is
not selected in the semantics of a given prioritized logic PAL, which give rise to
distinct variants of the Strong Reassurance property:

(SR1) If M ∈ MLLL(Γ)−MPAL(Γ), then there is an M ′ ∈ MPAL(Γ) such
that Ab(M ′) ⊂ Ab(M).

(SR2) If M ∈ MLLL(Γ)−MPAL(Γ), then there is an M ′ ∈ MPAL(Γ) such
that Ab(M ′) ∩ Ωi ⊂ Ab(M) ∩ Ωi for an i ∈ I.

(SR3) If M ∈ MLLL(Γ)−MPAL(Γ), then there is an M ′ ∈ MPAL(Γ) such
that Ab(M ′) ∩ Ω(i) ⊂ Ab(M) ∩ Ω(i), for an i ∈ I.

I will discuss each of these properties for the logics SK2r and SK2m intro-
duced in Section 3.1.2 – my observations can easily be generalized to a very large
class of logics SAL.

First of all, SR1 is far too strong, since it does not take into account the
priorities that are involved in the selection of models. Consider Γsr1 = {!1p∨ !2q}.
Note that there is an M ∈ MK(Γsr1) such that Ab(M) = {!1p}. However, this
model is disselected after the first round of selections by SK2r and SK2m, in
view of the modelsM ′ ∈ MK(Γsr1) for which Ab(M ′) = {!2q}. This is as it should
be – otherwise one can hardly speak of a logic that takes priorities into account.
However, for those models M and M ′, it is not the case that Ab(M ′) ⊂ Ab(M).
In other words, the Strong Reassurance property which is usually considered in
the metatheory of flat ALs, is of little use in the prioritized context.

So let us turn to SR2. After giving it some thought, the consequent of SR2

can hardly be called a justification for the disselection of M . What if there is a
j < i such that Ab(M) ∩ Ωj ⊂ Ab(M ′) ∩ Ωj? Then clearly M should be selected
and not M ′. We could therefore propose the following strengthening of SR2:

(SR2+) If M ∈ MLLL(Γ)−MPAL(Γ), then there is an M ′ ∈ MPAL(Γ) such
that (1) Ab(M ′) ∩ Ωi ⊂ Ab(M) ∩ Ωi for an i ∈ I, and (2) for no j < i:
Ab(M) ∩ Ωj ⊂ Ab(M) ∩ Ωj .

I first consider the selection of models for the logic SK2m. Let

Γsr2 = {!1p ∨ !1q ∨ !1r, !1p ∨ !1r ∨ !2s, !1q ∨ !1r ∨ !2s}

Note that !1p ∨̌ !1q ∨̌ !1r is the only minimal Dab1-consequence of Γsr2. Let
M ∈ MK(Γsr2) be such that Ab(M) = {!1p, !1q}. Note that M is not minimal
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abnormal with respect to ΩK
1 , whence also M 6∈ MSK2m(Γsr2). That is, there

are M ′ ∈ MK(Γsr2) such that Ab(M ′) ∩ ΩK
1 = {!1p} ⊂ Ab(M) ∩ ΩK

1 .
However, consider such an M ′. In view of Γsr2, M ′ !2s. This implies that

M ′ is not minimally abnormal in MKm
1

(Γsr2) with respect to ΩK
2 : there is an

M ′′ ∈ MKm
1

(Γsr2) such that Ab(M ′′) = {!1r}, whence Ab(M ′′) ∩ ΩK
2 = ∅ ⊂

Ab(M ′) ∩ ΩK
2 . So only these models M ′′ are selected after the second round.

Note however that each of the following holds:

Ab(M ′′) ∩ ΩK
1 6⊂ Ab(M) ∩ ΩK

1

Ab(M ′′) ∩ ΩK
2 6⊂ Ab(M) ∩ ΩK

2

Hence, the models M ′′ cannot justify the disselection of models M , along the
lines of SR2+.

For SK2r, there is an even simpler example that illustrates the failure of
SR2+. Let Γsr3 = {!1p ∨ !1q, !1p ∨ !2r, !1q ∨ !2r}. Note that both !1p and !1q are
unreliable for the logic Kr

1. It follows that !2r is not a minimal Dab2-consequence
of CnKr

1
(Γsr3), and more generally, that !2r 6∈ U2(CnKr

1
(Γ)). Let M ∈ MK(Γsr3)

be such that Ab(M) = {!1p, !2r}. Since M verifies an abnormality that is reliable
for SK2r, viz. !2r, it is not an SK2r-model of Γsr3. The only SK2r-models of Γsr3

are those M ′ for which Ab(M ′) = {!1p, !1q}. However, these models M ′ cannot
justify the disselection of the model M – in fact, they are more abnormal than
M with regards to abnormalities of the first level. Hence SK2r violates SR2+.

The third Strong Reassurance-variant, SR3, is still stronger than SR2+. To
see why, suppose that SR3 holds, and let j ≤ i be the smallest j ∈ I such that
Ab(M ′) ∩ Ω(j) ⊂ Ab(M) ∩ Ω(j). It follows that (1’) Ab(M ′) ∩ Ωj ⊂ Ab(M) ∩ Ωj ,
and (2’) for all k < j, Ab(M ′) ∩ Ωk = Ab(M) ∩ Ωk. Hence, since SK2r and
SK2m do not satisfy SR2+, they also cannot satisfy SR3.

All this should not come as a surprise: since the SAL-semantics is by defini-
tion sequential, the disselection of a model M at a given step in the procedure can
only be justified in terms of the selection of another model M ′ at this step. At
a later point in the procedure, M ′ can itself be discarded in view of yet another
model M ′′, where M and M ′′ are incomparable in terms of their abnormal parts.

Whether or not these facts should be seen as a real disadvantage, depends
on the application context of the logic. For example, in a deontic context, one
may not want to exclude any scenario, unless there is an alternative scenario that
clearly outbeats the former and is kept as one of the options to guide our actions.
In inductive generalization, one might just want to obtain the strongest possible
hypotheses, and thereby exclude as many alternative models as possible.

In the two subsequent chapters, I will return to the above criteria, and show
that the two other formats for prioritized ALs from this thesis both satisfy SR3.
In Chapter 6, it is shown that all superpositions of the form SALm

(I) also satisfy
this specific kind of Strong Reassurance.

3.6.2 Cumulative Indifference

Recall that Cumulative Indifference is equivalent to the conjunction of the fol-
lowing two properties:

Cumulative Transitivity: Where Γ′ ⊆ CnL(Γ), CnL(Γ ∪ Γ′) ⊆ CnL(Γ)
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Cautious Monotonicity: Where Γ′ ⊆ CnL(Γ), CnL(Γ) ⊆ CnL(Γ ∪ Γ′)

In the remainder, I will show that both properties fail for L = SAL (Sections
3.6.2 and 3.6.2). I will restrict myself to logics in SALx-format — one can easily
translate the counterexamples to superpositions of flat ALs with mixed strategies.
The examples are spelled out in a rather loose way – the proofs for the claims I
make here proceed in a similar fashion as those in Section 3.3.3 and are equally
simple.

On the positive part, I will prove that the more restricted format SALr
(I)

warrants Cumulative Indifference (Section 3.6.2). As a corollary, it follows that
CnSALr

(I)
(Γ) is a fixed point. In Chapter 6, a similar result is obtained for SALm

(I),

be it for a restricted class of premise sets.

Fixed Point and Cumulative Transitivity The counterexample for SALr

is a rather straightforward one. I will present it for the concrete logic SK2r – a
more abstract version of it is mentioned in [25].

Let Γctr = {!1p∨!1q, !1p∨!2r, s∨!1q}. Note that since !1q ∈ U1(Γctr), we cannot
finally Kr

1-derive s from Γctr, whence also s 6∈ CnSK2r(Γctr). However, we can
derive !1p from Γctr, on the condition !2r.

Now consider Γctr ∪ {!1p}. Note that !1p ∨̌ !1q is no longer a minimal Dab1-
consequence of the extended premise set, whence !1q becomes a reliable ab-
normality at priority level 1. It follows that s ∈ CnKr

1
(Γctr), whence also

s ∈ CnSK2r(Γctr).

The above example does not work for SK2m. That is, ¬̌!1p ∨̌ ¬̌!1q is a Km
1 -

consequence of Γctr. Moreover, by the second logic of the superposition, we
can derive !1p (just as was the case for the Reliability-variant). As a result,
¬̌!1q ∈ CnSK2m(Γctr), and by the reflexivity and LLL-closure of SK2m, also
s ∈ CnSK2m(Γctr).

So we need a more complex example to show that SALm-logics are not cu-
mulatively transitive. I have already introduced this example in Section 3.3.3:
Γc = {!1pi∨!1pj | i, j ∈ N, i 6= j}∪{!1pi∨!2qi∨r | i ∈ N}. As explained in that sec-
tion, r 6∈ CnSK2m(Γ). However, note that for every i ∈ N, ¬̌!2qi ∈ CnSK2m(Γc),
since neither of these abnormalities occur in a minimal Dab2-consequence of
CnKm

1
(Γ).

Let Γ′
c = Γc ∪ {¬̌!2qi | i ∈ N}. Note that Γ′

c `K r∨!1pi for every i ∈ N. The
minimal Dab1-consequences of Γ′

c are the same as those of Γc, i.e. {!1pi ∨̌ !1pj |
i, j ∈ N, i 6= j}. Hence Φ1(Γ′

c) = {{!1pi | i ∈ N − {k}} | k ∈ N}. It follows
that for every ϕ ∈ Φ1(Γ′

c), we can derive r on a condition ∆ ⊆ ΩK
1 − ϕ, whence

r ∈ CnKm
1

(Γ′
c) ⊆ CnSK2m(Γ′

c).

The above examples also illustrate that neither SALr nor SALm have the
Fixed Point property. Recall that for flat ALs, this property is an immediate
consequence of their reflexivity and cumulative transitivity. The following facts
can easily be derived from the preceding observations:

s 6∈ CnSK2r(Γctr), whereas s ∈ CnSK2r(CnSK2r(Γctr))
r 6∈ CnSK2m(Γctr), whereas r ∈ CnSK2m(CnSK2m(Γctr))
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Cautious Monotonicity For Cautious Monotonicity, it turns out that there
is a single counterexample that works for both SK2r and SK2m. I will spell
out the argument for SK2r – the case for SK2m is completely analogous. Let
Γcm = {!1p∨!1q, !1r∨!1p∨!2s}. Note that ¬̌!1r ∈ CnSK2r(Γcm), since the ab-
normality !1r does not occur in a minimal Dab1-consequence of Γcm. Also,
¬̌!2s ∈ CnSK2r(Γcm). That is, we can only derive the Dab-formula !1p ∨̌ !2s
from Γcm – we cannot push !1p to the condition since it is unreliable at level 1.
Since !1p ∨̌ !2s is not a Dab2-consequence, and more generally, since there are no
Dab2-consequences of Γcm, !2s will be considered as a reliable abnormality by the
second logic in the superposition.

Consider Γ′
cm = Γcm ∪ {¬̌!2s}. Note that the following are minimal Dab1-

consequences of the extended premise set:

!1p ∨̌ !1q
!1p ∨̌ !1r

It follows that we cannot derive ¬̌!1r from Γ′
cm by Kr

1. The second logic cannot
come to the rescue either, whence !1 ¬̌ r 6∈ CnSK2r(Γ′

cm). To summarize, if we
add a SK2r-consequence of Γcm to this premise set, then the resulting premise
set no longer allows us to derive another SK2r-consequence of Γcm.

Cumulative Indifference for SALr
(I) As announced, I will prove here that

SALr
(I) is cumulatively indifferent.19 The proof requires four lemmas and is

spelled out on the next two pages. In the remainder, I will often rely on the Dab-
conservativity of flat ALs – see Lemma 2.4.2: where ∆ ⊂ Ω, Γ `AL Dab(∆) iff
Γ `LLL Dab(∆). I will also make use of the LLL-closure of SAL – see Theorem
3.1.

Lemma 3.16 Where Γ ⊆ Ws, i, i+k ∈ I and A ∈ Ωi: if A 6∈ U i(CnSALr
i−1

(Γ)),

then A 6∈ U i+k(CnSALr
i+k−1

(Γ)).

Proof.20 Suppose A 6∈ U i(CnSALr
i−1

(Γ)). Hence ¬̌A ∈ CnSALr
i
(Γ), whence by

Fact 3.1.2, ¬̌A ∈ CnSALr
i+k

(Γ).

Assume that A ∈ U i+k(CnSALr
i+k−1

(Γ)). This implies that there is a ∆ ⊆

Ωi+k such that Dab(∆) is a minimal Dabi+k-consequence of CnSALr
i+k−1

(Γ) and

A ∈ ∆. However, since ¬̌A ∈ CnSALr
i+k

(Γ) and by the LLL-closure of CnSALr
i+k

,

Dab(∆−{A}) ∈ CnSALr
i+k

(Γ). HenceDab(∆−{A}) ∈ CnALr
i+k

(CnSALr
i+k−1

(Γ)).

By the Dab-conservativity of ALr
i+k, Dab(∆ − {A}) ∈ CnLLL(CnSALr

i+k−1
(Γ)).

But this contradicts the fact that Dab(∆) is a minimal Dabi+k-consequence of
CnSALr

i+k−1
(Γ).

Lemma 3.17 Where Γ ⊆ Ws, i, i + k ∈ I and ∆ ⊂ Ω(i): if Dab(∆) ∈
CnSALr

(i+k)
(Γ), then Dab(∆) ∈ CnSALr

(i−1)
(Γ)

19Batens already suggests that this is the case in the last paragraphs of [25, Chapter 6,
Section 6.2.3].

20Note that this lemma applies to the more general class of logics SAL
r.
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Proof. Suppose Dab(∆) ∈ CnSALr
(i+k)

(Γ) for a ∆ ⊂ Ω(i). By Definition 3.1,

Dab(∆) ∈ CnALr
(i+k)

(CnSALr
(i+k−1)

(Γ)). Note that ∆ ⊂ Ω(i+k), whence by the

Dab-conservativity of ALr
(i+k), CnSALr

(i+k−1)
(Γ) `LLL Dab(∆). By the LLL-

closure of CnSALr
(i+k−1)

(Γ), Dab(∆) ∈ CnSALr
(i+k−1)

(Γ). Repeating the same

reasoning for all j < k, j ≥ 0, relying on (i) the Dab-conservativity of each
logic ALr

(i+j) and (ii) the fact that ∆ ⊂ Ω(i+j), we obtain that Dab(∆) ∈

CnSALr
(i−1)

(Γ).

Lemma 3.18 Where Γ ⊆ Ws and i ∈ I: A ∈ CnSALr
(i)

(Γ) iff there is a ∆ ⊂

Ω(i) − U (i)(CnSALr
(i−1)

(Γ)) such that A ∨̌Dab(∆) ∈ CnLLL(Γ).

Proof. (⇒) Suppose A ∈ CnSALr
(i)

(Γ). By Theorem 2.6, there is a Θ1 ⊆ Ω(i) −

U (i)(CnSALr
(i−1)

(Γ)) such that CnSALr
(i−1)

(Γ) `LLL A ∨̌Dab(Θ1). By the LLL-

closure of CnSALr
(i−1)

(Γ), A ∨̌Dab(Θ1) ∈ CnSALr
(i−1)

(Γ). Hence by Theorem 2.6,

there is a Θ2 ⊆ Ω(i−1) − U (i−1)(CnSALr
(i−2)

(Γ)) such that CnSALr
(i−2)

(Γ) `LLL

A ∨̌Dab(Θ1) ∨̌Dab(Θ2). Note that Θ2 ⊂ Ω(i), and by Lemma 3.16, Θ2 ∩

U (i)(CnSALr
(i−1)

(Γ)) = ∅. Also, by the LLL-closure of CnSALr
(i−2)

(Γ),

A ∨̌Dab(Θ1) ∨̌Dab(Θ2) ∈ CnSALr
(i−2)

(Γ), whence by Fact 3.1.2,

A ∨̌Dab(Θ1) ∨̌Dab(Θ2) ∈ CnSALr
(i−1)

(Γ).

Repeating the same reasoning i times, we obtain sets Θ1, . . . ,Θi such that
(i) A ∨̌Dab(Θ1) ∨̌ . . . ∨̌Dab(Θi) ∈ CnLLL(Γ) and (ii) (Θ1 ∪ . . . ∪ Θi) ⊆ Ω(i) −

U (i)(CnSALr
(i−1)

(Γ)).

(⇐) Suppose there is an i ∈ I such that A ∨̌Dab(∆) ∈ CnLLL(Γ) for
a ∆ ⊂ Ω(i) such that ∆ ∩ U (i)(CnSALr

(i−1)
(Γ)) = ∅. By the reflexivity of

SALr
(i−1) and LLL, CnSALr

(i−1)
(Γ) `LLL A ∨̌Dab(∆). By Theorem 2.6, A ∈

CnALr
(i)

(CnSALr
(i−1)

(Γ)) whence by Definition 3.1, A ∈ CnSALr
(i)

(Γ) and A ∈

CnSALr
(I)

(Γ).

Lemma 3.19 Let Γ′ ⊆ CnSALr
(I)

(Γ) and Γ ⊆ Ws. Then for every i ∈ I,

U (i)(CnSALr
(i−1)

(Γ)) = U (i)(CnSALr
(i−1)

(Γ ∪ Γ′))

Proof. Suppose Γ′ ⊆ CnSALr
(I)

(Γ). Note that (†) Γ ∪ Γ′ ⊆ CnSALr
(I)

(Γ) by the

reflexivity of SALr
(I) and the supposition. I prove that for every i ∈ I and every

∆ ⊆ Ω(i): Dab(∆) ∈ CnSALr
(i−1)

(Γ) iff Dab(∆) ∈ CnSALr
(i−1)

(Γ ∪ Γ′), whence

the lemma follows immediately.
(i = 1) Let ∆ ⊂ Ω(1). (⇒) Suppose Dab(∆) ∈ CnSALr

(0)
(Γ) = CnLLL(Γ). By

the monotonicity of LLL, it follows immediately that Dab(∆) ∈ CnLLL(Γ∪Γ′) =
CnSALr

(0)
(Γ ∪ Γ′).

(⇐) Suppose Dab(∆) ∈ CnSALr
(0)

(Γ ∪ Γ′) = CnLLL(Γ ∪ Γ′). By (†) and

the monotonicity of LLL, also Dab(∆) ∈ CnLLL(CnSALr
(I)

(Γ)), whence by the

LLL-closure of SALr
(I), Dab(∆) ∈ CnSALr

(I)
(Γ). Hence for a j ∈ I, Dab(∆) ∈

CnSALr
(j)

(Γ). By Lemma 3.17, Dab(∆) ∈ CnSALr
(0)

(Γ) = CnLLL(Γ).



86 CHAPTER 3. SUPERPOSITIONS OF ADAPTIVE LOGICS

(i ⇒ i + 1) Suppose ∆ ⊂ Ω(i+1). (⇒) Let Dab(∆) ∈ CnSALr
(i)

(Γ). Hence

by the left-right direction of Lemma 3.18, Γ `LLL Dab(∆) ∨̌Dab(∆′), for a
∆′ ⊆ Ω(i) − U (i)(CnSALr

(i−1)
(Γ)). By the monotonicity of LLL, Γ ∪ Γ′ `LLL

Dab(∆) ∨̌Dab(∆′). By the induction hypothesis, ∆′∩U (i)(CnSALr
(i−1)

(Γ∪Γ′)) =

∅. By the right-left direction of Lemma 3.18, Dab(∆) ∈ CnSALr
(i)

(Γ ∪ Γ′).

(⇐) Suppose Dab(∆) ∈ CnSALr
(i)

(Γ ∪ Γ′). Hence by the left-right direc-

tion of Lemma 3.18, Γ ∪ Γ′ `LLL Dab(∆) ∨̌Dab(∆′), for a ∆′ ⊆ Ω(i) such

that ∆′ ∩ U (i)(CnSALr
(i−1)

(Γ ∪ Γ′)) = ∅. By (†) and the monotonicity of LLL,

CnSALr
(I)

(Γ) `LLL Dab(∆) ∨̌Dab(∆′). Hence there is a j ∈ I: CnSALr
(j)

(Γ) `LLL

Dab(∆) ∨̌Dab(∆′). By the LLL-closure of SALr
(j), Dab(∆) ∨̌Dab(∆′) ∈

CnSALr
(j)

(Γ).

We can derive that (‡) Dab(∆) ∨̌Dab(∆′) ∈ CnSALr
(i)

(Γ) — for j ≤ i, see

Fact 3.1.2; for j > i, this follows from the fact that ∆ ∪ ∆′ ⊂ Ω(i+1) and by

Lemma 3.17. Also, by the induction hypothesis, ∆′ ∩ U (i)(CnSALr
(i−1)

(Γ)) =

∅, whence ¬̌Dab(∆′) ∈ CnSALr
(i)

(Γ). By (‡) and the LLL-closure of SALr
(i),

Dab(∆) ∈ CnSALr
(i)

(Γ).

Theorem 3.12 Let Γ′ ⊆ CnSALr
(I)

(Γ) and Γ ⊆ Ws. Then CnSALr
(I)

(Γ) =

CnSALr
(I)

(Γ ∪ Γ′).

Proof. Suppose (†) Γ′ ⊆ CnSALr
(I)

(Γ). Note that (‡) Γ ∪ Γ′ ⊆ CnSALr
(I)

(Γ) by

the reflexivity of SALr
(I) and the supposition.

(CnSALr
(I)

(Γ) ⊆ CnSALr
(I)

(Γ ∪ Γ′)) Suppose A ∈ CnSALr
(I)

(Γ). By Defi-

nition 3.1, there is an i ∈ I such that A ∈ CnSALr
(i)

(Γ). By Lemma 3.18,

Γ `LLL A ∨̌Dab(∆) for a ∆ ⊆ Ω(i) − U (i)(CnSALr
(i−1)

(Γ)). By the monotonic-

ity of LLL, Γ ∪ Γ′ `LLL A ∨̌Dab(∆), whence by the reflexivity of SALr
(i−1)

and LLL, CnSALr
(i−1)

(Γ ∪ Γ′) `LLL A ∨̌Dab(∆). By Lemma 3.19 and (†),

∆ ⊆ Ω(i) − U (i)(CnSALr
(i−1)

(Γ ∪ Γ′)). Hence by Lemma 3.18, A ∈ CnSALr
(i)

(Γ).

(CnSALr
(I)

(Γ ∪ Γ′) ⊆ CnSALr
(I)

(Γ)) Suppose A ∈ CnSALr
(I)

(Γ ∪ Γ′). By Def-

inition 3.1, there is an i ∈ I such that A ∈ CnSALr
(i)

(Γ ∪ Γ′). By Lemma 3.18,

Γ ∪ Γ′ `LLL A ∨̌Dab(∆) for a ∆ ⊆ Ω(i) − U (i)(CnSALr
(i−1)

(Γ ∪ Γ′)). By (‡) and

the monotonicity of LLL, (?) CnSALr
(I)

(Γ) `LLL A ∨̌Dab(∆).

By (†) and Lemma 3.19, ∆ ∩ U (i)(CnSALr
(i−1)

(Γ)) = ∅. It follows that

¬̌Dab(∆) ∈ CnSALr
(i)

(Γ), whence also ¬̌Dab(∆) ∈ CnSALr
(I)

(Γ). But then by

(?) and the LLL-closure of SALr
(I), A ∈ CnSALr

(I)
(Γ).

By Lemmas 2.7 and 2.8, we have:

Corollary 3.3 Each of the following holds:

1. Where Γ′ ⊆ CnSALr
(I)

(Γ) and Γ ⊆ Ws: CnSALr
(I)

(Γ ∪ Γ′) ⊆ CnSALr
(I)

(Γ)

(Cumulative Transitivity)
2. Where Γ′ ⊆ CnSALr

(I)
(Γ) and Γ ⊆ Ws: CnSALr

(I)
(Γ) ⊆ CnSALr

(I)
(Γ ∪ Γ′)

(Cautious Monotonicity)
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3. Where Γ ⊆ Ws: CnSALr
(I)

(CnSALr
(I)

(Γ)) = CnSALr
(I)

(Γ). (Fixed Point)

4. Where Γ,Γ′ ⊆ Ws: if Γ ⊆ CnSALr(Γ′) and Γ′ ⊆ CnSALr(Γ), then
CnSALr

(I)
(Γ) = CnSALr

(I)
(Γ′). (Equivalence Criterion (C1) )

3.6.3 Normal Premise Sets

In Chapter 2, we saw that whenever Γ∪Ω¬̌ has LLL-models, then AL is identical
to its upper limit logic ULL (see Theorem 2.17). As we will see below, this
result can be generalized to sequential superpositions of ALs – see Theorem 3.15
below.21

However, for prioritized ALs in general, one may also wonder whether a
slightly stronger property holds. That is, suppose that for some i ∈ I, it is
possible to verify all members of Γ, yet also falsify all abnormalities up to level
i. In that case, it seems a desirable property for a prioritized logic PAL that
CnLLL(Γ∪ Ω¬̌

(i)) ⊆ CnPAL(Γ) – in other words, that the prioritized logic indeed
considers all the members of Ω(i) to be false.

To formally express this property, let me introduce the concepts of normality
at level i, resp. up to level i:

Definition 3.15 Γ is normal at level i iff Γ∪Ω¬̌
i has LLL-models. Γ is normal

up to level i iff Γ ∪ Ω¬̌
(i) has LLL-models.

The following is immediate in view of Definition 3.15:

Fact 3.10 If Γ is normal up to level i, then each of the following holds:

1. Γ is normal at level j, for every j ≤ i
2. Γ ∪ Ω¬̌

(j) is normal at level j + 1, for every j < i

3. CnLLL(Γ ∪ Ω¬̌
(j)) is normal at level j + 1, for every j < i

In the remainder, I use ULLi to refer to the upper limit logic of ALi, i.e.
ULLi is the monotonic logic that trivializes all abnormalities of level i. Likewise,
ULL(i) denotes the upper limit logic of AL(i) and trivializes all abnormalities
up to level i. Formally:

Definition 3.16 Γ `ULLi
A iff Γ ∪ Ω¬̌

i `LLL A

Definition 3.17 Γ `ULL(i)
A iff Γ ∪ Ω¬̌

(i) `LLL A

Theorem 3.13 If Γ is normal up to level i, then CnULL(i)
(Γ) ⊆ CnSAL(Γ).

Proof. Suppose Γ is normal up to level i. We show by an induction that for all
j ≤ i, CnSALj

(Γ) = CnLLL(Γ ∪ Ω¬̌
(j)) — the rest follows immediately.

(j = 1) By Fact 3.10.1 and the supposition, Γ is normal at level 1. By Fact
3.1.1 and Theorem 2.17 respectively, CnSAL1

(Γ) = CnAL1
(Γ) = CnLLL(Γ∪Ω¬̌

1 ).
(j ⇒ j+1): By the induction hypothesis, CnSALj

(Γ) = CnLLL(Γ∪Ω¬̌
(j)). By

Fact 3.10.3 and the supposition, CnLLL(Γ∪Ω¬̌
(j)) is normal at level j+1. But then

21Earlier versions of some proofs from this Section appeared in [151], which is co-authored
by Christian Straßer.
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by Theorem 2.17, CnSALj+1
(Γ) = CnALj+1

(CnSALj
(Γ)) = CnALj+1

(CnLLL(Γ ∪
Ω¬̌

(j))) = CnULLj+1
(CnLLL(Γ ∪ Ω¬̌

(j))) = CnLLL(CnLLL(Γ ∪ Ω¬̌
(j)) ∪ Ω¬̌

j+1) =

CnLLL(Γ ∪ Ω¬̌
(j) ∪ Ω¬̌

j+1) = CnLLL(Γ ∪ Ω¬̌
(j+1)).

Lemma 3.20 states that in order for A to be an SAL-consequence, there has
to be a finite ∆ ⊂ Ω such that Γ `LLL A ∨̌Dab(∆). This lemma is will be used
to prove that SAL is weaker than ULL – see Theorem 3.14 below.

Lemma 3.20 Each of the following holds:

1. for every i ∈ I: if A ∈ CnSALi
(Γ), then there is a ∆ ⊂ Ω(i) such that

Γ `LLL A ∨̌Dab(∆).
2. If A ∈ CnSAL(Γ), then there is a ∆ ⊂ Ω such that Γ `LLL A ∨̌Dab(∆).

Proof. Ad 1. Let each index xi refers to the strategy of the logic ALi in the
superposition. (i = 1) Immediate in view of Theorem 2.6 (for x1 = r), resp.
Theorem 2.7 (for x1 = m).

(i ⇒ i + 1) Suppose A ∈ CnSALi+1
(Γ). If xi+1 = r, then by Theorem

2.6.1, CnSALi
(Γ) `LLL A ∨̌Dab(∆) for a ∆ ⊂ Ωi+1, whence also ∆ ⊂ Ω. By

Theorem 3.1, A ∨̌Dab(∆) ∈ CnSALi
(Γ). But then by the induction hypothesis,

Γ `LLL A ∨̌Dab(∆) ∨̌Dab(Θ) for a Θ ⊂ Ω(i), whence ∆ ∪ Θ ⊂ Ω(i+1).
The reasoning for xi+1 = m is completely analogous – replace Theorem 2.6.1

by Theorem 2.7.1.
Ad 2. Suppose A ∈ CnSAL(Γ). By Definition 3.1, there is an i ∈ I such that

A ∈ CnSALi
(Γ). The rest is immediate in view of item 1.

Theorem 3.14 CnSAL(Γ) ⊆ CnULL(Γ).

Proof. Suppose A ∈ CnSAL(Γ). By Lemma 3.20, there is a ∆ ⊂ Ω such that
Γ `LLL A ∨̌Dab(∆). By CL-properties, Γ ∪ Ω¬̌ `LLL A.

Theorem 3.15 If Γ is normal, then CnPAL(Γ) = CnULL(Γ).

Proof. Suppose Γ is normal. In view of Theorem 3.14, it suffices to prove that
CnULL(Γ) ⊆ CnSAL(Γ). So suppose that Γ ∪ Ω¬̌ `LLL A. By the compactness
of LLL, there is an i ∈ I such that Γ∪Ω¬̌

(i) `LLL, whence A ∈ CnULL(i)
(Γ). Note

that for every i ∈ I, Γ is normal up to level i. By Theorem 3.13, A ∈ CnSAL(Γ).



Chapter 4

Hierarchic Adaptive Logics

This Chapter is based on the paper “Hierarchic Adaptive Logics” (Logic Journal
of the IGPL 2011, doi: 10.1093/jigpal/jzr025). I am very greatful to Christian
Straßer, Diderik Batens, and two anonymous referees for their fruitful comments
on that paper. I also thank Peter Verdée for his useful comments on an earlier
draft of this chapter.

In the previous chapter, we saw how it is possible to superpose flat adaptive
logics in order to characterize prioritized defeasible reasoning. Notwithstand-
ing the intuitive benefits of this approach, we encountered some meta-theoretic
problems, especially with respect to superpositions of ALs with the Minimal
Abnormality Strategy.

In the current chapter, I will concentrate on a different and more recent way
in which flat adaptive logics have been combined, in order to obtain a prioritized
consequence relation. The resulting systems are called hierarchic adaptive logics.
In Section 4.1, I will explain the general idea behind them, and illustrate it
by means of some K-based prioritized logics. After that, I will describe their
generic semantics (Section 4.2), their proof theory (Section 4.3), and give some
meta-theoretic results for these systems (Section 4.4).

4.1 General Characteristics of HAL

4.1.1 The Syntactic Consequence Relation

The idea behind hierarchic adaptive logics is due to Diderik Batens, who applied
it to adaptive logics for inductive generalization in his [24]. After some inquiry,
it turned out that we may easily generalize this idea and thereby obtain a generic
format for prioritized ALs which has a number of interesting features. Relying
on a suggestion by Batens, I was also able to develop a very simple generic proof
theory for these systems. Moreover, for a specific subclass of them, an alternative
proof theory can be used, from which it follows that all logics in this subclass
have a very low degree of complexity – see Section 4.3.3.

89
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To understand Batens’ original idea, consider again a sequence of sets of
abnormalities, 〈Ωi〉i∈I . As explained in Chapter 1, the overall aim of prioritized
ALs is to interpret premise sets “as normally as possible”, but in such a way that
abnormalities from Ω1 are considered as the worst abnormalities, next those of
Ω2, etc. One way to do so, for a given Γ, is the following. We first interpret Γ as
normally as possible with respect to Ω1. Put differently, we consider A ∈ Ω1 to be
false, unless Γ entails a minimal disjunction of abnormalities of rank 1, in which
A is disjunct. Next, we interpret the same premise set Γ as normally as possible
with respect to Ω(2) = Ω1 ∪ Ω2. So, under this interpretation of Γ, B ∈ Ω2

behaves abnormally iff it is a disjunct in a minimal disjunction of abnormalities
of rank 1 or rank 2. After that, we interpret Γ as normally as possible in view of
Ω(3), etc.

This means that we apply different flat adaptive logics to the same premise
set. More specifically, we apply the logics ALx

(i) (i ∈ I) that are characterized

by the triple 〈LLL,Ω(i),x〉. This gives us the sets

CnALx
(1)

(Γ), CnALx
(2)

(Γ), CnALx
(3)

(Γ), . . .

As will be shown below,
⋃

i∈I CnALx
(i)

(Γ) is always LLL-satisfiable whenever

Γ is LLL-satisfiable (see Theorem 4.4). This union of sets can be considered as
a specific interpretation of Γ, which can is motivated in terms of the priority of
each set Ωi (i ∈ I).

For instance, let Γh = {♦p,♦♦q,♦♦r,¬p∨¬r}. Note that either the assump-
tion p or the assumption r has to be withdrawn, in view of the premise ¬p∨ ¬r.
Since p is more plausible, we expect that a prioritized adaptive logic allows us
to (finally) derive p. Also, since q is not problematic at all, we expect q to be
(finally) derivable by a prioritized AL.

Consider now the flat adaptive logics Kr
(1) = 〈K,ΩK

1 , r〉 and Kr
(2) = 〈K,ΩK

1 ∪

ΩK
2 , r〉 (these were introduced on page 44). It can easily be verified that p ∈

CnKr
(1)

(Γh) and q ∈ CnKr
(2)

(Γh).

More generally, interpreting Γ by means of different logics ALx
(i) yields a

strong set of consequences, that is justified in terms of the priorities on the
corresponding sets of abnormalities. However, this set is in most cases not LLL-
closed. For instance, although p, q ∈ CnKr

(1)
(Γh) ∪ CnKr

(2)
(Γh), it can be shown

that p∧ q 6∈ CnKr
(1)

(Γh)∪CnKr
(2)

(Γh). Hence CnKr
(1)

(Γh)∪CnKr
(2)

(Γh) does not

have the kind of properties we would usually expect from a consequence set –
especially if LLL is taken to be the standard of deduction in the application of
the prioritized adaptive logic.

The solution is straightforward: close the set
⋃

i∈I CnALx
(i)

(Γ) under LLL.1

So we obtain the set CnLLL(
⋃

i∈I CnALx
(i)

(Γ)). As will be shown below, the corre-

sponding syntactic consequence relation is sound with respect to a very straight-
forward semantics, can be fully characterized by a proof theory, and satisfies a
number of important metatheoretic requirements. Moreover, while writing this

1In view of the results from this chapter, it also seems feasible to close them under a flat AL
that has LLL as its lower limit logic, but such a combination has not been investigated yet.
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thesis, I noticed that we can easily generalize the above construction, allowing
the logics AL(i) to use different strategies, without loss of any results.

This brings us to the following definition. Let LLL be a Tarski-logic and
let 〈Ωi〉i∈I be a sequence of sets of abnormalities. Recall that for every i ∈ I,
Ω(i) =df Ω1 ∪ . . . ∪ Ωi. Let every logic AL(i) (i ∈ I) be a flat adaptive logic
characterized by (i) LLL, (ii) Ω(i) and (iii) a strategy xi ∈ {r,m}. Then the
hierarchic combination of the logics 〈AL(i)〉i∈I is defined as follows:

Definition 4.1 CnHAL(Γ) =df CnLLL(
⋃

i∈I CnAL(i)
(Γ))

In some cases, it will be useful to restrict the focus to the logics HALr and
HALm, which are hierarchic combinations of flat ALs that all use the same
strategy. Hence, where x ∈ {r,m}: CnHALx(Γ) =df CnLLL(

⋃

i∈I CnALx
(i)

(Γ)).

Note that, as for sequential superpositions of ALs, we may characterize every logic
HALx by a triple, where the second element is a sequence of sets of abnormalities:
〈LLL, 〈Ω(i)〉i∈I ,x〉.

In the remainder, we will consider some hierarchic variants of the K-based pri-
oritized logics from the preceding Chapter. Their syntactic consequence relation
is defined as follows:

CnHKr(Γ) =df CnK(
⋃

i∈N
CnKr

(i)
(Γ))

CnHKm(Γ) =df CnK(
⋃

i∈N
CnKm

(i)
(Γ))

CnHK2r(Γ) =df CnK(CnKr
(1)

(Γ) ∪ CnKr
(2)

(Γ))

CnHK2m(Γ) =df CnK(CnKm
(1)

(Γ) ∪ CnKm
(2)

(Γ))

4.1.2 Some Generic Properties

As for SAL, I will start with a few facts that are easily derivable from the
metatheory of flat ALs and the definition of HAL. The first one is immediate
in view of Definition 4.1 and the fact that LLL is a Tarski-logic:

Theorem 4.1 Where Γ ⊆ Ws: CnLLL(CnHAL(Γ)) = CnHAL(Γ). (LLL-
Closure)

We can also easily see that HAL is LLL-invariant:

Theorem 4.2 Where Γ ⊆ Ws: CnHAL(CnLLL(Γ)) = CnHAL(Γ). (LLL-
Invariance)

Proof. By Theorem 2.19, for every i ∈ I, CnAL
xi
(i)

(CnLLL(Γ)) = CnAL
xi
(i)

(Γ).

Hence by Definition 4.1, CnHAL(CnLLL(Γ)) = CnHAL(Γ).

The following theorem is also immediate in view of Definition 4.1, the reflex-
ivity of every logic AL(i) and the reflexivity of LLL:

Theorem 4.3 Each of the following holds:

1. Γ ⊆ CnHAL(Γ)
2. CnLLL(Γ) ⊆ CnHAL(Γ)
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We can also generalize the fact that Minimal Abnormality is stronger than
Reliability (see Theorem 2.16) to hierarchic ALs. This is a corollary of the
following property:

Theorem 4.4 CnHALr(Γ) ⊆ CnHAL(Γ).

Proof. Suppose A ∈ CnHALr(Γ). By Definition 4.1 and the compactness of
LLL, there are B1, . . . , Bn such that (i) {B1, . . . , Bn} `LLL A and (ii) for every
i ∈ {1, . . . , n}: Bi ∈ CnALr

(ji)
(Γ) for a ji ∈ I. From (ii), by Theorem 2.16: for

every i ∈ {1, . . . , n}: Bi ∈ Cn
AL

xji
(ji)

(Γ) for a ji ∈ I. By (i), the monotonicity of

LLL and Definition 4.1, A ∈ CnHAL(Γ).

Corollary 4.1 CnHALr(Γ) ⊆ CnHALm(Γ).

Finally, just as for SAL, there is a simple criterion to decide whether two
premise sets are equivalent in view of a hierarchic AL:

Theorem 4.5 If Γ,Γ′ ⊆ Ws and Γ and Γ′ are LLL-equivalent, then they are
HAL-equivalent.

Proof. Suppose the antecedent holds. Then by Theorem 2.22, CnALi
(Γ) =

CnALi
(Γ′) for every i ∈ I. The rest is immediate in view of Definition 4.1.

4.2 A Semantics for HAL

4.2.1 The Intersection of the Selections

The selection of the set of HAL-models is based on the selections by each of
the logics AL(i). More precisely, the set of HAL-models is the set of those
M ∈ MLLL(Γ) that are selected by each flat adaptive logic of the combination:

Definition 4.2 MHAL(Γ) =df

⋂

i∈I MAL
xi
(i)

(Γ)

As before, we define the semantic consequence relation of HAL as follows:
Γ |=HAL A iff A is verified by every M ∈ MHAL(Γ).

Example 4.1 Consider Γh = {♦p,♦♦q,♦♦r,¬p ∨ ¬r}, which was already men-
tioned in the first section of this chapter.

First of all, note that Γh has no Dab(1)-consequences. It follows that Γh

is normal up to level 1, and hence the set of unreliable formulas for Kr
(1) is

U (1)(Γh) = ∅. As a result,

MKr
(1)

(Γh) = {M ∈ MK(Γh) | Ab(M) ∩ ΩK
(1) = ∅}

Γh has only one minimal Dab-consequence, viz. !1p ∨̌ !2r. Hence, the set of
unreliable formulas for Kr

(2) is U (1)(Γh) = {!1p, !2r}. So we have:

MKr
(2)

(Γh) = {M ∈ MK(Γh) | Ab(M) ∩ ΩK
(2) ⊆ {!1p, !2r}}
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Finally, the set of HK2r-models of Γh is the intersection of MKr
(1)

(Γh) and

MKr
(2)

(Γh), and hence:

MHK2r(Γh) = {M ∈ MK(Γh) | Ab(M) ∩ ΩK
(2) ⊆ {!2r}}

Hence every HK2r-model of Γh falsifies the abnormalities !1p and !2q, which
means it verifies p and q. Also, since every M ∈ MK(Γh) either verifies !1p or
!2r, it follows that for every M ∈ MHK2r(Γh), M !2r.

As the following theorem states, the syntactic consequence relation of hierar-
chic ALs is sound with respect to their semantic consequence relation:

Theorem 4.6 If A ∈ CnHAL(Γ), then Γ |=HAL A.

Proof.2 Suppose A ∈ CnHAL(Γ) and consider an M ∈ MHAL
Γ . By Defini-

tion 4.2, M ∈ M
AL

xi
(i)

Γ for every i ∈ I. By Theorem 2.8, M  CnAL
xi
(i)

(Γ)

for every i ∈ I. As M is an LLL-model and by the soundness of LLL, M 

CnLLL(
⋃

i∈I CnAL
xi
(i)

(Γ)). By Definition 4.1, M  CnHAL(Γ), hence M  A.

Before we turn to the Completeness theorem for HAL, let me give some addi-
tional properties of the HAL-semantics. Note that by Definition 4.2, Definition
2.1 (for xi = r) and Definition 2.2 (for xi = m), the following fact holds:

Fact 4.1 For every i ∈ I: MHAL(Γ) ⊆ MAL
xi
(i)

(Γ) ⊆ MLLL(Γ).

Let HAL be obtained from the hierarchic combination of the logics 〈ALxi

(i)〉i∈I ,

and let HALm be defined as before. Then we have:

Lemma 4.1 MHALm(Γ) ⊆ MHAL(Γ)

Proof. Consider an M ∈ MHALm(Γ). By Definition 4.2, M is an ALm
(i)-model

for every i ∈ I. Hence by Theorem 2.3, M is an ALxi

(i)-model for every i ∈ I. By

Definition 4.2, M ∈ MHAL(Γ).

This means that for the more restricted logics HALr and HALm, we can
generalize Theorem 2.3 to the hierarchic case:

Fact 4.2 MHALm(Γ) ⊆ MHALr(Γ).

4.2.2 Completeness for HALr

Just as for the restricted class of logics SALr, we can prove that CnHALr(Γ) is
complete with respect to the set of all HALr-models. The proof of completeness
relies essentially on Lemma 2.2 from Section 2.6 (see page 34).

Theorem 4.7 If Γ |=HALr A, then A ∈ CnHALr(Γ). (Completeness for HALr)

2Recall that I use M  ∆ as a shortcut for “M  A for every A ∈ ∆”.
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Proof. Suppose A 6∈ CnHALr(Γ). By Definition 4.1,
⋃

i∈I CnALr
(i)

(Γ) 0LLL A.

This implies by the completeness of LLL that there is an LLL-model M such
that M 

⋃

i∈I CnALr
(i)

(Γ) and M 6 A. By Lemma 2.2, M is an ALr
(i)-model

of Γ, for every i ∈ I, hence by Definition 4.2, M is an HALr-model of Γ. As a
result, Γ 6|=HALr A.

4.2.3 Restricted Completeness for HAL

Where Φ(Γ) is finite, a similar completeness result can be established for the
Minimal Abnormality Strategy. As for the completeness-proof of HALr, the
proof below relies essentially on a lemma that was discussed in Section 2.6.

Theorem 4.8 If Φ(Γ) is finite and Γ |=HAL A, then A ∈ CnHAL(Γ). (Re-
stricted Completeness for HAL)

Proof. Suppose that Φ(Γ) is finite and A 6∈ CnHAL(Γ). By Definition 4.1,
⋃

i∈I CnAL
xi
(i)

(Γ) 0LLL A. This implies, by the completeness of LLL, that (†)

there is a LLL-model M such that M 
⋃

i∈I CnAL
xi
(i)

(Γ) and M  ¬̌A.

By the supposition and Lemma 3.6, for every i ∈ I, Φ(i)(Γ) is finite. By
Lemma 2.3 for every i ∈ I, MAL

xi
(i)

(Γ) = MLLL(CnAL
xi
(i)

(Γ)). By (†), M ∈

MAL
xi
(i)

(Γ) for every i ∈ I. Hence by Definition 4.2, M ∈ MHAL(Γ).

Notwithstanding the importance of this result, especially for many concrete
applications, it is possible to construct a premise set for which completeness fails.
An example for the class of logics HALm is presented by Diderik Batens in his
[25, Chapter 6]; another one can be found in Section C.1 of Appendix C.

4.2.4 An Alternative Semantics for Reliability

There is an alternative semantics for HALr as well, one that is more similar
to the semantics of ALr. To see how it works, suppose that B ∈ ΩK

(i) and

B 6∈ U (i)(Γ). It follows that ¬̌B ∈ CnALr
(i)

(Γ), whence also ¬̌B ∈ CnHALr(Γ).

In other words, whether or not B ∈ U (j)(Γ) for a j > i, does not matter for the
hierarchic logic. As long as B 6∈ U (i)(Γ), it will be considered reliable.

Relying on this insight, we can obtain an alternative generic semantics for
every logic HALr. For the sake of convenience, let Ω(0) = ∅. For every ∆ ⊂ Ω,
let i∆ be such that ∆ ⊂ Ω(i) and ∆ 6⊂ Ω(i−1). Define the preferred fragment of
∆ as follows:

pf(∆) =df ∆ − Ω(i∆−1)

For example, where ∆ = {♦3p ∧ ¬p,♦2q ∧ ¬q,♦3r ∧ ¬r,♦2s ∧ ¬s}, pf(∆) =
{♦3p ∧ ¬p,♦3r ∧ ¬r}.

Where Dab(∆1), Dab(∆2), . . . are the minimal Dab-consequences of Γ, define
the set of unreliable formulas for the logic HALr:

U?(Γ) =df pf(∆1) ∪ pf(∆2) ∪ . . .
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By this definition, B ∈ U?(Γ) iff B ∈ Ω(i) − Ω(i−1) for an i ∈ I, and B occurs
in a minimal Dab(i)-consequence of Γ. Here we can observe again that the logic
imposes a “hierarchy” on the whole set Ω. If the logic is forced by the premises to
choose between the abnormality A ∈ Ω(i) and the abnormality B ∈ Ω(i+j) −Ω(i),
it will consider B as unreliable.

For example, consider Γ′ = {♦p,♦♦q,¬p ∨ ¬q}. Note that either ♦p ∧ ¬p or
♦♦q∧¬q has to be true in view of these premises and the logic K. Informally, this
means that either a very plausible belief (p) has to be given up, or a slightly less
plausible belief (q). The hierarchic logic HKr then chooses for the least harmful
of these two options: Γ `HKr ♦♦q ∧ ¬q and also Γ `HKr p.

However, this does not mean that if Γ `LLL A ∨̌B, A ∈ Ω(i) and B ∈
Ω(i+j) − Ω(i), then A is necessarily reliable. For example, where the logic is
HKr, and Γ′′ = {♦p,♦2q,♦3r,¬p ∨ ¬q,¬q ∨ ¬r}, (♦2q ∧ ¬q) ∨ (♦3r ∧ ¬r) is a
minimal Dab-consequence of Γ′′. Nevertheless, q is still considered unreliable, in
view of the minimal Dab-consequence (♦p ∧ ¬p) ∨ (♦2q ∧ ¬q). In other words,
only p will be freed from suspicion by the hierarchic logic.

The set of all HALr-models of Γ is the set of all LLL-models M for which
Ab(M) ⊆ U?(Γ). This is established by the following theorem:

Theorem 4.9 M ∈ MHALr(Γ) iff (M ∈ MLLL(Γ) and Ab(M) ⊆ U?(Γ)).

Proof. (⇒) Suppose M ∈ MHALr(Γ). By Fact 4.1, M ∈ MLLL(Γ). So assume
that Ab(M) 6⊆ U?(Γ). Hence M  B for a B ∈ Ω−U?(Γ). Note that there is an
i ∈ I such that B ∈ Ω(i) − Ω(i−1).

Assume moreover that B ∈ U (i)(Γ). This means that there is a minimal
Dab(i)-consequence Dab(∆) of Γ, such that B ∈ ∆. But then, since B ∈ Ω(i) −
Ω(i−1), also B ∈ pf(∆), whence B ∈ U?(Γ) — a contradiction.

Hence B 6∈ U (i)(Γ). This implies that Ab(M)∩Ω(i) 6⊆ U (i)(Γ). By Definition
2.1, M 6∈ MALr

(i)
(Γ), hence by Definition 4.6, M 6∈ MHALr(Γ), which contradicts

the supposition.
(⇐) Suppose M 6∈ MHALr(Γ). By Definition 4.6, M 6∈ MALr

(i)
(Γ) for an

i ∈ I. If M 6∈ MLLL(Γ), the theorem follows immediately. If M ∈ MLLL(Γ),
then by Definition 2.1, M  B for a B ∈ Ω(i) − U (i)(Γ).

Assume now that B ∈ U?(Γ). It follows that there is a minimal Dab-
consequence Dab(∆) of Γ such that B ∈ pf(∆). Let j ≤ i be such that
B ∈ Ω(j) − Ω(j−1). It follows that ∆ ⊆ Ω(j), whence Dab(∆) is a minimal
Dab(j)-consequence of Γ. Since j ≤ i, Dab(∆) is a minimal Dab(i)-consequence

of Γ. But then B ∈ U (i)(Γ) — a contradiction.
It follows that B 6∈ U?(Γ). As a result, Ab(M) 6⊆ U?(Γ).

4.3 A Proof Theory for HAL

As for SAL, it is possible to define a generic proof theory for all logics CnHAL(Γ).
Again, this proof theory is very similar to the existing proof theory for flat adap-
tive logics. It draws on older proposals from [25] and [149], but is on the one
hand simpler, and on the other hand more generic. In Section 4.3.2, the adequacy
of this proof theory with respect to Definition 4.1 is proven. After this general
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approach, a more straightforward and intuitively appealing proof theory for the
class of logics HALr is presented in Section 4.3.3.

4.3.1 I-marking and *-marking

As for superpositions of ALs, the proof theory of HAL uses the inference rules
PREM, RU and RC of ALr = 〈LLL,

⋃

i∈I Ωi, r〉. Again, the only difference
lies in the marking definitions. To understand these, consider the following HKr-
proof from Γh:

1 ♦p PREM ∅
2 ♦♦q PREM ∅
3 ♦♦r PREM ∅
4 ¬p ∨ ¬r PREM ∅
5 p ∨̌(♦p ∧ ¬p) 1; RU ∅
6 p 5; RC {♦p ∧ ¬p}
7 (♦p ∧ ¬p) ∨̌(♦♦r ∧ ¬r) 1,3,4; RU ∅

At line 6, we have derived p on the condition ♦p∧¬p. However, this condition
occurs in a minimal Dab-formula on line 7. So we may ask ourselves: should line
6 be marked?

Recall the definition of Kr
(1). The set of abnormalities for this logic is ΩK

(1) =

ΩK
1 = {♦A ∧ ¬A | A ∈ W l

s}. This indicates that the formula on line 7 is not a
Dab-formula for the logic Kr

1. More generally, we can prove that ♦p∧¬p does not
occur in any Dab-consequence Dab(∆) of Γ, with ∆ ⊂ Ω(1).

3 Hence Γ `Kr
(1)

p,

and therefore also Γ `HKr p. So we need to make sure that line 6 is not marked
in view of the Dab-formula on line 7.

The marking definition for hierarchic ALs require a classification of Dab-
formulas in view of the respective flat adaptive logics AL1,AL2, . . .. As in the
previous chapter, a Dab(i)-formula is the classical disjunction of members of
Ω(i). Dab(∆) is a Dab(i)-formula at stage s iff it has been derived on the empty
condition at stage s. Dab(∆) is a minimal Dab(i)-formula at stage s iff it is a
Dab(i)-formula at stage s, and there is no Dab(i)-formula Dab(∆′) at stage s such
that ∆′ ⊂ ∆. Where Dab(∆1), Dab(∆2), . . . are the minimal Dab(i)-formulas at

stage s, Σ
(i)
s (Γ) =df {∆1,∆2, . . .}, U

(i)
s (Γ) =df

⋃

Σ
(i)
s (Γ) and Φ

(i)
s (Γ) is the set of

minimal choice sets of Σ
(i)
s (Γ).

Recall that Ω(1) ⊆ Ω(2) ⊆ . . .. Hence, if Dab(∆) is a Dab(i)-formula at stage
s, then it is also a Dab(j)-formula for any j ∈ I such that j > i. It follows that

Σ
(1)
s (Γ) ⊆ Σ

(2)
s (Γ) ⊆ . . ., whence also U

(1)
s (Γ) ⊆ U

(2)
s (Γ) ⊆ . . ..

Let us return to our example. In view of the above definitions, U
(1)
7 (Γh) = ∅,

and U
(2)
7 (Γh) = {♦p ∧ ¬p,♦♦r ∧ ¬r}. The next thing we have to do is to assure

that the marking happens in view of the right logic and hence, for the example

above, in view of the right U
(i)
s (Γh). If we would take U (2)(Γh) into account for

3Roughly speaking, the proof goes as follows. Let Θ be the set of all sentential letters minus
r. Let Θ¬♦¬ = {¬♦¬A | A ∈ Θ}. Note that Λ = Γ ∪ Θ ∪ Θ¬♦¬ ∪ {¬♦r} is K-satisfiable.
Every K-model that validates all the members of Λ, falsifies every member of Ω(1). Hence
every Dab-consequence Dab(∆) with ∆ ⊂ Ω(1) is false in this K-model of Γ.
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the marking of line 6, then this line would become marked. However, since we
only need a condition ∆ ⊂ Ω1 to derive p on line 6, there is no need to consider
disjunctions that contain higher-ranked abnormalities. Put differently, as soon

as line 6 is “safe” with respect to U
(1)
7 (Γh), we have sufficient reasons to consider

the formula on line 6 as derived. The following definitions take care of this:

Definition 4.3 (i-unmarking for xi = r) A line with condition ∆ is i- un-

marked at stage s iff ∆ ⊆ Ω(i) − U
(i)
s (Γ).

Definition 4.4 (i-unmarking for xi = m) A line with formula A and condi-

tion ∆ is i-unmarked at stage s iff (i) there is a ϕ ∈ Φ
(i)
s (Γ) such that ∆ ⊆

Ω(i) − ϕ, and (ii) for every ϕ ∈ Φ
(i)
s (Γ), A is derived at stage s on a condition

Θ ⊆ Ω(i) − ϕ.

According to the above marking definitions, line 6 is 1-unmarked at stage 7.
Moreover, it will remain 1-marked in any extension of the proof. As before, we
say that a line is I-unmarked iff it is i-unmarked for an i ∈ I; alternatively, line
l is I-marked iff there is no i ∈ I such that l is i-unmarked.

We are not home yet. Consider the following continuation of the proof from
Γh:

8 q ∨ (♦♦q ∧ ¬q) 2; RU ∅
9 q 8; RC {♦♦q ∧ ¬q}
10 p ∧ q 6,9; RU {♦p ∧ ¬p,♦♦q ∧ ¬q}

Note that the condition of line 10 is not a subset of Ω(1), though it is a subset
of Ω(2). Hence this line cannot be 1-unmarked. Moreover, since its condition has

a non-empty intersection with U
(2)
10 (Γ), it can also not be 2-unmarked. However,

as pointed out in Section 4.1.1, p ∈ CnKm
1

(Γ) and q ∈ CnKm
2

(Γ). Since HKr is
closed under K, this means that there should be a way to derive p∧ q in a proof
from Γh on an unmarked line. This is made possible by the following additional
marking definition:4

Definition 4.5 (∗-unmarking) : a line l is ∗-unmarked at stage s iff, where
“l1, . . . , ln;RU” is its justification, lines l1 and . . . and ln are I-unmarked or
∗-unmarked at stage s.

In view of Definition 4.5, line 10 is ∗-unmarked. We say that a line is unmarked
in an HAL-proof iff it is I-unmarked or ∗-unmarked in this proof. Note that
whether or not a line l is ∗-unmarked depends (in part) on whether the lines
from which line l was derived are themselves marked. Those lines can be either
I-unmarked or ∗-unmarked. The general idea is that if A1, . . . , An are derived on
an unmarked line, then every LLL-consequence of {A1, . . . , An} can be derived

4Batens [25] also introduces an additional rule RU∗, which allows one to derive LLL-
consequences from formulas on preceding lines, on a condition ∗. His definition of ∗-marking is
then applied to those lines that have a condition ∗. The same proposal is pursued in [149]. It
was only afterwards that I found out that such an additional rule is not needed.
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on a ∗-unmarked line in an extension of the proof, by applications of the rule
RU.

To illustrate the above definitions, let me recapitulate the proof from Γh, but
now making explicit which lines are unmarked in view of which definition. To
avoid clutter, I omit the superscript that refers to the stage of the marking. The
symbol X indicates that a line is not unmarked in view of any of the above
definitions. Where i1, . . . , in ∈ I, –i1,...,in indicates that a line is i1-unmarked,
. . ., and in-unmarked. Finally, *-unmarking is indicated by the subscript *.

1 ♦p PREM ∅ –1,2

2 ♦♦q PREM ∅ –1,2

3 ♦♦r PREM ∅ –1,2

4 ¬p ∨ ¬r PREM ∅ –1,2

5 p ∨̌(♦p ∧ ¬p) 1; RU ∅ –1,2,∗

6 p 5; RC {♦p ∧ ¬p} –1

7 (♦p ∧ ¬p) ∨̌(♦♦r ∧ ¬r) 1,3,4; RU ∅ –1,2,∗

8 q ∨ (♦♦q ∧ ¬q) 2; RU ∅ –1,2,∗

9 q 8; RC {♦♦q ∧ ¬q} –2

10 p ∧ q 6,9; RU {♦p ∧ ¬p,♦♦q ∧ ¬q} –∗

The following extension of the proof shows that we cannot finally derive r
from Γh:

11 r ∨̌(♦♦r ∧ ¬r) 3;RU ∅ –1,2,∗

12 r 11;RC {♦♦r ∧ ¬r} X

The interpretation of a marked (unmarked) line at stage s remains identical,
whether it is marked in view of Definition 4.3, 4.4 or 4.5: the second element of
an unmarked line is considered as derived at that stage, the second element of a
marked line is considered as not derived at that stage.

As for superpositions of ALs, final derivability is given by Definitions 3.8 and
3.9. So we obtain the derivability relation `HAL. In Section 4.3.2, I prove that
this derivability relation is sound and complete with respect to the syntactic
consequence relation of HAL, as given by Definition 4.1.

4.3.2 The Adequacy of Final HAL-Derivability

The following is immediate in view of Lemma 2.1 and the fact that the inference
rules of HAL are the same as those of AL:

Fact 4.3 There is a HAL-proof from Γ that contains a line at which A is derived
on a condition ∆ ⊂ Ω iff Γ `LLL A ∨̌Dab(∆).

Just as for the proof theory of SAL, it will be useful to refer to the (Γ-specific)
stage g in the remainder – see Section 3.4.3 where this notion is introduced. Recall
that for every formula A ∨̌Dab(∆) ∈ CnLLL(Γ), A is derived on the condition ∆
at stage g. The following facts will be used in the remainder:

Fact 4.4 Each of the following holds:
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1. A line is marked at stage g iff it is marked in every further extension of stage
g.

2. For every i ∈ I, Σ
(i)
g (Γ) = Σ(i)(Γ), whence also U

(i)
g (Γ) = U (i)(Γ) and

Φ
(i)
g (Γ) = Φ(i)(Γ).

3. Where i ∈ I: if A ∈ CnALm
(i)

(Γ), then for every ϕ ∈ Φ(i)(Γ), A is derived on

a condition ∆ ⊆ Ω(i) − ϕ at stage g.

Lemma 4.2 Where Γ ⊆ Ws and i ∈ I: if A is derived on an i-unmarked line at
stage g, then A ∈ CnALi

(Γ).

Proof. Suppose the antecedent holds for an i ∈ I. (xi = r) It follows that A is

derived on a condition ∆ ⊆ Ω(i) − U
(i)
g (Γ) at stage g. By Facts 4.3 and 4.4.2,

Γ `LLL A ∨̌Dab(∆) for a ∆ ⊆ Ω(i) − U (i)(Γ). By Theorem 2.6, A ∈ CnALr
(i)

(Γ).

(xi = m) It follows that for every ϕ ∈ Φ
(i)
g (Γ), A is derived on a condition ∆ at

stage g such that ∆∩ϕ = ∅. By Fact 4.3, for every such ∆, Γ `LLL A ∨̌Dab(∆).
By Fact 4.4.2 and Theorem 2.7, A ∈ CnALm

(i)
(Γ).

In the remainder, let ΛH
g (Γ) be the set of all formulas A that are derived on

a unmarked line at stage g.

Lemma 4.3 Where Γ ⊆ Ws: if A ∈ ΛH
g (Γ), then A ∈ CnHAL(Γ).

Proof. Suppose A ∈ ΛH
g (Γ). Let l be the line at which A is derived, at stage g.

By an induction on the length of the proof up to line l, I show that (†) there are
B1, . . . , Bn such that {B1, . . . , Bn} `LLL A, and each Bi (i ≤ n) is derived on an
i-unmarked line at stage g, for an i ∈ I.

(Base Case) Suppose the proof up to line l contains only one line, i.e. line l.
It follows that the justification of line l cannot refer to any preceding lines in the
proof, whence line l cannot be ∗-unmarked. Hence line l is i-unmarked for an
i ∈ I.

(Induction Step) Suppose the proof up to line l contains k+ 1 lines. Suppose
moreover that line l is not i-unmarked for any i ∈ I, whence it is ∗-unmarked.
It follows that there are lines l1, . . . , lm with formulae C1, . . . , Cm such that for
every i ≤ m: (i) line li is unmarked at stage g, (ii) the proof up to line l contains
at most k lines and (iii) {C1, . . . , Cm} `LLL A. By the induction hypothesis, (i)
and (ii), for every j ≤ m, there are Dj

1, . . . , D
j
n such that {Dj

1, . . . , D
j
n} `LLL Cj ,

and each Dj
l (l ≤ jn) is derived on an i-unmarked line at stage g, for an i ∈ I.

The rest is immediate in view of (iii) and the monotonicity and transitivity of
LLL.

By (†) and Lemma 4.2, for every i ≤ n: Bi ∈ CnALi
(Γ) for an i ∈ I. By

Definition 4.1, A ∈ CnHAL(Γ).

Theorem 4.10 Where Γ ⊆ Ws: if Γ `HAL A, then A ∈ CnHAL(Γ).

Proof. Suppose A is finally derived in an HAL-proof p from Γ. Let l be the
line on which A is finally derived in p. We may further extend p up to stage g.
Assume that line l is marked in the extension. By Fact 4.4.1, line l is marked in
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every further extension of the proof, which contradicts the fact that A is finally
derived in p. Hence line l is unmarked at stage g. By Lemma 4.3, A ∈ CnHAL(Γ).

Theorem 4.11 Where Γ ⊆ Ws: if A ∈ CnHAL(Γ), then Γ `HAL A.

Proof. Suppose A ∈ CnHAL(Γ). It follows that there is a finite Λ, such that
Λ ⊆

⋃

i∈I CnALi
(Γ) and Λ `LLL A. Let Θ = Λ ∩ CnLLL(Γ) and let Θ′ =

Λ − Θ = {B1, . . . , Bn}. By the compactness and monotonicity of LLL, there is
a finite Γ0 ⊆ Γ such that Γ0 `LLL Θ. Note that Γ0 ∪ Θ′ `LLL Λ, whence by the
transitivity of LLL, (†) Γ0 ∪ Θ′ `LLL A. Also, note that (‡) for every i ≤ n,
there is a ji ∈ I such that Bi ∈ CnALji

(Γ). For every i ≤ n, let Γi be a finite
subset of Γ such that the following holds:

(1) where xji = r: Γi `LLL Bi ∨̌Dab(∆i) for a ∆i ⊆ Ω(ji) − U (ji)(Γ).
(2) where xji = m: Γi `LLL Bi ∨̌Dab(∆i) for a ∆i ⊆ Ω(ji) − ϕ, for a ϕ ∈

Φ(ji)(Γ).

Note that for every Bi, there is such a Γi, in view of (‡), Theorems 2.6, resp. 2.7,
and the compactness of LLL.

We start a HAL-proof from Γ as follows: (i) introduce every member of
Γ0 ∪ Γ1 ∪ . . . ∪ Γn on the empty condition, by the rule PREM, (ii) for every
Bi ∈ Θ′, derive Bi by the rule RC from the formulas in Γi, on a line li with
condition ∆i, and (iii) derive A by the rule RU on a line l, from all the formulas
C ∈ Γ0 ∪ Θ′. Note that (iii) is possible in view of (†). Let s be the last stage of
this (finite) proof.

Note that for each Bi ∈ Θ, ∆i 6= ∅ – otherwise, Bi would be an LLL-
consequence of Γ. Hence the only Dab-formulas that have been derived at stage
s, are members of Γ0 ∪ . . . ∪ Γn ∩ Ω, which is a subset of Γ. We can derive that

for every k ∈ I, U
(k)
s (Γ) ⊆ U (k)(Γ), and Σ

(k)
s (Γ) ⊆ ϕ for every ϕ ∈ Φ(k)(Γ).

By (1), where xji = r: ∆i ⊆ Ω(ij) − U
(ij)
s (Γ). By (2), where xji = m: ∆i ⊆

Ω(ij) − ϕ for every ϕ ∈ Φ
(ij)
s (Γ). It follows that all the lines li are ji-unmarked

at stage s. Since also all the formulas C ∈ Γ0 are derived on a 1-unmarked line
(their condition is the empty set), it follows that line l is ∗-unmarked at stage s.

Suppose line l is not ∗-unmarked in an extension of this proof. We may then
further extend the proof up to stage g. Note that if xji = m, then by Fact 4.4.3,
for every ϕ ∈ Φ(ji)(Γ), Bi is derived on a condition ∆ ⊆ Ω(ji) −ϕ at stage g. By

(2) and Fact 4.4.2, ∆i ⊆ Ω(ji) − ϕ for a ϕ ∈ Φ
(ji)
g (Γ). Also, if xji = r, then in

view of (1) and Fact 4.4.2, ∆i ⊆ Ω(ji) − U
(ji)
g (Γ). We can infer that all the lines

li are ji-unmarked at stage g. Finally, all the lines on which the members of Γ0

were derived are marked at stage g, since their condition is the empty set. As a
result, line l is ∗-unmarked at stage g. By Definitions 3.8 and 3.9, Γ `HAL A.

The following corollaries are immediate in view of Theorems 4.6, 4.7 and 4.8:

Corollary 4.2 Where Γ ⊆ Ws: Γ `HALr A iff Γ |=HALr A.

Corollary 4.3 Where Γ ⊆ Ws and Φ(Γ) is finite: Γ `HAL A iff Γ |=HAL A.
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4.3.3 An Alternative Proof Theory for Reliability

It is fairly easy to obtain an alternative proof theory for HALr, which mimics
the alternative semantics spelled out in Section 4.2.4. The inference rules for
this proof theory are exactly the same as for the flat logic ALr – see Section
2.3. Where Dab(∆1), Dab(∆2), . . . are the minimal Dab-formulas at stage s, we
define a stage-dependent variant of U?(Γ) as follows:

U?s (Γ) =df pf(∆1) ∪ pf(∆2) ∪ . . .

Definition 4.6 HALr?-Marking: a line l is marked at stage s iff, where ∆ is
its condition, ∆ ∩ U?s (Γ) 6= ∅.

Final derivability for this proof theory can be given by Definitions 3.8 and 3.9
– this yields a proof theory that is sound and complete with respect to HALr.
However, in this particular case, it is possible to do without the notion of infinite
extensions in the definitions for final derivability. This has an important conse-
quence for the upper bound complexity of HALr, which is identical to that of
flat adaptive logics that use the Reliability Strategy.5

Definition 4.7 A is finally derived from Γ on line l of a finite stage s of a
HALr?-proof iff (i) A is the second element of line l, (ii) line l is unmarked at
stage s, and (iii) for every finite extension of the proof at stage s, in which line
l is marked, there is a further finite extension in which line l is unmarked again.

Definition 4.8 Γ `HALr? A iff A is finally derived on a line of a HALr?-proof
from Γ.

In the remainder of this section, it is proven that Γ `HALr? A iff A ∈
CnHALr(Γ).

Lemma 4.4 For every i ∈ I: if A ∈ CnALr
(i)

(Γ), then Γ `LLL A ∨̌Dab(∆) for

a ∆ ⊂ Ω and ∆ ∩ U?(Γ) = ∅.

Proof. Suppose A ∈ CnALr
(i)

(Γ), with i ∈ I. By Theorem 2.6.1, (†) Γ `LLL

A ∨̌Dab(∆) for a ∆ ⊂ Ω(i) and ∆ ∩ U (i)(Γ) = ∅. Since Ω(i) ⊂ Ω, ∆ ⊂ Ω.
Assume that ∆∩U?(Γ) 6= ∅. By the definition of U?(Γ), there is a minimal Dab-
consequence Dab(Θ), with Θ ⊂ Ω(j) and Θ 6⊂ Ω(j−1), such that pf(Θ) ∩ ∆ 6= ∅,
whence (Θ − Ω(j−1)) ∩ ∆ 6= ∅. As a result, Θ ∩ ∆ 6= ∅ and j ≤ i. This implies

that Dab(Θ) is a minimal Dab(i)-consequence of Γ. But then ∆ ∩ U (i)(Γ) 6= ∅,
which contradicts (†).

Lemma 4.5 Where Γ ⊆ Ws, i ∈ I, and ∆ ⊂ Ω(i) − Ω(i−1) is non-empty and
finite: if ∆ ∩ U?(Γ) = ∅, then ¬̌Dab(∆) ∈ CnHALr(Γ).

5As explained in Chapter 2, the upper bound complexity of ALr can be reduced to Σ0
3 —

see page 33.
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Proof. Suppose (†) ∆∩U?(Γ) = ∅ for a finite ∆ ⊂ Ω(i)−Ω(i−1). Assume that (‡)

∆∩U (i)(Γ) 6= ∅. This implies that there is a minimal Dab(i)-consequence Dab(Θ)
of Γ, such that ∆∩Θ 6= ∅. Since ∆ ⊂ Ω(i)−Ω(i−1), Θ 6⊂ Ω(i−1). By the definition
of U?(Γ), Θ − Ω(i−1) ⊆ U?(Γ). As a result, ∆ ∩ U?(Γ) 6= ∅, which contradicts

(†). Hence (‡) is false: ∆ ∩ U (i)(Γ) = ∅, whence ¬̌Dab(∆) ∈ CnALr
(i)

(Γ). By

Definition 4.1 and the reflexivity of LLL, ¬̌Dab(∆) ∈ CnHALr(Γ).

Theorem 4.12 Where Γ ⊆ Ws: A ∈ CnHALr(Γ) iff Γ `LLL A ∨̌Dab(∆) for a
finite ∆ ⊂ Ω such that ∆ ∩ U?(Γ) = ∅.

Proof. (⇒) Suppose A ∈ CnHALr(Γ). By the compactness of LLL, there are
B1, . . . , Bn such thatB1 ∈ CnALr

i1
(Γ), . . . , Bn ∈ CnALr

in
(Γ) and {B1, . . . , Bn} `LLL

A. By Lemma 4.4: for every j ∈ {1, . . . , n}: Γ `LLL Bj ∨̌Dab(∆j) for a ∆j ⊂ Ω
for which ∆ ∩ U?(Γ) = ∅. By CL-properties, Γ `LLL A ∨̌Dab(∆1 ∪ . . . ∪ ∆n),
where (∆1 ∪ . . . ∪ ∆n) ⊂ Ω, and (∆1 ∪ . . . ∪ ∆n) ∩ U?(Γ) = ∅.

(⇐) Suppose that Γ `LLL A ∨̌Dab(∆) for a ∆ and ∆∩U?(Γ) = ∅. For every
i ∈ I, define ∆i = ∆ ∩ (Ω(i) − Ω(i−1)). Since ∆ is finite, ∆ = ∆1 ∪ . . . ∪ ∆n for
an n ∈ I. By Lemma 4.5, ¬̌Dab(∆i) ∈ CnHALr(Γ) for every i ∈ {1, . . . , n}. By
CL-properties and Definition 4.1, A ∈ CnHALr(Γ).

Lemma 4.6 There is a HALr?-proof from Γ that contains a line on which A is
derived on the condition ∆ ⊂ Ω iff Γ `LLL A ∨̌Dab(∆).

Proof. Immediate in view of Lemma 2.1 and the fact that the inference rules AL
are identical to those of HALr?.

Lemma 4.7 If Γ `LLL A ∨̌Dab(∆) for a finite ∆ ⊂ Ω such that ∆∩U?(Γ) = ∅,
then there is a finite HALr?-proof from Γ such that A is derived in it on an
unmarked line with condition ∆.

Proof. Suppose the antecedent holds. Due to the compactness of LLL, there is a
Γ′ = {A1, . . . , An} ⊆ Γ such that Γ′ `LLL A ∨̌Dab(∆ψ). Let the adaptive proof
p be constructed as follows. At line 1 we introduce the premise A1 by PREM,
. . . , and at line n we introduce the premise An by PREM. At line n+1 we derive
A by RC on the condition ∆. Let s be the stage consisting of lines 1 up to n+ 1.
Since Γ′ ⊆ Γ ⊆ W , all Dab-formulas B1, . . . , Bm that have been derived at stage
s (if any) are members of Ω. Hence U?s (Γ′) = {B1, . . . , Bm} ⊆ U?(Γ). Since
∆ ∩ U?(Γ) = ∅, also ∆ ∩ U?s (Γ′) = ∅. Thus, line n+ 1 is unmarked.

Theorem 4.13 Where Γ ⊆ Ws: Γ `HALr? A iff Γ `LLL A ∨̌Dab(∆) for a finite
∆ ⊂ Ω such that ∆ ∩ U?(Γ) = ∅.

Proof. (⇒) Suppose Γ `HALr? A. Hence there is a finite HALr?-proof from Γ
such that A is finally derived in it on a line l. Let ∆ be the condition of line l.
Note that by Lemma 4.6, Γ `LLL A ∨̌Dab(∆).

Assume that ∆ ∩ U?(Γ) 6= ∅. It follows that there is a minimal Dab-
consequence Dab(Θ) of Γ such that pf(Θ) ∩ ∆ 6= ∅. By the compactness of
LLL, there are C1, . . . , Cm ∈ Γ such that {C1, . . . , Cm} `LLL Dab(Θ). So we
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may extend the proof by introducing every premise Ci (i ≤ m) on the condition
∅, and derive Dab(Θ) from the latter. Let t be the last stage of this (finite)
proof. Since Dab(Θ) is a minimal Dab-consequence of Γ, we can derive that at
every later stage t′, pf(Θ) ⊆ U?t′(Γ). But then line l is marked in every (finite or
infinite) extension of the proof at stage t — a contradiction.

(⇐) Suppose that (†) Γ `LLL A ∨̌Dab(∆) for a finite ∆ ⊂ Ω such that
∆ ∩ U?(Γ) = ∅. By Lemma 4.7, there is a finite HALr?-proof from Γ in which
A is derived on the condition ∆, on an unmarked line n+ 1.

Suppose that line n + 1 is marked in a finite extension of this proof. Where
t is the stage of this extension, let Σt(Γ) = {Θ1, . . . ,Θm}. For every i ≤ m, let
Θ′
i ⊆ Θi be a minimal Dab-consequence of Γ.

By the compactness of LLL, for every i ≤ m, there are Ci1, . . . , C
i
ki

∈ Γ

such that {Ci1, . . . , C
i
ki
} `LLL Dab(Θ′

i). So we may further extend the proof

by introducing every premise Ciil (i ≤ m and l ≤ ik) on the condition ∅, and
derive all formulas Dab(Θ′

i) from these premises. Where t′ is the stage of this
(finite) further extension, we can derive that U?t′(Γ) ⊆ U?(Γ).6 It follows that
U?t′(Γ) ∩ ∆ = ∅, whence line n + 1 is unmarked at stage t′. By Definition 2.6,
Γ `HALr? A.

By Theorems 4.12 and 4.13, we obtain:

Theorem 4.14 Where Γ ⊆ Ws: Γ `HALr? A iff A ∈ CnHALr(Γ).

4.4 Metatheory of HAL

This section contains some interesting meta-theoretic properties of HAL. I will
sometimes restrict the focus to HALr and HALm to simplify the discussion –
the reader can easily see when and how the results generalize to the whole class
of hierarchic logics. As in the previous chapter, I first discuss the semantic prop-
erty of Strong Reassurance, and afterwards consider properties of the syntactic
consequence relation of HAL, as given by Definition 4.1.

4.4.1 Strong Reassurance

Recall the discussion of the different alternatives for the regular Strong Reas-
surance property in the penultimate section of the previous chapter (see pages
81-82). As shown below, and in contrast to superposition-logics, all logics HAL
satisfy property SR3 from that section: if an LLL-model M of Γ is disselected
by the logic HAL, then there is a selected model M ′ and an i ∈ I such that
Ab(M ′)∩Ω(i) ⊂ Ab(M)∩Ω(i). It suffices to prove that HALm has this property
– as the proof of Theorem 4.16 shows, we can easily generalize this result to all
logics HAL in view of Lemma 4.1. In the remainder of this section, let Ab(i)(M)
denote the set {B ∈ Ω(i) |M  B}.

Theorem 4.15 If M ∈ MLLL(Γ)−MHALm(Γ), then there is an i ∈ I and an
M ′ ∈ MHALm(Γ) such that Ab(i)(M

′) ⊂ Ab(i)(M).

6Note that the only minimal Dab-formulas at stage t′ are Dab(Θ′
1), . . . , Dab(Θ′

m), and
abnormalities B ∈ Γ that were introduced by the premise rule.
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Proof. Suppose M ∈ MLLL(Γ)−MHALm(Γ). Let i ∈ I be smallest such that
M 6∈ MALm

(i)
(Γ), whence (1) for all j < i, M ∈ MALm

(j)
(Γ). By the Strong

Reassurance of ALm
(i) (see Theorem 2.12), there is an ALm

(i)-model M ′ such that

Ab(i)(M
′) ⊂ Ab(i)(M). This implies that for all j < i, Ab(j)(M

′) ⊆ Ab(j)(M),
whence by (1), it follows that (2) M ′ ∈ MALm

(j)
(Γ) for all j ∈ I, j ≤ i. Let

ϕ(i) = Ab(i)(M
′), whence (3) ϕ(i) ⊂ Ab(i)(M). In the remainder of this proof, I

show that there is an M ′′ ∈ MHALm(Γ) such that Ab(i)(M
′′) = ϕ(i), and hence

by (3), Ab(i)(M
′′) ⊂ Ab(i)(M).

Note that by (2) and Theorem 2.1, the following holds:

(4) ϕ(i) ∩ Ω(j) ∈ Φ(j)(Γ) for all j ≤ i.

Define the sets ϕ(i+1), ϕ(i+2), . . . recursively, as follows: for all j ∈ I, j > i, ϕ(j) is

an arbitrary element in Φ
[j]
ϕ(j−1)

.7 In view of the construction, we can derive that
(5) for every j ∈ I, j > i, ϕ(j) ⊆ Ω[j].

8 Let ϕ⊕ = ϕ(i) ∪ ϕ(i+1) ∪ . . .. It follows
from (5) that

(6) ϕ⊕ ∩ Ω(i) = ϕ(i).

In view of Lemma 3.2, we can moreover derive that

(7) for all j ≥ i, ϕ⊕ ∩ Ω(j) ∈ Φ(j)(Γ).

From (4) and (7), we can derive:

(8) ϕ⊕ ∈ Φ(k)(Γ) for every k ∈ I.

I will now prove that ϕ⊕ is a minimal choice set of Σ(Γ). First of all, assume
that ϕ⊕ is not a choice set of Σ(Γ). Hence there is a minimal Dab-consequence of
Γ, sayDab(Θ), such that ϕ⊕∩Θ = ∅. Since Θ is finite, there is a k ∈ I: Θ ⊂ Ω(k),
whence (ϕ⊕ ∩Ω(k))∩Θ = ∅. Since Dab(Θ) is a minimal Dabk-consequence of Γ,

ϕ⊕ ∩ Ω(k) 6∈ Φ(k)(Γ). This contradicts (8). Hence ϕ⊕ is a choice set of Σ(Γ).
Assume now that ϕ⊕ is not a minimal choice set of Σ(Γ). Since ϕ⊕ is a

choice set of Σ(Γ), this implies that there is a ψ ∈ Φ(Γ) = ψ ⊂ ϕ⊕. Hence
there is a A ∈ ϕ⊕ − ψ, where A ∈ Ω(k) for a k ∈ I. However, since by (8),

ϕ⊕ ∩ Ω(k) ∈ Φ(k)(Γ), we have by Lemma 3.1 that there is a minimal Dabk-
consequence Dab(Θ) of Γ, for which Θ ∩ ϕ⊕ = A, hence Θ ∩ ψ = ∅. This
contradicts the fact that ψ is a choice set of Σ(Γ). As a result, ϕ⊕ ∈ Φ(Γ).

By Theorem 2.2, there is an M ′′ ∈ MLLL(Γ), such that Ab(M ′′) = ϕ⊕. By
Theorem 2.1 and (8), this model is an ALm

(k)-model of Γ for every k ∈ I. Hence by

Definition 4.2, it is an HALm-model of Γ. Furthermore, by (6), Ab(i)(M
′′) = ϕ(i).

Theorem 4.16 If M ∈ MLLL(Γ)−MHAL(Γ), then there is an i ∈ I and an
M ′ ∈ MHAL(Γ) such that Ab(i)(M

′) ⊂ Ab(i)(M).

Proof. Suppose M ∈ MLLL(Γ)−MHAL(Γ). By Lemma 4.1, M ∈ MLLL(Γ)−
MHALm(Γ). By Theorem 4.15, there is an i ∈ I and an M ′ ∈ MHALm(Γ) such
that Ab(i)(M

′) ⊂ Ab(i)(M). By Lemma 4.1, M ′ ∈ MHAL(Γ).

7This set was defined on page 48.
8Recall that, where j ∈ I − {1}, Ω[j] =df Ωj − Ω(j−1) = Ωj − (Ω1 ∪ . . . ∪ Ωj−1).
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Corollary 4.4 If Γ has LLL-models, it has HAL-models. (Semantic Reassur-
ance)

4.4.2 Cumulative Indifference and Idempotence

As in the previous chapter, I will only discuss the cumulative indifference property
for the restricted classes of hierarchic logics, where each flat logic in the combi-
nation uses the same strategy: HALr and HALm. Also, I treat Cumulative
Transitivity and Cautious Monotonicity separately.

Cumulative Transitivity. First of all, HALr does not in general have the
Fixed Point property:

Proposition 4.1 There is a hierarchic adaptive logic HALr and a Γ ⊆ Ws such
that CnHALr(CnHALr(Γ)) 6= CnHALr(Γ).

Proof. Consider the hierarchic logic HK2r from Section 4.1. Let

Γt = {♦p,♦♦q,♦♦r,¬p ∨ ¬q,¬r ∨ ¬q}.

Note that Γt has no minimal Dab1-consequences; the minimal Dab2-consequence
of Γt are:

(♦p ∧ ¬p) ∨ (♦♦q ∧ ¬q)
(♦♦r ∧ ¬r) ∨ (♦♦q ∧ ¬q)

Hence U (1)(Γt) = ∅ and U (2)(Γt) = {♦p ∧ ¬p,♦♦q ∧ ¬q,♦♦r ∧ ¬r}. It is easy
to see that Γt 0HK2r r: consider a K-model M of Γt such that (i) M  ¬̌A for
every A ∈ ΩK

1 ∪ (ΩK
2 −{!2q, !2r}) and (ii) M !2q, !2r. In view of the above Dab-

consequences, this model is a Kr
(1)-model of Γt and a Kr

(2)-model of Γt, whence

it is an HK2r-model of Γt. In view of (ii), M 6 r.
The only minimal Dab-consequence of CnHK2r(Γt) is (♦♦q ∧ ¬q). That

is, since ¬(♦p ∧ ¬p) is Kr
(1)-derivable from Γt, it is HK2r-derivable from Γt,

and hence ♦♦q ∧ ¬q ∈ CnHK2r(Γt). This means that ♦♦r ∧ ¬r is no longer
considered unreliable when the consequence relation is iterated, such that r ∈
CnHK2r(CnHK2r(Γt)).

By the reflexivity of HK2r and Lemma 2.7, we can immediately infer that
HK2r is also not cumulatively transitive. Also, logics HALm are not in general
idempotent or cumulatively transitive – I refer to Section C.2 in Appendix C
for a counterexample. In the same chapter, it will be shown that given certain
(weak) restrictions on the premise sets, HALm is cumulatively transitive and
hence also idempotent.

Cautious Monotonicity Logics in HALx-format are not in general cautiously
monotonic. For HALr, this can be seen in view of a very simple example.
Let Γm = {♦p,♦♦q,¬p ∨ ¬q}. Note that p ∈ CnHK2r(Γm), whence also !2q ∈
CnHK2r(Γm). This implies that e.g. !2q∨!2r ∈ CnHK2r(Γm). Also, !2q is the
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only unreliable abnormality in view of HK2r, whence e.g. ¬!2r is an HK2r-
consequence of Γm.

Note that !2q ∨̌!2r is a minimal Dab-consequence of Γm ∪ {!2q∨!2r}. Hence
!2r is an unreliable formula for the logic Kr

(2): !2r ∈ U (2)(Γ ∪ {!2q∨!2r}). As a

result, ¬!2r 6∈ CnHK2r(Γm ∪ {!2q∨!2r}).
For logics HALm, a counterexample of the Cautious Monotonicity property

is presented in Section C.4 of Appendix C. However, it can be shown that the
semantic consequence relation of HALm is cumulatively indifferent.9 Hence, in
view Theorem 4.8, it seems plausible (but was not yet proven) that given certain
restrictions on the premise sets – e.g. that Φ(Γ) is finite –, HALm is cautiously
monotonic.10

4.4.3 Normal Premise Sets

Suppose that Γ `HALr A. By Theorem 4.12, there is a ∆ ⊂ Ω such that Γ `LLL

A ∨̌Dab(∆) and ∆∩U?(Γ) = ∅. It immediately follows that Γ `ULL A. Together
with Corollary 4.1, this implies:

Theorem 4.17 CnHAL(Γ) ⊆ CnULL(Γ)

Also, HAL is just as well-behaved for premise sets up to level i as SAL:

Theorem 4.18 If Γ is normal up to level i, then CnULL(i)
(Γ) ⊆ CnHAL(Γ).

Proof. Immediate in view of the fact that CnAL
xi
(i)

(Γ) ⊆ CnHALm(Γ) (see Defi-

nition 4.1), Definition 3.15, and Theorem 2.17.

In view of Theorem 4.18, Theorem 4.17 and the monotonicity and compact-
ness of LLL, the proof of the following can be safely left to the reader:

Theorem 4.19 If Γ is normal, then CnHAL(Γ) = CnULL(Γ).

4.4.4 Relations Between Logics

In Chapter 1, I wrote that prioritized ALs are often stronger than their flat coun-
terparts. This point requires some qualification. Recall that ALx was defined
by (i) LLL, (ii) Ω =

⋃

i∈I Ωi and (iii) the strategy x ∈ {r,m}. We have already
seen numerous examples where HKr (HKm) is stronger than Kr (HKr), but
does this hold for all premise sets Γ, and all logics HALx? Where x = r, the
hierarchic logic is always at least as strong as its flat nephew, as is stated by the
following theorem and the subsequent proposition:

Theorem 4.20 CnALr(Γ) ⊆ CnHALr(Γ).

9This is an immediate corollary of the equivalence of this semantics to the ALm
@ -semantics

(as shown in Chapter 6), and the fact that the latter is cumulatively indifferent (see Chapter
5).

10The difficulty lies in the proof of the following lemma: whenever Γ′ ⊆ CnHAL(Γ) and Φ(Γ)
is finite, then also Φ(Γ ∪ Γ′) is finite.
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Proof. Suppose A ∈ CnALr(Γ). By Theorem 2.6, Γ `LLL A ∨̌Dab(∆), for a
(finite) ∆ ⊂ Ω such that ∆ ∩ U(Γ) = ∅. Consider the smallest i ∈ I for which
∆ ⊂ Ω(i). Since U (i)(Γ) ⊆ U(Γ), ∆ ∩ U (i)(Γ) = ∅. Hence, by Theorem 2.6,
A ∈ CnALr

(i)
(Γ). By Definition 4.1 and the reflexivity of LLL, A ∈ CnHALr(Γ).

Hence, it is the Minimal Abnormality Strategy that enforced the use of the
adverb “often”. First of all, when Φ(Γ) is finite, the counterpart of Theorem 4.20
can easily be proven:

Theorem 4.21 Where Φ(Γ) is finite: CnALm(Γ) ⊆ CnHALm(Γ).

Proof. Suppose Φ(Γ) is finite and A ∈ CnALm(Γ). Let Φ(Γ) = {ϕ1, . . . , ϕn}. By
Theorem 2.7: (?) for every ϕj with j ∈ {1, . . . , n}, there is a ∆j ⊂ Ω such that
∆j ∩ ϕj = ∅ and Γ `LLL A ∨̌Dab(∆j). Consider the smallest i ∈ I for which
(∆1 ∪ . . . ∪ ∆n) ⊆ Ω(i). By Lemma 3.4, for every ϕ ∈ Φ(i)(Γ), there is a ϕj with

j ∈ {1, . . . , n} such that ϕj ∩ Ω(i) = ϕ. By (?): for every ϕ ∈ Φ(i)(Γ), there is
a ∆j ⊂ Ω(i) such that Γ `LLL A ∨̌Dab(∆j) and ∆j ∩ ϕ = ∆j ∩ (ϕj ∩ Ω(i)) =
∆j ∩ ϕj = ∅. By Theorem 2.7, Γ `ALm

(i)
A. By Definition 4.1 and the reflexivity

of LLL, A ∈ CnHALm(Γ).

There are Γ for which CnKm(Γ) ⊂ CnHKm(Γ) – again, see the example Γh

in Section 4.1.1. More generally, a formula A that is derivable from the premise
set by the logic ALx, is usually derivable by one of the logics ALx

(i) from the
combined logic HALx. However, this does not hold in general:

Proposition 4.1 There are Γ ⊆ Ws for which CnKm(Γ) 6⊆ CnHKm(Γ).

An example of this can be found in Section C.6 of Appendix C. The crucial
feature of this example is that infinitely many conditions, belonging to infinitely
many different ΩK

i ’s are necessary to derive the formula A. As a result, no
logic Km

(i) can yield A, whereas the flat adaptive logic that takes as its set of

abnormalities
⋃

i∈N
ΩK
i does yield A.

Note that this difficulty can only arise for hierarchic logics that are built up
from an infinite number of flat adaptive logics – where I = {1, . . . , n}, obviously
CnALx(Γ) = CnALx

(n)
(Γ), whence CnALx(Γ) ⊆ CnHAL(Γ) by the reflexivity of

LLL. Hence if there are finitely many flat adaptive logics in the combination,
the hierarchic adaptive logics are always at least as strong as their flat nephews.

For those who might still see Proposition 4.1 as a drawback of hierarchic
adaptive logics, note that we can simply change Definition 4.1, adding CnALx(Γ)
inside the brackets, to ensure that HALx is always at least as strong as ALx. It
seems highly likely – but was not proven so far – that both the proof theory and
semantics of HAL can easily be generalized in order to incorporate the resulting
class of logics.





Chapter 5

Lexicographic Adaptive
Logics

This Chapter is based on the paper “Extending the Standard Format of Adaptive
Logics to the Prioritized Case” (Logique & Analyse, to appear), which was co-
authored by Christian Straßer. I thank Peter Verdée for his critical remarks on
an earlier draft.

In this chapter, we develop a third format for prioritized ALs, i.e. that of
lexicographic adaptive logics. As far as we know, logics in this format cannot be
reduced to (a combination of) ALs in standard format. This format is however
very close to the standard format in numerous respects. It also makes use of
the characterization by a triple, but now replacing the set of abnormalities Ω by
a sequence of sets of abnormalities 〈Ω1,Ω2, . . .〉, where the different subscripts
of the sets refer to their priority ranking. Both proof theory and semantics of
the new format have the same overall structure as the standard format. The
difference is that the strategy is adjusted to the prioritized setting.

Since we see no way to reduce the new format to the standard format, we
will have to transfer a lot of meta-theoretic results from the latter to the former.
However, in view of the strong similarity between both, much of the work can
easily be achieved through an adaptation of the meta-proofs from [21, 25]. As a
result, the format of lexicographic ALs inherits most of the nice properties of the
standard format – to be sure, it inherits all those properties which we were able
to check so far.

This chapter is structured as follows. In Section 5.1, we present the basic idea
behind lexicographic ALs, and how this is implemented at the semantic level. The
semantics are illustrated by means of a concrete prioritized adaptive logic similar
to the K-based logics from previous chapters. Next, we present a generic proof
theory for logics in this new format (Section 5.2). In the rather lengthy Section
5.3, the core metatheoretic properties for the format are established.

Notational Conventions – a Brief Reminder Before we start, let us insert
a brief reminder of some notational conventions from the two preceding chapters.

109
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Recall that I is used as a metavariable for initial subsequences of N = {1, 2, . . .}.
Where the sequence of sets of abnormalities 〈Ωi〉i∈I is given, Ω =df

⋃

i∈I Ωi and
Ω(i) = Ω1 ∪ . . . ∪ Ωi.

Where LLL and 〈Ωi〉i∈I are given, ALx refers to the flat AL defined by (i)
LLL, (ii) Ω and (iii) a strategy x ∈ {r,m}. We use Dab(∆) as a metavariable
for disjunctions of members of Ω, and Σ(Γ), U(Γ),Φ(Γ),Σs(Γ), Us(Γ),Φs(Γ) to
denote the sets of (sets of) abnormalities that are used in the semantics, resp.
proof theory of ALr, resp. ALm – we refer to Chapter 2 for the precise definitions.
Finally, Ab(M) =df {A ∈ Ω |M  A}.

As in previous chapters, we will use K-based logics to illustrate the format
of prioritized adaptive logics studied in this chapter. Recall that K is Kripke’s
normal modal logic, extended with a number of axioms to deal with the checked
connectives – see page 28. The language of K is Ľm and the associated set of
formulas W̌m. Where i ∈ N, let ♦iA abbreviate A, preceded by i diamonds. Let
!iA abbreviate ♦iA ∧ ¬A. Finally, ΩK

i =df {!iA | A ∈ W l
c}, where W l

c denotes
the set of all sentential letters and their negation.

5.1 The Lexicographic Turn

5.1.1 General Characteristics of AL@

Before we explain the idea behind a lexicographic selection of models, let us
start with a general characterization of lexicographic ALs. As they are very
similar to ALs in standard format, we can be rather brief here. Every logic
AL@ : ℘(W̌s) → ℘(W̌s) is characterized by a triple:

1. A lower limit logic LLL
2. A sequence of sets of abnormalities: 〈Ωi〉i∈I
3. A strategy: @-Minimal Abnormality or @-Reliability

Let us briefly discuss the elements of the above triple. First of all, just like
AL, every logic AL@ is built on top of a logic LLL, which is obtained from LLL
as described in Section 2.1. The upper limit logic of AL@ is identical to the
upper limit logic of AL, which was denoted by ULL.

Recall that intuitively, every logic AL avoids abnormalities “as much as pos-
sible”. Likewise, every logic AL@ avoids abnormalities “as much as possible,
in view of their rank”. How this is done precisely will be explained below, and
depends on the strategy of AL@. As for AL, the two strategies give rise to two
subclasses of prioritized ALs: ALm

@ and ALr
@.

Since the ALm
@ -semantics is technically less involving than the ALr

@-semantics,
we will start with the former in Section 5.1.2. In Section 5.1.3, we will present
an example of a logic in the new format: Km

@ . After that, an alternative way
to characterize the ALm

@ -models of a premise set is discussed. Finally, in Sec-
tion 5.1.5, we show how a Reliability-variant is obtained from this alternative
characterization.
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5.1.2 The ALm

@ -semantics

In Chapter 2, we explained that flat ALs select a subset of the LLL-models of a
premise set in view of their abnormal part. For ALm, a model M is selected iff its
abnormal part Ab(M) is minimal with respect to set-inclusion. The prioritized
logic ALm

@ also selects LLL-models in view of their abnormal part, but takes into
account the rank of abnormalities. In view of the prioritization Ab(M) is not flat
but is structured and may be represented by the tuple 〈Ab(M) ∩ Ω1, Ab(M) ∩
Ω2, . . .〉. Just like the flat abnormal parts were partially ordered in the standard
format by ⊂, the structured abnormal parts of lexicographic ALs may be partially
ordered by the lexicographic order @lex:

1

Definition 5.1 Where ∆,∆′ ⊆ Ω: 〈∆ ∩ Ωi〉i∈I @lex 〈∆′ ∩ Ωi〉i∈I iff (1) there is
an i ∈ I such that for all j < i, ∆ ∩ Ωj = ∆′ ∩ Ωj, and (2) ∆ ∩ Ωi ⊂ ∆′ ∩ Ωi.
We write ∆ @ ∆′ iff 〈∆ ∩ Ωi〉i∈I @lex 〈∆′ ∩ Ωi〉i∈I .

Just as for flat ALs, the LLL-models were selected whose abnormal part was
⊂-minimal, we now select the LLL-models whose abnormal part is @-minimal:

Definition 5.2 M ∈ MALm
@

(Γ) iff M ∈ MLLL(Γ) and there is no M ′ ∈
MLLL(Γ) such that Ab(M ′) @ Ab(M).

As we did with ⊂-minimally abnormal models, we can speak of @-minimally
abnormal models. Lemma 5.1 below states that the ⊂-order on ℘(Ω) is included
in the @-order on ℘(Ω).

Lemma 5.1 Where ∆,∆′ ⊆ Ω: if ∆ ⊂ ∆′, then ∆ @ ∆′.

Proof. Suppose ∆ ⊂ ∆′. Then for all i ∈ I, ∆∩Ωi ⊆ ∆′∩Ωi and there is an i ∈ I
such that ∆∩Ωi ⊂ ∆′ ∩Ωi. Take the smallest i ∈ I for which ∆∩Ωi ⊂ ∆′ ∩Ωi,
whence for all j < i, ∆ ∩ Ωi = ∆′ ∩ Ωi. By Definition 5.1, ∆ @ ∆′.

By Lemma 5.1, we immediately obtain:

Theorem 5.1 Every ALm
@ -model of Γ is an ALm-model of Γ.

5.1.3 An Example: Km

@

The lexicographic adaptive logic Km
@ is characterized by the following triple:

1. The modal logic K
2. The sequence 〈ΩK

i 〉i∈N

3. The Strategy: @-Minimal Abnormality

1Lexicographic orders are a well-known ordering type and are mentioned in any represen-
tative mathematical dictionary or encyclopedia (see e.g. [82, p. 1170]). Lexicographic orders
have already previously proven to be useful for the formal explication of reasoning on the basis
of prioritized information. Lehmann employed them to deal with priorities among defaults
[89], Nebel [114] in order to deal with prioritized theory bases and Hansen [69] applied Nebel’s
preference order to the context of prioritized imperatives.
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M1 M2 M3 M4 M5 M6 M7 M8

p, q, p, q, ¬p, q, ¬p, q, ¬p, q, ¬p, q, ¬p,¬q, ¬p,¬q,
r, s ¬r, s r, s r,¬s ¬r, s ¬r,¬s r, s ¬r, s

!1p + + + + + +

!1¬q + + + + + +

!1r + + + +

!2s + +

!2¬s + + + + + +

Table 5.1: A representation of the K-models of Γ1. The first row shows the
non-modal propositions each model validates, the second row the abnormalities
of rank 1 and the third row the abnormalities of rank 2.

To compare the format for prioritized logics with flat adaptive logics, it will be
convenient to refer to the logics Km and Kr, defined by (i) K, (ii) ΩK =

⋃

i∈N
ΩK
i

and (iii) Minimal Abnormality, respectively Reliability.

The logic Km
@ allows for the defeasible inference from ♦iA (where i ∈ N)

to A. This is done by defining “A is plausible (to degree i), but false” as an
abnormality (of rank i).2 Consider the prioritized belief base Ψex = 〈{p ⊃
q, q ∨ s, p ⊃ s}, {p,¬q ∧ r}, {s,¬s}〉. The translation gives us Ψ♦

ex = {p ⊃
q, q ∨ s, p ⊃ s,♦p,♦(¬q ∧ r),♦♦s,♦♦¬s}. To facilitate the reading, let hence-
forth Γ1 = Ψ♦

ex. Let us take a look at the K-models of Γ1. Note that every
such model validates the modal formulas ♦p,♦¬q,♦r,♦♦s and ♦♦¬s. Table 5.1
represents these models in terms of (1) the non-modal literals they validate and
(2) their abnormal part. For reasons of simplicity, we restrict the scope to those
propositional letters that occur in Γ1.3

Figure 5.1 shows the partial order imposed on the models from Table 5.1
by the two logics Km and Km

@ . M1,M4,M7 are ⊂-minimally abnormal. From
these, M4 is not @-minimally abnormal: Ab(M1) ∩ ΩK

1 ⊂ Ab(M4) ∩ ΩK
1 , whence

Ab(M1) @ Ab(M4). M1 and M7 are incommensurable in view of Ω1, whence
Ab(M1) 6@ Ab(M7) and Ab(M7) 6@ Ab(M1). Recall that the set of ALm

@ -models
is always a subset of the ALm-models, whence in this particular case, M1 and
M7 are the only @-minimally abnormal models. As a result, s and p ∨ ¬q are
semantic Km

@ -consequences of Γ1. Note that in view ofM4, these are not semantic
Km-consequences of Γ1.

We can explain this outcome as follows. In view of Γ1, both p and ¬q are
plausible, but one of them has to be false (although we do not know which one).
So if we want to privilege our most plausible beliefs, all we can do is assume that
one of both holds: p∨¬q. So all the selected models either verify p or they verify
¬q. Since Γ1 ∪ {p ∨ ¬q} `K s, these models also verify s. The logic Km cannot

2Note that for all i, j ∈ N such that i 6= j, ΩK

i ∩ ΩK

j = ∅. This is not required for a logic to
fit the format of AL@ ; all that is required is that each Ωi is characterized by a logical form.

3It is provable for that (1) for every M ∈ MK(Γ1), Ab(M) ⊇ Ab(Mi) for a “model” Mi

in the table and (2), for every “model” Mi in the table, there is a M ∈ MK(Γ1) such that
Ab(M) = Ab(Mi). Hence it suffices to look at these limited representations, to decide which
abnormalities hold in the minimal abnormal models. This allows one to derive the claims about
CnK

m
@

(Γ1) that are made in this section.
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M5

M2 M3 M8 M6

M1 M7 M4

(a)

M6 M5

M2 M4 M3 M8

M1 M7

(b)

Figure 5.1: : A graphic comparison of the partial orders ⊂ (5.1(a)) and @ (5.1(b))
on the abnormal parts of the models M1, . . . ,M8.

achieve this result, since it considers M1 and M4 as incommensurable.

5.1.4 An Alternative Characterization of MALm
@
(Γ)

In Section 2.2 of Chapter 2, it was pointed out that the set of ALm-models of
Γ can be characterized alternatively, in view of the minimal Dab-consequences
of Γ. A similar characterization can be given of MALm

@
(Γ). We say that ϕ is a

@-minimal choice set of Σ iff there is no choice set ψ of Σ such that ψ @ ϕ. Let
Σ(Γ) be defined as in Section 2.2.

Definition 5.3 Φ@(Γ) is the set of @-minimal choice sets of Σ(Γ).

Note that the following theorem follows immediately from Lemma 5.1:

Theorem 5.2 Φ@(Γ) ⊆ Φ(Γ).

In Section 5.2.4, it is proven that for every Γ, Φ@(Γ) 6= ∅ – see Theorem 5.11.
We will now show that, just as the set MALm(Γ) can be characterized in view
of Φ(Γ), the set MALm

@
(Γ) can be characterized in view of Φ@(Γ).

Lemma 5.2 Where M ∈ MLLL(Γ), Ab(M) is a choice set of Σ(Γ).

Proof. Suppose M ∈ MLLL(Γ). Let Dab(∆) be an arbitrary minimal Dab-
consequence of Γ. By the soundness of LLL, Γ |=LLL Dab(∆). Hence M 

Dab(∆), which implies that M  A for an A ∈ ∆. Hence Ab(M) ∩ ∆ 6= ∅.

Lemma 5.3 If Γ has LLL-models, then for every choice set ϕ of Σ(Γ), there is
a LLL-model M of Γ such that Ab(M) ⊆ ϕ.

Proof. Suppose (†) Γ has LLL-models. Let ϕ be a choice set of Σ(Γ). Suppose
there is no M ∈ MLLL(Γ) such that Ab(M) ⊆ ϕ. Hence Γ ∪ (Ω − ϕ)¬̌ has no
LLL-models. By the compactness of LLL, there is a finite Γ′ ⊆ Γ and a finite
∆ ⊆ Ω − ϕ such that Γ′ ∪ ∆¬̌ has no LLL-models. However, by (†) and the
monotonicity of LLL, Γ′ has LLL-models, whence ∆ 6= ∅. By CL-properties,
Γ′ `LLL Dab(∆), whence by the monotonicity of LLL, Γ `LLL Dab(∆). Note
that there is a minimal non-empty ∆′ ⊆ ∆ such that Γ `LLL Dab(∆

′), and also
∆′ ∩ ϕ = ∅. Hence, ϕ is not a choice set of Σ(Γ) — a contradiction.
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Theorem 5.3 M ∈ MALm
@

(Γ) iff (M ∈ MLLL(Γ) and Ab(M) ∈ Φ@(Γ)).

Proof. (⇒) Suppose M ∈ MALm
@

(Γ). By Definition 5.2, M ∈ MLLL(Γ). Sup-
pose (†) Ab(M) 6∈ Φ@(Γ), and let Ab(M) = ϕ. By Lemma 5.2, Ab(M) is a choice
set of Σ(Γ), whence by (†), there is a choice set ψ of Σ(Γ) such that ψ @ ϕ. By
Lemma 5.3, there is a LLL-model M ′ of Γ such that Ab(M ′) ⊆ ψ.
Case 1: Ab(M ′) = ψ. Hence, Ab(M ′) @ ϕ.
Case 2: Ab(M ′) ⊂ ψ. Hence, Ab(M ′) @ ψ in view of Lemma 5.1. By the
transitivity of @, Ab(M ′) @ ϕ.

Hence in either case, there is a LLL-model M ′ of Γ such that Ab(M ′) @

Ab(M), which contradicts the fact that M ∈ MAL@
m(Γ).

(⇐) Suppose M ∈ MLLL(Γ), but M 6∈ MALm
@

(Γ). Then there is a M ′ ∈
MLLL(Γ) : Ab(M ′) @ Ab(M). By Lemma 5.2, Ab(M ′) is a choice set of Σ(Γ),
whence in view of Definition 5.3, Ab(M) 6∈ Φ@(Γ).

Note that the above theorem nicely parallels Theorem 2.1. The theorem below
states that whenever Γ has LLL-models, then we can also go in the opposite
direction: the set Φ@(Γ) can be defined in view of MALm

@
(Γ).

Theorem 5.4 If Γ has LLL-models, then Φ@(Γ) = {Ab(M) |M ∈ MALm
@

(Γ)}.

Proof. Suppose Γ has LLL-models. That {Ab(M) | M ∈ MALm
@

(Γ)} ⊆ Φ@(Γ)
is immediate in view of Theorem 5.3. Let ϕ ∈ Φ@(Γ). By Lemma 5.3, there is a
M ∈ MLLL(Γ) such that Ab(M) = ϕ. By Theorem 5.3, M ∈ MALm

@
(Γ).

Below we will see that Φ@(Γ) has a proof-theoretic counterpart, Φ@
s (Γ), that

determines the marking of lines of a proof at stage s. Hence Theorems 5.3 and
5.4 function as a bridge between the proof theory and semantics of ALm

@ .

5.1.5 The ALr

@-semantics

Recall that U(Γ) =
⋃

Φ(Γ) – see page 20 –, where U(Γ) is associated with ALr

and Φ(Γ) with ALm. In view of Theorem 2.1, this implies that an abnormality
is unreliable iff it is verified by a ⊂-minimally abnormal model: U(Γ) = {A ∈ Ω |
M  A for a M ∈ MALm(Γ)}.

Let us now take a look at ALr
@. Just as U(Γ), the set of @-unreliable ab-

normalities can be characterized in two equivalent ways: (i) syntactically, as the
union of all the members of Φ@(Γ) and (ii) semantically, as the set of those ab-
normalities that are verified by a @-minimally abnormal model. To simplify the
meta-theory and to stay as close as possible to the standard format, we will use
(i) as the official definition of the set of @-unreliable abnormalities:

Definition 5.4 U@(Γ) =df

⋃

Φ@(Γ)

By Theorem 5.3, U@(Γ) = {A ∈ Ω | M  A for a M ∈ MALm
@

(Γ)}. We can
now define the set of ALr

@-models of Γ as we did for MALr(Γ):

Definition 5.5 M ∈ MALr
@

(Γ) iff (M ∈ MLLL(Γ) and Ab(M) ⊆ U@(Γ))

The following theorem follows immediately from the above definition:
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Theorem 5.5 MALm
@

(Γ) ⊆ MALr
@

(Γ).

Proof. Suppose M ∈ MALm
@

(Γ). By Theorem 5.3, Ab(M) = ϕ for a ϕ ∈ Φ@(Γ).
Hence Ab(M) ⊆

⋃

Φ@(Γ), whence by Definitions 5.4 and 5.5, M ∈ MALr
@

(Γ).

In view of Theorem 5.2, the fact that U(Γ) =
⋃

Φ(Γ) and Definition 5.4, we
also have:

Theorem 5.6 U@(Γ) ⊆ U(Γ)

Theorem 5.7 Every ALr
@-model of Γ is a ALr-model of Γ.

Let us reconsider the example from Section 5.1.3 from the viewpoint of the
Kr

@-semantics. In view of the above definitions, it is required that we first look at
the minimal Dab-consequences of a set Γ, to find the set of @-unreliable formulas.
The set Γ1 = {p ⊃ q, q ∨ s, p ⊃ s,♦p,♦(¬q ∧ r),♦♦s,♦♦¬s} has four minimal
Dab-consequences: !1p ∨̌ !1¬q, !1p ∨̌ !2¬s, !1¬q ∨̌ !2¬s, and !2s ∨̌ !2¬s.

Hence Σ(Γ1) = {{!1p, !1¬q}, {!1p, !2¬s}, {!1¬q, !2¬s}, {!2s, !2¬s}}. The set of
@-minimal choice sets of Σ(Γ1) is Φ@(Γ1) = {{!1¬q, !2¬s}, {!1p, !2¬s}}. Remark
that these sets correspond to the @-minimal abnormal models M1 and M7 de-
picted in Table 5.1. As a result, U@(Γ1) = {!1p, !1¬q, !2¬s}.

This means that all @-reliable models falsify !2s, whence in view of Γ1, they
verify s. Hence s is also a semantic Kr

@-consequence of Γ1. Note however that
MKr

@
(Γ1) 6= MKm

@
(Γ1): for the model M3 represented in Section 5.1.3, we have

that M3 ∈ MKr
@

(Γ1)−MKm
@

(Γ1). This implies that p ∨ ¬q is not a semantic
Kr

@-consequence of Γ1.

5.2 The Proof Theory of AL@

5.2.1 The Generic Proof Theory for AL@

As for SAL and HAL, the inference rules of an AL@-proof are identical to those
of a AL-proof – see page 21 where these are spelled out. As a result, Lemma 2.1
holds also for AL@-proofs. So again, apart from the marks, every AL-proof is
a AL@-proof and vice versa. The distinctive feature of an AL@-proof lies in its
marking definition. Let Σs(Γ) be defined as in Section 2.3.

Definition 5.6 Φ@
s (Γ) is the set of @-minimal choice sets of Σs(Γ).

In Section 5.2.4, we prove that for every Γ and at every stage s of a AL@-
proof from Γ, Φ@

s (Γ) 6= ∅. Of course, it may be the case that Φ@
s (Γ) = {∅}, i.e.

whenever Σs(Γ) = ∅. Marking in view of ALm
@ is now done in the same way as

for ALm, replacing Φs(Γ) by Φ@
s (Γ):

Definition 5.7 ALm
@ -Marking: a line l with formula A is marked at stage s iff,

where its condition is ∆: (i) no ϕ ∈ Φ@
s (Γ) is such that ϕ ∩ ∆ = ∅, or (ii) for

a ϕ ∈ Φ@
s (Γ), there is no line on which A is derived on a condition Θ for which

Θ ∩ ϕ = ∅.
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The set of @-unreliable formulas at stage s is defined as the union of the
members of Φ@

s (Γ):

Definition 5.8 U@
s (Γ) =df

⋃

Φ@
s (Γ)

Definition 5.9 ALr
@-Marking: a line l with formula A is marked at stage s iff,

where its condition is ∆, ∆ ∩ U@
s (Γ) 6= ∅.

Derivability at a stage and final derivability are defined as by Definitions 3.8
and 3.9. This gives us the relations `ALm

@
and `ALr

@
.

The following is an immediate consequence of Lemma 5.1:

Fact 5.1 At every stage s of a proof from Γ, Φ@
s (Γ) ⊆ Φs(Γ).

This fact implies that at every stage s of a proof from Γ, we can first check
which choice sets of Σs(Γ) are ⊂-minimal, and only afterwards select the set of
@-minimal choice sets from these. Also, from Fact 5.1, the fact that at every
stage s, Us(Γ) =

⋃

Φs(Γ) and Definition 5.8, we can derive:

Fact 5.2 At every stage s of a proof from Γ, U@
s (Γ) ⊆ Us(Γ).

Facts 5.1 and 5.2 imply that whenever a line is unmarked in an ALx-proof
(where x ∈ {r,m}), it is unmarked in an ALx

@-proof as well – recall that apart
from the marking, these proofs are interchangeable. Hence if something is (fi-
nally) derived in an ALx-proof, then it is finally derived in an ALx

@-proof as
well. This allows us to safely infer:

Theorem 5.8 Where x ∈ {r,m}: CnALx(Γ) ⊆ CnALx
@

(Γ).

By Theorem 2.9 and Theorem 2.16 respectively, we immediately have:

Theorem 5.9 Each of the following holds:
1. Γ ⊆ CnAL@

(Γ) (Reflexivity)
2. CnLLL(Γ) ⊆ CnAL@

(Γ) (LLL is weaker than or identical to AL@)

5.2.2 Example of a Kx

@-proof

@-Minimal Abnormality. To illustrate the new marking definitions, let us
take a look at a particular Km

@ -proof from Γ1 = {p ⊃ q, q ∨ s, p ⊃ s,♦p,♦(¬q ∧
r),♦♦s,♦♦¬s}:

1 q ∨ s PREM ∅
2 ♦(¬q ∧ r) PREM ∅
3 ♦¬q 2;RU ∅
4 ¬q 3;RC {!1¬q}
5 s 1,4;RU {!1¬q}
6 ♦♦¬s PREM ∅
7 !1¬q ∨̌ !2¬s 1,3,6;RU ∅
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Note that Σ7(Γ1) = {{!1¬q, !2¬s}}. This implies that the set of @-minimal
choice sets at stage 7, Φ@

7 (Γ1) only contains one member, i.e. {!2¬s} – note that
{!2¬s} @ {!1¬q}. Since the condition of line 5 has an empty intersection with
this set, line 5 is unmarked.

Suppose we extend the proof as follows (we repeat from line 5 on):

5 s 1,4;RU {!1¬q} X
10

6 ♦♦¬s PREM ∅
7 !1¬q ∨̌ !2¬s 1,3,6;RU ∅
8 p ⊃ q PREM ∅
9 ♦p PREM ∅
10 !1p ∨̌ !1¬q 3,8,9;RU ∅

Σ10(Γ1) = {{!1¬q, !2¬s}, {!1p, !1¬q}}, whence there are two @-minimal choice
sets at this stage: Φ@

10(Γ1) = Φ10(Γ1) = {{!1¬q}, {!1p, !2¬s}}. In view of the first
choice set, line 5 is marked. We can however further extend the proof in such a
way that line 5 is again unmarked:

5 s 1,4;RU {!1¬q}
...

...
...

...

10 !1p ∨̌ !1¬q 3,8,9;RU ∅
11 p 9;RC {!1p}
12 p ⊃ s PREM ∅
13 s 11,12;RU {!1p}

Note that since no new Dab-formula has been derived, Φ@
13(Γ1) = Φ@

10(Γ1).
However, s is now also derived on a condition that has an empty intersection
with {!1¬q}. As a result, lines 5 and 13 are unmarked.

@-Reliability. If the marking definition for @-Reliability is applied, the above
proof does not suffice to finally derive s. That is, U@

13(Γ1) =
⋃

Φ@
13(Γ1) =

{!1p, !1¬q, !2¬s}. As a result, both line 5 and line 13 are marked.
Nevertheless, s is finally derivable in a Kr

@-proof from Γ1. To show how,
let us recapitulate lines 5–15 from the above proof, marking lines according to
Definition 5.9:

5 s 1,4;RU {!1¬q} X
15

...
...

...
...

11 p 9;RC {!1p} X
15

12 p ⊃ s PREM ∅
13 s 11,12;RU {!1p} X

15

14 ♦♦s PREM ∅
15 s 14;RC {!2s}

Note that this time, lines 5 and 13 are marked. However, we have derived s
on a condition that is not @-unreliable at stage 15. As I explained in Section 5.1,
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!2s is not contained in any @-minimal choice set of Σ(Γ1). This warrants that s
is finally derived in the proof. To explain why, consider the following extension
of the proof:

15 s 14;RC {!2s} X
16

16 !2s ∨̌ !2¬s 6,14;RU ∅

Σ16(Γ1) = {{!1¬q, !2¬s}, {!1p, !1¬q}, {!2s, !2¬s}}, whence Φ@
16(Γ1) =

{{!1p, !2¬s}, {!1¬q, !2s}, {!1¬q, !2¬s}}. As a result, U@
16(Γ1) = {!1p, !1¬q, !2s, !2¬s}.

However, it suffices to derive the fourth minimal Dab-consequence of Γ1 (see page
115) to undo the marking of line 15:

15 s 14;RC {!2s}
16 !2s ∨̌ !2¬s 6,14;RU ∅
17 !1p ∨̌ !2¬s 6,9,12;RU ∅

At stage 17, all minimal Dab-consequences of Γ1 have been derived, whence
U@

17(Γ1) = U@(Γ1) = {!1p, !1¬q, !2¬s} – see Section 5.1.5. As a result, line 15
is unmarked again and will remain unmarked in every further extension of this
proof.

5.2.3 The Standard Format as a Border-line Case

At the start of this chapter, it was mentioned that the standard format is a border
case of the format of lexicographic ALs. Let us briefly spell out why this holds.
Consider the sequence of sets of abnormalities: S = 〈Ωi〉i∈I , where Ωi = Ωj for
every i, j ∈ I. Note that this is the case e.g. whenever I = {1}, i.e. whenever
there is only one set in the sequence. As before, let Ω =

⋃

i∈I Ωi. We leave it to
the reader to prove that in this case (†) ∆ @ ∆′ iff ∆ ⊂ ∆′.

For the sake of clarity, let me use the name BALx
@ for the border case logic

defined by (i) LLL, (ii) S and (iii) a strategy x ∈ {r,m}. By (†) and Definitions
2.2 and 5.2, we immediately have that MBALm

@
(Γ) = MALm(Γ). Also, since in

this case Φ@(Γ) = Φ(Γ), we have by Definition 5.4 that U@(Γ) = U(Γ). This
implies by Definitions 2.1 and 5.5 that MBALr

@
(Γ) = MALr(Γ).

Similar results can be established for the proof theory. In view of Definition
5.3, it easy to see that by (†), for every stage s of a proof from Γ, Φ@

s (Γ) = Φs(Γ).
From this and Definition 5.8, it follows that U@

s (Γ) = Us(Γ). Hence, where
x ∈ {r,m}, a line is unmarked in a ALx-proof iff it is unmarked in a BALx

@-
proof. This implies that where x ∈ {r,m}, CnBALx

@
(Γ) = CnALx(Γ).

So every AL in standard format is equivalent to a logic in the new format.
Remark that the equivalence is not restricted to the respective consequence sets,
but to all the crucial concepts in the semantics and proof theory of both logics.
This implies that all the meta-theoretic properties of AL@ hold for AL as well.

5.2.4 Φ@(Γ) 6= ∅

The proof of the title of this section is highly similar to the proof for Lemma
3.3 in Chapter 3. However, in the current section, we will first prove a stronger
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claim, i.e. that for every stage s of an ALm
@ -proof from Γ, Φ@

s (Γ) 6= ∅ — that
Φ@(Γ) 6= ∅ follows almost immediately from the latter property.

As in Chapter 3, let Ω[1] = Ω1 and for all i ∈ I, i > 1, let Ω[i] = Ωi −
Ω(i−1). Recall that whereDab(∆1), Dab(∆2), . . . are the minimal Dab(i)-formulas

at stage s of a proof of from Γ, Σ
(i)
s (Γ) =df {∆1,∆2, . . .}, and that Φ

(i)
s (Γ) is the

set of (⊂-)minimal choice sets of Σ
(i)
s (Γ).

Note that for each ∆ ∈ Σ
(i+1)
s (Γ)−Σ

(i)
s (Γ), ∆∩Ω[i+1] 6= ∅. Where ϕ ∈ Φ

(i)
s (Γ),

let Φ
[i+1]
ϕ,s (Γ) be the set of minimal choice sets of {∆∩Ω[i+1] | ∆ ∈ Σ

(i+1)
s (Γ), ϕ∩

∆ = ∅}.

Lemma 5.4 For all ϕ ∈ Φ
(i)
s (Γ) and all ϕ′ ∈ Φ

[i+1]
ϕ,s (Γ), ϕ ∪ ϕ′ ∈ Φ

(i+1)
s (Γ).

Proof. Let ϕ ∈ Φ
(i)
s (Γ) and consider an arbitrary ϕ′ ∈ Φ

[i+1]
ϕ,s (Γ). We first prove

that ϕ∪ϕ′ is a choice set of Σ
(i+1)
s (Γ). Let ∆ ∈ Σ

(i+1)
s (Γ); we need to show that

∆ ∩ (ϕ ∪ ϕ′) 6= ∅. If ∆ ∩ ϕ 6= ∅, this holds trivially. So suppose ∆ ∩ ϕ = ∅. Then

∆ /∈ Σ
(i)
s (Γ) since ϕ ∈ Φ

(i)
s (Γ). In this case ∆ ∩ Ω[i+1] 6= ∅. Hence ϕ′ ∩ ∆ 6= ∅,

since ϕ′ ∈ Φ
[i+1]
ϕ,s .

We now prove that ϕ ∪ ϕ′ is also a minimal choice set of Σ
(i+1)
s (Γ). By

the right-left direction of Lemma 3.1 and the fact that ϕ ∈ Φ
(i)
s (Γ), for every

A ∈ ϕ there is a ∆ ∈ Σ
(i)
s (Γ) such that ∆ ∩ ϕ = {A}. Moreover, for all these ∆,

ϕ′ ∩ ∆ = ∅, since ϕ′ ⊆ Ω[i+1]. Finally, Σ
(i)
s (Γ) ⊆ Σ

(i+1)
s (Γ), which gives us:

(1) for every A ∈ ϕ there is a ∆ ∈ Σ
(i+1)
s (Γ) such that ∆ ∩ (ϕ ∪ ϕ′) = {A}.

From the right-left direction of Lemma 3.1: for every A ∈ ϕ′, there is a Θ ∈ Φ
[i+1]
ϕ,s

such that Θ ∩ ϕ′ = {A}, where Θ = ∆ ∩ Ω[i+1] for a ∆ ∈ Σ
(i+1)
s (Γ). Since

ϕ′ ⊆ Ω[i+1], ∆∩ϕ′ = {A}. Moreover, in view of the definition of Φ
[i+1]
ϕ,s , ∆∩ϕ = ∅.

Hence we have:

(2) for every A ∈ ϕ′, there is a ∆ ∈ Σ
(i+1)
s (Γ) such that ∆ ∩ (ϕ ∪ ϕ′) = {A}.

By (1) and (2): for every A ∈ ϕ ∪ ϕ′, there is a ∆ ∈ Σ
(i+1)
s (Γ) such that

∆∩ (ϕ∪ϕ′) = {A}. By the left-right direction of Lemma 3.1, ϕ∪ϕ′ is a minimal

choice set of Σ
(i+1)
s (Γ). Hence, ϕ ∪ ϕ′ ∈ Φ

(i+1)
s (Γ).

Theorem 5.10 For every stage s of a proof from Γ, Φ@
s (Γ) 6= ∅.

Proof. Note that at every stage s of a proof, Σ1
s(Γ) is a set of finite sets. By

Fact 2.2, Φ
(1)
s (Γ) 6= ∅. Let ϕ1 ∈ Φ

(1)
s (Γ), and for all i > 1, let ϕi be an arbitrary

element in Φ
[i]
ϕi−1,s. Let ϕ⊕ = ϕ1 ∪ϕ2 ∪ . . .. Note that for every j ∈ I, ϕj ⊆ Ω[j].

As a result, for every j ∈ I, ϕ⊕∩Ω(j) = ϕ1∪ . . .∪ϕj , whence by Lemma 5.4:

(†) for every j ∈ I, ϕ⊕ ∩ Ω(j) ∈ Φ
(j)
s (Γ).

We will now prove that ϕ⊕ is a @-minimal choice set of Σs(Γ). Let ∆ ∈ Σs(Γ).
Then there is a k ∈ I such that ∆ ⊆ Ω(k). It follows immediately by (†) that
ϕ⊕ ∩ ∆ 6= ∅. Hence, ϕ⊕ is a choice set of Σs(Γ).
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Assume now that ϕ⊕ /∈ Φ@
s (Γ). Hence, there is a choice set of Σs(Γ), say ψ,

such that for an n ∈ I, ψ ∩Ωm = ϕ⊕ ∩Ωm for all m < n and ψ ∩Ωn ⊂ ϕ⊕ ∩Ωn.

Note that since Σ
(n)
s (Γ) ⊆ Σs(Γ), ψ is a choice set of Σ

(n)
s (Γ), whence also ψ∩Ω(n)

is a choice set of Σ
(n)
s (Γ). This implies that ϕ⊕ ∩ Ω(n) is not a minimal choice

set of Σ
(n)
s (Γ), which contradicts (†).

Theorem 5.11 For every Γ, Φ@(Γ) 6= ∅.

Proof. Let the stage g be the same as in the two preceding chapters. Note
that every minimal Dab-consequence of Γ is derived at stage g. It follows that
Σg(Γ) = Σ(Γ). By Definitions 5.3 and 5.6, Φ@

g (Γ) = Φ@(Γ). By Theorem 5.10,
Φ@(Γ) 6= ∅.

5.3 Metatheory of AL@

In this section, we prove that all the meta-theoretic properties discussed in Sec-
tion 2.5 hold for lexicographic ALs as well. Some of the proofs are obtained by
very small variations on proofs from the meta-theory of the standard format –
see [25] for their most recent formulation.

5.3.1 Soundness and Completeness

Lemma 5.5 For every Γ ⊆ Ws: if Γ `LLL A ∨̌Dab(∆) and ∆ ∩ ϕ = ∅ for a
ϕ ∈ Φ@(Γ), then there is a finite ALm

@ -proof from Γ in which A is derived on the
condition ∆ at an unmarked line.

Proof. Suppose the antecedent holds. Due to the compactness of LLL, there
is a Γ′ = {A1, . . . , An} ⊆ Γ such that Γ′ `LLL A ∨̌Dab(∆). Let the adaptive
proof p be constructed as follows. At line 1 we introduce the premise A1 by
PREM, . . . , and at line n we introduce the premise An by PREM. At line n+ 1
we derive A by RC on the condition ∆. Let s be the stage consisting of lines 1
up to n + 1. Since Γ′ ⊆ Γ ⊆ W , all Dab-formulas B1, . . . , Bm that have been
derived at stage s (if any) are members of Ω. Hence Φ@

s (Γ′) = {{B1, . . . , Bm}}.
Due to the monotonicity of LLL, also Γ `LLL Bi for all these abnormalities Bi.
Then {B1, . . . , Bm} ⊆ ψ for all ψ ∈ Φ@(Γ). Since ϕ ∩ ∆ = ∅ and ϕ ∈ Φ@(Γ),
also ∆ ∩ {B1, . . . , Bm} = ∅. Thus, line n+ 1 is unmarked.

Lemma 5.6 If Γ `ALm
@
A, then each of the following holds:

1. A is derivable on a line l of a finite ALm
@ -proof from Γ, on a condition ∆

such that ∆ ∩ ϕ = ∅ for a ϕ ∈ Φ@(Γ)
2. For every ϕ ∈ Φ@(Γ), there is a finite ∆ ⊆ Ω − ϕ such that Γ `LLL

A ∨̌Dab(∆).

Proof. Suppose Γ `ALm
@
A. By Definition 2.5, there is a finite ALm

@ - proof p

from Γ, such that (i) A is derived in this proof on an unmarked line l with a
condition ∆, (ii) every extension of the proof in which line l is marked can be
further extended such that line l is unmarked again. We now extend p to a stage
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s such that all minimal Dab-consequences are derived on the empty condition.
Note Φ@

s (Γ) = Φ@(Γ) and that at every later stage s′, Φ@
s′(Γ) = Φ@

s (Γ).
Ad 1. Suppose there is no ϕ ∈ Φ@(Γ) such that ∆ ∩ ϕ = ∅. By Definition 5.7,
line l is marked at stage s and at every later stage s′, which contradicts (ii).
Ad 2. Suppose there is a ϕ ∈ Φ@(Γ) for which there is no ∆ ⊆ Ω such that
Γ `LLL A ∨̌Dab(∆) and ∆∩ϕ = ∅. By Definition 5.7 line l is marked at stage s,
and we cannot further extend the proof such that line l is unmarked – this again
contradicts (ii).

Lemma 5.7 Where Γ ⊆ Ws: if for every ϕ ∈ Φ@(Γ), there is a finite ∆ ⊆ Ω−ϕ
such that Γ `LLL A ∨̌Dab(∆), then Γ `ALm

@
A.

Proof. Suppose that for every ϕ ∈ Φ@(Γ) there is a finite ∆ϕ ⊆ Ω − ϕ for which
Γ `LLL A ∨̌Dab(∆ϕ). Due to Lemma 5.5, for every such ∆ϕ there is a finite
ALm

@ -proof from Γ in which A is derived on the condition ∆ϕ at an unmarked
line l. Let p be any such proof (since Φ@(Γ) is non-empty there is at least one).
Suppose the proof is extended to a stage s in which line l is marked. We extend
the proof further to a stage s′ in which (i) all minimal Dab-formulas have been
derived on the empty condition, and (ii) for all ϕ ∈ Φ(Γ), A has been derived on
the condition ∆ϕ. By Definition 5.7, line l is unmarked at stage s′.

Theorem 5.12 If Γ `ALm
@
A, then Γ |=ALm

@
A. (Soundness)

Proof. Suppose Γ `ALm
@
A. If MALm

@
(Γ) = ∅, the theorem follows immediately.

Suppose MALm
@

(Γ) 6= ∅. Let M ∈ MALm
@

(Γ), whence M ∈ MLLL(Γ). By
Theorem 5.3, Ab(M) ∈ Φ@(Γ). By Lemma 5.6.2, there is a ∆ ⊆ Ω such that
Ab(M) ∩ ∆ = ∅ and Γ `LLL A ∨̌Dab(∆). By the soundness of LLL, Γ |=LLL

A ∨̌Dab(∆). Since M ∈ MLLL(Γ) and M  ¬̌Dab(∆), M  A.

Where ϕ ∈ Φ(Γ), let Mϕ =df {M ∈ MLLL(Γ) | Ab(M) = ϕ}. To obtain a
completeness proof, we first establish two lemmas about this set of models:

Lemma 5.8 Where ϕ ∈ Φ(Γ): if M is an LLL-model of Γ ∪ (Ω − ϕ)¬̌, then
M ∈ Mϕ.

Proof. Suppose (†) ϕ ∈ Φ(Γ) and M is an LLL-model of Γ ∪ (Ω − ϕ)¬̌. Hence
(1) M ∈ MLLL(Γ). Note that Ab(M) ⊆ ϕ. By Lemma 5.2, Ab(M) is a choice
set of Σ(Γ), whence by (†), Ab(M) 6⊂ ϕ. Hence (2) Ab(M) = ϕ. By (1) and (2),
M ∈ Mϕ.

Lemma 5.9 Where ϕ ∈ Φ(Γ): if all members of Mϕ verify A, then Γ `LLL

A ∨̌Dab(∆) for a ∆ ⊆ Ω − ϕ.

Proof. Suppose all members of Mϕ verify A. By Lemma 5.8, all LLL-models of
Γ∪(Ω−ϕ)¬̌ verify A. This implies by the completeness of LLL: Γ∪(Ω−ϕ)¬̌ `LLL

A. By the compactness of LLL, Γ′ ∪ ∆¬̌ `LLL A, for a finite Γ′ ⊆ Γ and a finite
∆ ⊆ Ω − ϕ. By the Deduction Theorem, Γ′ `LLL A ∨̌Dab(∆), and by the
monotonicity of LLL, Γ `LLL A ∨̌Dab(∆).
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Theorem 5.13 Where Γ ⊆ Ws: if Γ |=ALm
@
A, then Γ `ALm

@
A. (Completeness)

Proof. Suppose (†) Γ |=ALm
@
A. Consider a ϕ ∈ Φ@(Γ). By Theorem 5.2,

ϕ ∈ Φ(Γ). By Theorem 5.3, we have that for every M ∈ Mϕ, M ∈ MALm
@

(Γ).
In view of (†), it follows that for every M ∈ Mϕ, M  A. By Lemma 5.9,
Γ `LLL A ∨̌Dab(∆) for a ∆ ⊆ Ω − ϕ. Since this holds for all ϕ ∈ Φ@(Γ), we
obtain by Lemma 5.7 that Γ `ALm

@
A.

Corollary 5.1 Where Γ ⊆ Ws: Γ `ALm
@
A iff Γ |=ALm

@
A (Soundness and

Completeness)

Lemma 5.10 Where Γ ⊆ Ws: if Γ `LLL A ∨̌Dab(∆) and ∆ ∩ U@(Γ) = ∅, then
each of the following holds:

1. There is a finite ALr
@-proof from Γ in which A is derived on the condition ∆

at an unmarked line
2. Γ `ALr

@
A

Proof. Ad 1. The proof proceeds analogous to the proof for Lemma 5.5. We again
construct the proof p as above. Note that since Γ `LLL Bi for all the derived
abnormalities Bi, U

@
s (Γ′) = {B1, . . . , Bm} ⊆ U@(Γ). Since ∆ ∩ U@(Γ) = ∅, also

∆ ∩ U@
s (Γ′) = ∅. Thus, line n+ 1 is unmarked.

Ad 2. Suppose that there is a finite ∆ ⊆ Ω such that Γ `LLL A ∨̌Dab(∆) and
∆∩U@(Γ) = ∅. By item 1, there is a finite proof from Γ such that A is derived on
the condition ∆, on an unmarked line l. Suppose the proof is extended such that
line l becomes marked. In that case, we can further extend the proof, deriving
every minimal Dab-consequence of Γ. Then where s′ is the stage of the second
extension, U@

s′ (Γ) = U@(Γ), whence line l is unmarked again.

Lemma 5.11 If Γ `ALr
@
A, then A is derivable in a ALr

@-proof p from Γ on
line l with condition ∆ such that ∆ ∩ U@(Γ) = ∅.

Proof. Suppose that Γ `ALr
@
A. So A is finally derived on line l of a ALr

@-proof
from Γ. Let ∆ be the condition of line l. Suppose that ∆ ∩ U@(Γ) 6= ∅. In that
case, we can extend p to a stage s such that every minimal Dab-consequence
of Γ is derived in it. We have that U@

s (Γ) = U@(Γ) and for all later stages s′,
U@
s′ (Γ) = U@

s (Γ). As a result, line l is marked at stage s and remains marked in
every further extension of the proof, which contradicts the antecedent in view of
Definition 2.5.

Theorem 5.14 Γ |=ALr
@
A iff Γ |=LLL A ∨̌Dab(∆) for a finite ∆ such that

∆ ∩ U@(Γ) = ∅.

Proof. (⇒) Suppose that Γ |=ALr
@
A, whence for every M ∈ MALr

@
(Γ), M  A.

By Definition 5.5, for every M ∈ MLLL(Γ) such that Ab(M) ⊆ U@(Γ), M  A.
Then Γ ∪ (Ω − U@(Γ))¬̌ |=LLL A. As LLL is compact, Γ′ ∪ (∆)¬̌ |=LLL A for a
finite Γ′ ⊆ Γ and a finite ∆ ⊆ (Ω − U@(Γ)). Hence Γ′ |=LLL A ∨̌Dab(∆). So, as
LLL is monotonic, Γ |=LLL A ∨̌Dab(∆).

(⇐) Suppose there is a finite ∆ ⊆ Ω such that Γ |=LLL A ∨̌Dab(∆) and
∆ ∩ U@(Γ) = ∅. Note that by Definition 5.5, for every M ∈ MALr

@
(Γ), M 

¬̌Dab(∆). This implies that M  A and we are done.
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Theorem 5.15 If Γ `ALr
@
A, then Γ |=ALr

@
A. (Soundness)

Proof. Suppose Γ `ALr
@
A. By Lemma 5.11, A is derivable in a ALr

@-proof
p from Γ on line l with condition ∆ such that ∆ ∩ U@(Γ) = ∅. By Lemma
2.1 Γ `LLL A ∨̌Dab(∆). By the soundness of LLL, Γ |=LLL A ∨̌Dab(∆). By
Theorem 5.14, Γ |=ALr

@
A.

Theorem 5.16 Where Γ ⊆ Ws: if Γ |=ALr
@
A, then Γ `ALr

@
A. (Completeness)

Proof. Suppose Γ |=ALr
@
A. By Theorem 5.14, Γ |=LLL A ∨̌Dab(∆) for a ∆ such

that ∆ ∩ U@(Γ) = ∅. By the completeness of LLL, Γ `LLL A ∨̌Dab(∆). By
Lemma 5.10.2, Γ `ALr

@
A.

5.3.2 Strong Reassurance

Just as for all logics HAL, it can be shown that all logics AL@ satisfy the kind
of Strong Reassurance denoted by SR3 (see page 81). This property reads: if
a model M ∈ MLLL(Γ) is not selected by the adaptive logic, then there is a
selected model M ′ and an i ∈ I, such that Ab(M ′)∩Ω(i) ⊂ Ab(M)∩Ω(i). It can
easily be verified that SR3 is equivalent to the following:

(SR3′) M ∈ MLLL(Γ)−MPAL(Γ) iff there is an M ′ ∈ MPAL(Γ) such that
Ab(M ′) @ Ab(M).

Hence, the claim that lexicographic ALs satisfy SR3, boils down to the claim that
the relation @ and the abnormal part relation impose a smooth partial order on
the set of LLL-models of a premise set Γ.

As we will see below, that ALm
@ satisfies SR3′, almost immediately implies

that also ALr
@ satisfies this property, since every ALm

@ -model is also an ALr
@-

model (see Theorem 5.5). So we first prove SR3′ for ALm
@ .4 Recall that the flat

adaptive logics ALm
i (i ∈ I) are defined by (i) LLL, (ii) Ωi and (iii) Minimal

Abnormality. The proof of SR3′ for ALm
@ relies on the Strong Reassurance of

each of these flat adaptive logics (see Theorem 2.12).

Theorem 5.17 If M ∈ MLLL(Γ)−MALm
@

(Γ), then there is an M ′ ∈ MALm
@

(Γ)
such that Ab(M ′) @ Ab(M).

Proof.5 Suppose M ∈ MLLL(Γ)−MALm
@

(Γ). Let M be the set of all M ′ ∈
MLLL(Γ) such that Ab(M ′) @ Ab(M) — note that M 6= ∅ since M /∈ MALm

@
(Γ).

For each M ′ ∈ M, let iM ′ ∈ I be such that for all j < iM ′ , Ab(M) ∩ Ωj =

4It is possible to prove (Semantic) Reassurance for AL
m
@ , relying on Theorems 5.4 and 5.11.

That is, Theorem 5.4 implies that whenever Γ has LLL-models, then for every ϕ ∈ Φ@(Γ),
there is an M ∈ MALm

@
(Γ) such that Ab(M) = ϕ. Moreover, by Theorem 5.11, Φ@(Γ) is

non-empty. It follows that whenever Γ has LLL-models, it also has ALm
@ -models. However,

for the proof of Strong Reassurance as given by SR3′, we need a deeper argument.
5In fact, Theorem 5.17 follows from (i) the fact that HALm satisfies SR3 and (ii) the equiv-

alence of the ALm
@ -semantics and the HALm-semantics – (ii) is proven in Chapter 6. However,

to keep the current chapter homogeneous, I decided to stick with the current (independent)
proof. I am very grateful to Peter Verdée for spotting various unclarities in the next to last
version of this proof.
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Ab(M ′)∩Ωj , and Ab(M ′)∩ΩiM′ ⊂ Ab(M)∩ΩiM′ . Let k = min({iM ′ |M ′ ∈ M}),
and let M ′′ be an arbitrary model in M be such that iM ′′ = k.

If k = 1, let Mk be an arbitrary model in MALm
1

(Γ) such that Ab(Mk)∩Ω1 ⊆
Ab(M ′′) ∩ Ω1. Note that Mk exists in view of the Strong Reassurance of ALm

1

and the fact that M ′′ is an LLL-model of Γ.
If k > 1, let Mi = M for every i < k, and let ∆i = (Ωi − Ab(Mi))

¬̌ for every
i < k. Moreover, let Mk be an arbitrary model in MALm

k
(Γ ∪ ∆1 ∪ . . . ∪ ∆k−1)

such that Ab(Mk)∩Ωk ⊆ Ab(M ′′)∩Ωk. Note that Mk exists in view of the Strong
Reassurance of ALm

k , and the fact that M ′′ is an LLL-model of Γ∪∆1∪. . .∪∆k−1.
Define the sets ∆k,∆k+1, . . . and the models Mk+1,Mk+2, . . . recursively, as

follows:

• Let ∆k = (Ωk −Ab(Mk))¬̌.
• Let Mk+1 be an arbitrary model in MALm

k+1
(Γ ∪ ∆1 ∪ . . . ∪ ∆k).

• Let ∆k+1 = (Ωk+1 −Ab(Mk+1))¬̌.
• Let Mk+2 be an arbitrary model in MALm

k+2
(Γ ∪ ∆1 ∪ . . . ∪ ∆k+1).

• Let ∆k+2 = (Ωk+2 −Ab(Mk+2))¬̌.
• . . .

It can easily be shown by an induction that each model Mk+j (with k+j ∈ I) ex-
ists, and hence that the sets ∆k+j are well-defined. For the base case (j = 0), this
was already shown in the preceding paragraph. For the induction step, suppose
that Mk+j exists. By the construction, Mk+j ∈ MALm

k+j
(Γ ∪ ∆1 ∪ . . . ∪ ∆k+j−1).

It follows that (i) Mk+j is an LLL-model of Γ ∪ ∆1 ∪ . . . ∪ ∆k+j−1. Moreover,
in view of the construction, (ii) Mk+j  ∆k+j . By (i) and (ii), Mk+j is an LLL-
model of Γ∪∆1∪. . .∪∆k+j . This means that Γ∪∆1∪. . .∪∆k+j has LLL-models.
Hence by the Reassurance of ALm

k+j+1, the set MALm
k+j+1

(Γ ∪ ∆1 ∪ . . . ∪ ∆k+j)
is non-empty, which means that the model Mk+j+1 exists.

Proposition 5.1 Γ ∪
⋃

i∈I ∆i has LLL-models.

Subproof. Let Γ′ be an arbitrary finite subset of Γ ∪
⋃

i∈I ∆i. Let i ∈ I be such
that Γ′ ⊆ (Γ∪∆1∪ . . .∪∆i). In view of the construction, Mi is an LLL-model of
Γ∪∆1 ∪ . . .∪∆i, whence by the monotonicity of LLL, Mi is also an LLL-model
of Γ′.

So every finite subset of Γ ∪
⋃

i∈I ∆i has LLL-models. By the compactness
of LLL, Γ ∪

⋃

i∈I ∆i has LLL-models.

Let M? be an arbitrary model in MLLL(Γ ∪
⋃

i∈I ∆i) – note that M? exists
in view of Proposition 5.1. In the remainder, we prove that M? is an ALm

@ -model
of Γ, and Ab(M?) @ Ab(M) – see Proposition 5.3, resp. 5.4. Before doing so, we
first need to prove the following:

Proposition 5.2 For all i ∈ I, Ab(M?) ∩ Ωi = Ab(Mi) ∩ Ωi.

Subproof. By the construction, we have that (†) for all i ∈ I, Ab(M?) ∩ Ωi ⊆
Ab(Mi) ∩ Ωi. Assume now that there is an i ∈ I for which Ab(M?) ∩ Ωi ⊂
Ab(Mi) ∩ Ωi.
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Case 1: i < k. Note that in view of the construction, (‡) for all j < k,
Ab(Mj) = Ab(M). Let m ≤ i be smallest such that Ab(M?) ∩ Ωm ⊂ Ab(Mm) ∩
Ωm. Note that m < k. By (‡), it follows that (i) for all n < m, Ab(M?) ∩ Ωn =
Ab(Mn) ∩ Ωn = Ab(M) ∩ Ωn. Also by (‡), (ii) Ab(M?) ∩ Ωm ⊂ Ab(M) ∩ Ωm. It
follows thatAb(M?) @ Ab(M), whenceM? ∈ M. But thenm ∈ {iM ′ |M ′ ∈ M},
which is a contradiction to the fact that k = min({iM ′ |M ′ ∈ M}).

Case 2: i ≥ k.
Case 2.1: i = 1 = k. By the monotonicity of LLL, M? ∈ MLLL(Γ). By the

assumption, Ab(M?) ∩ Ω1 ⊂ Ab(M1) ∩ Ω1. But this contradicts the fact that,
when k = 1, M1 ∈ MALm

1
(Γ).

Case 2.2: i > 1. By the monotonicity of LLL, M? ∈
MALm

i
(Γ ∪ ∆1 ∪ . . . ∪ ∆i−1). By the assumption, Ab(M?) ∩ Ωi ⊂ Ab(Mi) ∩ Ωi.

But this contradicts the fact that Mi ∈ MALm
i

(Γ ∪ ∆1 ∪ . . . ∪ ∆i−1).

Proposition 5.3 M? ∈ MALm
@

(Γ).

Subproof. Assume that there is an M ′′′ ∈ MLLL(Γ) such that Let l ∈ I be such
that (i) for all m < l, Ab(M ′′′) ∩ Ωm = Ab(M?) ∩ Ωm and (ii) Ab(M ′′′) ∩ Ωl ⊂
Ab(M?) ∩ Ωl. By the transitivity of @, Ab(M ′′′) @ Ab(M) and hence M ′′′ ∈ M.

Case 1: l < k. In this case, for all m < l, Ab(M?) ∩ Ωm = Ab(M) ∩ Ωm, and
also Ab(M?) ∩ Ωl = Ab(M) ∩ Ωl. By (i) and (ii), respectively: (i)’ for all m < l,
Ab(M ′′′) ∩ Ωm = Ab(M) ∩ Ωm and (ii)’ Ab(M ′′′) ∩ Ωl ⊂ Ab(M) ∩ Ωm. By this
means that l = iM ′′′ < k, which is in contradiction with the minimality of k in
{iM ′ |M ′ ∈ M}.

Case 2: l ≥ k.
Case 2.1: l = 1 = k. By (ii) Ab(M ′′′) ∩ Ω1 ⊂ Ab(M?) ∩ Ω1. By Proposition

5.2, Ab(M?) ∩ Ω1 = Ab(M1) ∩ Ω1. Thus Ab(M ′′′) ∩ Ω1 ⊂ Ab(M1) ∩ Ω1. This
contradicts the fact that M1 ∈ MALm

1
(Γ).

Case 2.2: l > 1. Note that due to (i) and Proposition 5.2, for all m < l,
Ab(M ′′′) ∩ Ωm = Ab(M?) ∩ Ωm = Ab(Mm) ∩ Ωm. It follows that M ′′′ ∈
MLLL(Γ ∪ ∆1 ∪ . . . ∪ ∆l−1). Due to (ii) and Proposition 5.2, Ab(M ′′′) ∩ Ωl ⊂
Ab(M?) ∩ Ωl = Ab(Ml) ∩ Ωl. This contradicts the fact that Ml ∈
MALm

l
(Γ ∪ ∆1 ∪ . . . ∪ ∆l−1).

Proposition 5.4 Ab(M?) @ Ab(M).

Subproof. Immediate in view of the fact that (i) for all i < k, Ab(M?) ∩ Ωi =
Ab(M) ∩ Ωi (see Proposition 5.2), and (ii) Ab(M?) ∩ Ωk = Ab(Mk) ∩ Ωk ⊆
Ab(M ′′) ∩ Ωk ⊂ Ab(M) ∩ Ωk.

Theorem 5.18 If M ∈ MLLL(Γ)−MALr
@

(Γ), then there is an M ′ ∈ MALr
@

(Γ)
such that Ab(M ′) @ Ab(M).

Proof. Suppose M ∈ MLLL(Γ)−MALr
@

(Γ). By Theorem 5.5, M ∈ MLLL(Γ)
−MALm

@
(Γ). By Theorem 5.17, there is a M ′ ∈ MALm

@
(Γ) such that Ab(M ′) @

Ab(M). By Theorem 5.5, M ′ ∈ MALr
@

(Γ).

Corollary 5.2 If Γ has LLL-models, it has AL@-models. (Reassurance)
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5.3.3 Cumulative Indifference and the Deduction Theorem

In the remainder of Section 5.3, Γ′ is a metavariable for subsets of W̌s.

Theorem 5.19 If Γ′ ⊆ CnALm
@

(Γ), then MALm
@

(Γ) = MALm
@

(Γ ∪ Γ′).

Proof. Suppose (†) Γ′ ⊆ CnALm
@

(Γ). Consider a M ∈ MALm
@

(Γ ∪ Γ′). By
Definition 5.2, M ∈ MLLL(Γ ∪ Γ′) and hence M ∈ MLLL(Γ). Suppose that M 6∈
MALm

@
(Γ). By Theorem 5.17, there is a M ′ ∈ MALm

@
(Γ) such that Ab(M ′) @

Ab(M). However, in view of (†), M ′  A for every A ∈ Γ′, whence also M ′ ∈
MLLL(Γ ∪ Γ′). By Definition 5.2, M 6∈ MALm

@
(Γ ∪ Γ′), which contradicts the

supposition.
Consider a M ∈ MALm

@
(Γ). By (†), M  A for every A ∈ Γ′. By Definition

5.2, M is a LLL-model of Γ. We thus obtain that M is a LLL-model of Γ ∪ Γ′.
Suppose M 6∈ MALm

@
(Γ ∪ Γ′). By Theorem 5.17, there is a M ′ ∈ MLLL(Γ ∪ Γ′):

Ab(M ′) @ Ab(M). Hence M ′ ∈ MLLL(Γ). By Definition 5.2, M 6∈ MALm
@

(Γ),
whence we have obtained a contradiction.

Lemma 5.12 If Γ′ ⊆ CnALm
@

(Γ), then Φ@(Γ) = Φ@(Γ ∪ Γ′).

Proof. Suppose Γ′ ⊆ CnALm
@

(Γ). If Γ has no LLL-models, then Γ and Γ∪Γ′ are
LLL-trivial, whence Φ@(Γ) = {Ω} = Φ@(Γ ∪ Γ′).

If (1) Γ has LLL-models, then in view of the reassurance of ALm
@ , there is a

M ∈ MALm
@

(Γ). By Theorem 5.19, M ∈ MALm
@

(Γ ∪ Γ′), whence also (2) Γ ∪ Γ′

has LLL-models. By Theorem 5.19, MALm
@

(Γ) = MALm
@

(Γ ∪ Γ′). By (1), (2)
and Theorem 5.4, this means that Φ@(Γ) = Φ@(Γ ∪ Γ′).

Theorem 5.20 If Γ′ ⊆ CnALm
@

(Γ), then CnALm
@

(Γ) ⊆ CnALm
@

(Γ ∪ Γ′). (Cau-
tious Monotonicity)

Proof. Suppose Γ′ ⊆ CnALm
@

(Γ), whence by Lemma 5.12, (†) Φ@(Γ) = Φ@(Γ∪Γ′).
Suppose Γ `ALm

@
A. By Lemma 5.6.2 and (†), we have that (‡) for every ϕ ∈

Φ@(Γ ∪ Γ′), Γ `LLL A ∨̌Dab(∆) for a ∆ such that ϕ ∩ ∆ = ∅. By Lemma
5.6.1 and (‡), there is a finite ALm

@ -proof p from Γ such that A is derived at an
unmarked line l with condition ∆, and ∆ ∩ ϕ = ∅ for a ϕ ∈ Φ@(Γ ∪ Γ′). Note
that p is also a proof from Γ ∪ Γ′.

Suppose line l is marked in an extension of p. We may extend this extension
further such that (a) all minimal Dab-consequences of Γ ∪ Γ′ are derived on the
empty condition and (b) for every ϕ ∈ Φ@(Γ ∪ Γ′), A is derived on a condition
∆ such that ∆∩ϕ = ∅ – this is possible in view of (‡). Let s be the stage of this
second extension of p.

Note that by (a), for every later stage s′, Φs′(Γ ∪ Γ′) = Φ(Γ ∪ Γ′). By (b),
at every later stage s′, for every ϕ ∈ Φs′(Γ ∪ Γ′), A is derived on a condition ∆
such that ∆ ∩ ϕ = ∅. By Definition 5.7, line l is unmarked at every such stage
s′, whence A is finally derived in the proof. Hence Γ ∪ Γ′ `ALm

@
A.

Theorem 5.21 Where Γ ⊆ Ws: if Γ′ ⊆ CnALm
@

(Γ), then CnALm
@

(Γ ∪ Γ′) ⊆
CnALm

@
(Γ). (Cumulative Transitivity)
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Proof. Suppose Γ′ ⊆ CnALm
@

(Γ), whence by Theorem 5.19, (†) MALm
@

(Γ) =
MALm

@
(Γ ∪ Γ′). Suppose Γ∪Γ′ `ALm

@
A. By the soundness of ALm

@ , Γ∪Γ′ |=ALm
@

A. By (†), Γ |=ALm
@
A. By the completeness of ALm

@ , Γ `ALm
@
A.

Theorem 5.22 CnALr
@

(Γ) ⊆ CnALm
@

(Γ).

Proof.6 Suppose Γ `ALr
@
A. By Lemma 5.11, there is a finite ALr

@-proof p from
Γ, in which A occurs on an unmarked line l with condition ∆, and ∆∩U@(Γ) = ∅.
Let s be the stage of this proof. Since line l is unmarked, we have that (†)
∆ ∩ U@

s (Γ) = ∅. Since U@(Γ) =
⋃

Φ@(Γ), we can derive that (‡) ∆ ∩ ϕ = ∅ for
every ϕ ∈ Φ@(Γ).

Note that p is also an ALm
@ -proof from Γ. By (†) and the fact that U@

s (Γ) =
⋃

Φ@
s (Γ), we can derive that ∆∩ϕ = ∅ for every ϕ ∈ Φ@

s (Γ). Hence line l is also
unmarked in p if the strategy is @-Minimal Abnormality.

Suppose line l is ALm
@ -marked in a further extension of the proof. We then

extend the proof further to a stage s′, such that every minimal Dab-consequence
of Γ is derived at stage s′. Note that Φ@

s′(Γ) = Φ@(Γ). By (‡) and Definition 5.7,
line l is unmarked at stage s′.

Lemma 5.13 If Γ′ ⊆ CnALr
@

(Γ), then U@(Γ ∪ Γ′) = U@(Γ).

Proof. Suppose Γ′ ⊆ CnALr
@

(Γ). By Theorem 5.22, Γ′ ⊆ CnALm
@

(Γ). By Lemma
5.12, Φ@(Γ) = Φ@(Γ ∪ Γ′), whence by Definition 5.4, U@(Γ ∪ Γ′) = U@(Γ).

Theorem 5.23 If Γ′ ⊆ CnALr
@

(Γ), then MALr
@

(Γ) = MALr
@

(Γ ∪ Γ′).

Proof. Suppose Γ′ ⊆ CnALr
@

(Γ). By Lemma 5.13, (†) U@(Γ ∪ Γ′) = U@(Γ).
Suppose M ∈ MALr

@
(Γ). By the supposition and the soundness of ALr

@, M ∈
MLLL(Γ ∪ Γ′). By (†) and Definition 5.5, M ∈ MALr

@
(Γ ∪ Γ′).

Suppose M ∈ MALr
@

(Γ ∪ Γ′). By Definition 5.5, M ∈ MLLL(Γ ∪ Γ′) and
Ab(M) ⊆ U@(Γ∪Γ′). Then by the monotonicity of LLL and (†), M ∈ MLLL(Γ)
and Ab(M) ⊆ U@(Γ). By Definition 5.5, M ∈ MALr

@
(Γ).

Theorem 5.24 If Γ′ ⊆ CnALr
@

(Γ), then CnALr
@

(Γ) ⊆ CnALr
@

(Γ ∪ Γ′). (Cau-
tious Monotonicity)

Proof. Suppose Γ′ ⊆ CnALr
@

(Γ), whence by Lemma 5.13, (†) U@(Γ ∪ Γ′) =
U@(Γ). Suppose Γ `ALr

@
A, whence by Lemma 5.11, A is derivable in an ALr

@-
proof p from Γ on line l with condition ∆ such that ∆ ∩ U@(Γ) = ∅. Note that
p is a ALr

@-proof from Γ ∪ Γ′ as well.
Suppose that line l is marked in an extension of p. We may then further

extend the extension, such every minimal Dab-consequence of Γ ∪ Γ′ is derived
in it on the empty condition. Where the stage of the second extension is s, we
have that U@

s (Γ ∪ Γ′) = U@(Γ ∪ Γ′). By (†), ∆ ∩ U@(Γ ∪ Γ′) = ∅. As a result,
line l is unmarked at stage s.

6Some readers might wonder if this theorem is not an immediate consequence of Theorem
5.5 above. However, since the completeness of ALm

@ and ALr
@ is restricted to premise sets

Γ ⊆ Ws, we need a syntactic argument to prove that AL
m
@ is always at least as strong as AL

r
@ .
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Theorem 5.25 Where Γ ⊆ Ws: if Γ′ ⊆ CnALr
@

(Γ), then CnALr
@

(Γ ∪ Γ′) ⊆
CnALr

@
(Γ). (Cumulative Transitivity)

Proof. Suppose Γ′ ⊆ CnALr
@

(Γ), whence by Theorem 5.23, (†) MALr
@

(Γ) =
MALr

@
(Γ ∪ Γ′). Now suppose Γ ∪ Γ′ `ALr

@
A. By the soundness of ALr

@, Γ ∪
Γ′ |=ALr

@
A. By (†), Γ |=ALr

@
A. By the completeness of ALr

@, Γ `ALr
@
A.

In view of Theorems 5.20, 5.21, 5.24, and 5.25, we immediately have:

Corollary 5.3 Where Γ ⊆ Ws: if Γ′ ⊆ CnAL@
(Γ), then CnAL@

(Γ) = CnAL@
(Γ∪

Γ′). (Cumulative Indifference)

By Corollary 5.3, Theorem 5.9.1 and Lemma 2.7:

Theorem 5.26 Where Γ ⊆ Ws, CnAL@
(Γ) = CnAL@

(CnAL@
(Γ)). (Fixed

Point)

Theorem 5.27 Where Γ ⊆ Ws: if Γ ∪ {A} `ALm
@
B, then Γ `ALm

@
A ⊃̌B.

(Deduction Theorem for ALm
@ )7

Proof. Suppose Γ ∪ {A} `ALm
@
B, whence by the soundness of ALm

@ : (†) every
ALm

@ -model of Γ ∪ {A} verifies B. Assume that Γ 0ALm
@
A ⊃̌B — we derive a

contradiction. By the completeness of ALm
@ , there is a ALm

@ -model M of Γ such
that M  A ∧̌ ¬̌B. Note that M is a LLL-model of Γ ∪ {A}. In view of (†), M
is not a ALm

@ -model of Γ ∪ {A}, whence there is a LLL-model M ′ of Γ ∪ {A}
such that Ab(M ′) @ Ab(M). However, by the monotonicity of LLL, M ′ is a
LLL-model of Γ. By Definition 5.2, M 6∈ MALm

@
(Γ).

5.3.4 Relations Between Logics

Theorem 5.28 CnALm
@

(Γ) ⊆ CnULL(Γ).

Proof. Suppose Γ `ALm
@
A. By Lemma 5.6.2, Γ `LLL A ∨̌Dab(∆) for a ∆ ⊆ Ω.

By CL-properties, Γ ∪ Ω¬̌ `LLL A, whence in view of the definition of ULL,
Γ `ULL A.

Let ALr and ALm be defined as in Section 5.1, i.e. by (i) LLL, (ii) Ω =
⋃

i∈I Ωi and (iii) Reliability, resp. Minimal Abnormality. In view of Theorems
5.9, 5.22, 5.28 and 5.8, we have:

Corollary 5.4 Each of the following holds:

1. CnLLL(Γ) ⊆ CnALr
@

(Γ) ⊆ CnALm
@

(Γ) ⊆ CnULL(Γ)
2. CnLLL(Γ) ⊆ CnALr(Γ) ⊆ CnALr

@
(Γ) ⊆ CnULL(Γ)

3. CnLLL(Γ) ⊆ CnALm(Γ) ⊆ CnALm
@

(Γ) ⊆ CnULL(Γ)

Theorem 5.29 Where Γ ⊆ Ws, CnAL@
(Γ) = CnAL@

(CnLLL(Γ)). (LLL-
invariance)

7The Deduction Theorem does not hold for ALr
@ . This follows immediately in view of the

fact that it does not hold for ALr – see page 31 – and the fact that every logic ALr is a logic
in the extended format as well – see Section 5.2.3.
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Proof. By Theorem 5.9.2, (‡) CnLLL(Γ) ⊆ CnAL@
(Γ). By (‡) and Corollary 5.3,

CnAL@
(Γ ∪ CnLLL(Γ)) = CnAL@

(Γ). Since LLL is reflexive, Γ ⊆ CnLLL(Γ),
whence CnAL@

(Γ ∪CnLLL(Γ)) = CnAL@
(CnLLL(Γ)) and we are done.

Theorem 5.30 Where Γ ⊆ Ws, CnAL@
(Γ) = CnLLL(CnAL@

(Γ)). (LLL-
closure)

Proof. That CnAL@
(Γ) ⊆ CnLLL(CnAL@

(Γ)) follows from the reflexivity of
LLL. For the other direction of the inclusion, suppose A ∈ CnLLL(CnAL@

(Γ)).
By the soundness of LLL, (†) A is true in every LLL-model M of CnAL@

(Γ).
By the soundness of AL@, every M ∈ MAL@

(Γ) is a LLL-model of CnAL@
(Γ).

But then by (†), every M ∈ MAL@
(Γ) verifies A. By the completeness of AL@,

A ∈ CnAL@
(Γ).

5.3.5 Normal Premise Sets

By Theorem 2.17 and Corollary 5.4, we can derive:

Corollary 5.5 If Γ is normal, then CnAL@
(Γ) = CnULL(Γ).

As for superpositions of ALs and hierarchic ALs, we can easily show the well-
behavedness of AL@ in the case of premise sets that are normal up to a certain
level i. The proof relies on two lemmas:

Lemma 5.14 If Γ is normal up to level i, then there is no ∆ ⊂ Ω(i) such that
Γ `LLL Dab(∆).

Proof. Suppose the antecedent holds, and let ∆ be a finite subset of Ω(i). By
the supposition, there is an M ∈ MLLL(Γ ∪ Ω¬̌

(i)), whence M 6 Dab(∆). By the

soundness of LLL, Γ 0LLL Dab(∆).

Lemma 5.15 If Γ is normal up to level i, then at every stage s of a proof from
Γ, ϕ ∩ Ω(i) = ∅ for every ϕ ∈ Φ@

s (Γ).

Proof. Suppose the antecedent holds and let s be a stage of a proof from Γ.

Assume that for a ϕ ∈ Φ@
s (Γ), ϕ ∩ Ω(i) 6= ∅. Let ψ =

⋃

{Θ − Ω(i) | Θ ∈ Σ
(i)
s (Γ)}.

By the supposition and Lemma 5.14, every Θ ∈ Σ
(i)
s (Γ) is such that Θ−Ω(i) 6= ∅,

whence ψ is a choice set of Σ
(i)
s (Γ). However, since ψ ∩ Ω(i) = ∅, it follows that

ψ @ ϕ — a contradiction.

Theorem 5.31 If Γ is normal up to level i, then CnULL(i)
(Γ) ⊆ CnALm

@
(Γ).

Proof. Suppose the antecedent holds and A ∈ CnULL(i)
(Γ), whence Γ∪Ω¬̌

(i) `LLL

A. By the compactness of LLL, there are B1, . . . , Bn ∈ Γ and there is a finite
∆ ⊂ Ω(i) such that {B1, . . . , Bn} ∪ ∆¬̌ `LLL A. By the Deduction Theorem,
{B1, . . . , Bn} `LLL A ∨̌Dab(∆).

Let p be an ALm
@ -proof from Γ, obtained by (i) introducing all the premises

Bi (i ≤ n) and (ii) deriving A on the condition ∆ from these premises, by the
rule RC. Let l be the line on which A is derived.
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Assume that l is marked. It follows that there is a ϕ ∈ Φ@
s (Γ) such that

ϕ∩∆ 6= ∅, whence ϕ∩Ω(i) 6= ∅. By Lemma 5.15, Γ is not normal up to level i —
a contradiction. By the same reasoning, it follows that in every extension of p,
line l remains unmarked. Hence, A is finally derived in p, whence A ∈ CnALm

@
(Γ).

5.3.6 Equivalent Premise Sets

Recall the criteria for the AL-equivalence of two premise sets Γ,Γ′ from Section
2.5 in Chapter 2. In the remainder, we will show that each of these criteria apply
to all logics AL@. This requires that we first establish some additional results,
each of which were shown for flat ALs in [33] and recapitulated in Chapter 2.

Theorem 5.32 Where Γ,Γ′ ⊆ Ws: if Γ and Γ′ are LLL-equivalent, then they
are AL@-equivalent.

Proof. Suppose Γ and Γ′ are LLL-equivalent, whence CnLLL(Γ) = CnLLL(Γ′).
By Theorem 5.30, CnAL@

(Γ) = CnAL@
(CnLLL(Γ)) and CnAL@

(Γ′) =
CnAL@

(CnLLL(Γ′)). Hence CnAL@
(Γ) = CnAL@

(Γ′).

Theorem 5.33 Every monotonic logic that is weaker than or identical to AL@

is weaker than or identical to LLL. (Maximality of LLL)

Proof. (ALm
@ ) This follows immediately in view of (i) Lemma 5.6.2 from the

current chapter, (ii) the proof of Theorem 10 in [33]— replace Φ(Γ ∪ Γ′) in that
proof by Φ@(Γ ∪ Γ′) and Theorem 4 in that proof by Lemma 5.6.2 from the
current chapter.
(ALr

@) This follows immediately in view of the fact that ALm
@ is stronger than

ALr
@ — see Theorem 5.22 — and item 1.

Fact 5.3 Where L is a Tarski-logic weaker than or identical to LLL: if Γ and
Γ′ are L-equivalent, then they are LLL-equivalent.

Theorem 5.34 Where Γ,Γ′ ⊆ Ws, CnAL@
(Γ) = CnAL@

(Γ′) if one of the fol-
lowing holds:

(C1) Γ′ ⊆ CnAL@
(Γ) and Γ ⊆ CnAL@

(Γ′)
(C2) Where L is a Tarski-logic weaker than or identical to AL@: CnL(Γ) =

CnL(Γ′)
(C3) Where L is a Tarski-logic and for every Θ ⊆ Ws, CnAL@

(Θ) =
CnL(CnAL@

(Θ)): CnL(Γ) = CnL(Γ′)

Proof. Ad 1. Immediate in view of Corollary 5.3 and Lemma 2.8.
Ad 2. and 3. It was proven in [33] that (C2) and (C3) are coextensive whenever
(i) AL@ is reflexive and has the Fixed Point property, and (ii) L is monotonic.
Hence in view of Theorem 5.9.1 and Theorem 5.26, it suffices to prove item 2.

Suppose L is a Tarski-logic weaker than or identical to AL@. By Theorem
5.33, L is weaker than or identical to LLL. Now suppose Γ and Γ′ are L-
equivalent. By Fact 5.3, Γ and Γ′ are LLL-equivalent. By Theorem 5.32, Γ and
Γ′ are AL@-equivalent.



Chapter 6

Comparing the Formats

Sections 6.2-6.5 of this chapter are based on the paper “Three Formats of Prior-
itized Adaptive Logics. A Comparative Study” (Logic Journal of the IGPL 2012,
doi:10.1093/jigpal/JZS004), which was co-authored by Christian Straßer. We
thank two anonymous referees for their valuable comments on that paper. Sec-
tions 6.6 and 6.7 contain some unpublished results, and Section 6.8 presents a
general conclusion of Part I of this thesis. I am indebted to Peter Verdée for his
critical remarks on previous drafts of this chapter.

6.1 Introduction

In this chapter, I will compare various formats from the preceding chapters in
terms of the logical strength of systems defined in these formats. That is, for any
given I ⊆ N, any sequence 〈Ωi〉i∈I of sets of abnormalities, and any lower limit
logic LLL, I will compare the logics ALx,SALx,SALx

(I),HALx,ALx
@ defined

from them, both for the case where x = r and x = m.1 Recall that these logics
are defined as follows:

• ALx is the flat adaptive logic defined by the triple 〈LLL,
⋃

i∈I Ωi,x〉
• Where i ∈ I, ALx

i is the flat adaptive logic defined by the triple 〈LLL,Ωi,x〉
• Where i ∈ I, Ω(i) = Ω1 ∪ . . . ∪ Ωi
• Where i ∈ I, ALx

(i) is the flat adaptive logic defined by the triple 〈LLL,Ω(i),x〉

• SALx is obtained by the superposition of the logics 〈ALx
i 〉i∈I

• SALx
(I) is obtained by the superposition of the logics 〈ALx

(i)〉i∈I
• HALx is obtained by the hierarchic combination of the logics 〈ALx

(i)〉i∈I
• ALx

@ is the lexicographic adaptive logic defined by the triple 〈LLL, 〈Ωi〉i∈I ,x〉

1I will not make pairwise comparisons of logics that have a different strategy in this chapter.
It was shown in the preceding chapters that flat ALs, hierarchic ALs, and lexicographic ALs that
have the Minimal Abnormality Strategy are at least as strong as their respective Reliability-
variants. I also illustrated that in general, SALr and SALm are incomparable – see Chapter 3,
Section 3.1.2. As shown at the end of Section 6.7, every logic SALm

(I)
is at least as strong as the

corresponding logic SALr

(I)
given certain weak restrictions on the premise set (see Corollary

6.17).

131
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I will first consider the Minimal Abnormality-variants of these formats. For
systematic reasons, it is easiest to start with the logics SALm

(I), HALm and
ALm

@ . In Sections 6.2-6.4, it will be shown that each of the following holds:

(i) The semantic consequence relations of HALm, SALm
(I) and ALm

@ are equiv-

alent (Section 6.2, Corollary 6.1)

(ii) The syntactic consequence relation of ALm
@ is always at least as strong as

that of SALm
(I) and HALm (Section 6.3, Corollaries 6.5 and 6.6)

(iii) The syntactic consequence relations of SALm
(I) and HALm are complete

and equivalent to ALm
@ , given certain (weak) restrictions on the premise

sets (Section 6.4, Corollaries 6.11 and 6.12)

To arrive at (ii), it is first shown that every logic in the format of SALm
(I) is

sound with respect to its semantics (see Section 6.3, Theorem 6.5.2).
In view of (i) and the soundness and completeness of ALm

@ for all Γ ⊆ Ws,
we obtain three different semantic characterizations of the ALm

@ -consequence
relation. (ii) and (iii) are of particular interest in view of the fact that ALm

@ ,
SALm

(I) and HALm are each characterized by their own format-specific semantics
and proof theory. This means that we obtain a great variety of methods to prove
that a formula is (not) an ALm

@ -consequence of a set of premises. As shown in
Section 6.5, whenever the restrictions mentioned in (iii) hold, properties such as
Idempotence and the Deduction Theorem can easily be transferred from ALm

@

to HALm and SALm
(I), relying on (i)-(iii).

In Section 6.6, the above three systems are compared to the corresponding
logics in the format SALm, with the following result:

(iv) whenever Φ(Γ) is finite, then every logic SALm is at least as strong as the
corresponding logics SALm

(I), HALm and ALm
@ .

Hence, superpositions of flat ALs are usually stronger than the corresponding
hierarchic logics and lexicographic ALs. By means of a simple example, I will
also show that the converse of (iv) fails. The main results concerning the logical
strength of the Minimal Abnormality-variants are summarized in Corollary 6.14.
Examples that illustrate why (iii) and (iv) are restricted to specific classes of
premise sets, are presented in Appendix C.

In Section 6.7, I will consider the Reliability-variants of the various formats.
There I will show each of the following:

(v) every logic SALr
(I) is at least as strong as the corresponding logic HALr

(vi) every logic SALr is at least as strong as the corresponding logic SALr
(I)

(vii) every logic ALr
@ is at least as strong as the corresponding logic SALr

(I)

Again, simple examples will be given to illustrate that the converses of (v)-
(vii) often fail. It will also be shown that ALr

@ and SALr are in general in-
comparable. Corollaries 6.15 and 6.16 summarize the main results of this and
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preceding chapters, concerning the logical strength of the Reliability-variants of
flat and prioritized ALs.

On the basis of the results from this and the preceding chapters, I will for-
mulate some general conclusions about the use and disuse of the formats for
prioritized adaptive logics, presented in this thesis (Section 6.8). There I will
also return to the restrictions of the current study, and discuss various topics for
further research.

Some More Notational Conventions To close the gap between, on the one
hand, combinations in terms of flat adaptive logics, and, on the other hand,
lexicographic ALs, it will be convenient to define lexicographic ALs that only
consider abnormalities up to a certain rank i ∈ I. Define @(i), the lexicographic
order up to level i, as follows:

Definition 6.1 Where ∆,∆′ ⊆ Ω: ∆ @(i) ∆′ iff 〈∆ ∩ Ωj〉j≤i @lex 〈∆′ ∩ Ωj〉j≤i.

In view of the above definition and Definition 5.1, we have:

Fact 6.1 Where i ∈ I and ∆,∆′ ⊆ Ω, each of the following holds:

1. ∆ @(i) ∆′ iff ∆ ∩ Ω(i) @(i) ∆′ ∩ Ω(i)

2. If ∆ @(i) ∆′, then ∆ @ ∆′

3. If ∆ @(i) ∆′, then ∆ @(j) ∆′ for every j ∈ I, i ≤ j

Where x ∈ {r,m} and i ∈ I, the logic ALx
@(i)

is a lexicographic AL, defined

by 〈LLL, 〈Ωj〉j≤i,x〉. Note that M ∈ MALm
@(i)

(Γ) iff M ∈ MLLL(Γ) and there

is no M ′ ∈ MLLL(Γ) such that Ab(M ′) @(i)Ab(M).

In a similar vein as for ALx
@, we can characterize the ALx

@(i)
-semantics syn-

tactically, in terms of a specific set of (sets of) abnormalities – see also Section
5.1.4 in Chapter 5. Let Φ@(i)(Γ) denote the set of @(i)-minimal choice sets of

Σ(i)(Γ), and let U@(i)(Γ) =
⋃

Φ@(i)(Γ). In view of the preceding chapter, we can
infer that M ∈ MALm

@(i)
(Γ) iff M ∈ MLLL(Γ) and Ab(M)∩Ω(i) ∈ Φ@(i)(Γ), and

that M ∈ MALr
@(i)

(Γ) iff M ∈ MLLL(Γ) and Ab(M) ∩ Ω(i) ⊆ U@(i)(Γ).

Note also that, where ∆,∆′ ⊆ Ω, ∆ @(1) ∆′ iff ∆ ∩ Ω(1) ⊂ ∆′ ∩ Ω(1). From
this, we can infer:

Fact 6.2 Each of the following holds:

1. Φ(1)(Γ) = Φ@(1)(Γ)
2. MALm

(1)
(Γ) = MALm

1
(Γ) = MALm

@(1)
(Γ)

3. CnALm
1

(Γ) = CnALm
(1)

(Γ) = CnALm
@(1)

(Γ)

4. U1(Γ) = U (1)(Γ) = U@(1)(Γ)
5. MALr

(1)
(Γ) = MALr

1
(Γ) = MALr

@(1)
(Γ)

6. CnALr
1
(Γ) = CnALr

(1)
(Γ) = CnALr

@(1)
(Γ)
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Generic Properties Recall that the subset-relation is central in the definition
of the ALm-semantics and ALm–proof theory. For ALm

@ , this relation is replaced
by the lexicographic order @. To shorten some proofs in the remainder, it will
be useful to state one definition and two theorems generically, using ≺ as a
metavariable for ⊂ and @.

Let Φ⊂(Γ) =df Φ(Γ) and let ALm
⊂ =df ALm. Where ≺ ∈ {⊂,@}, we have:

Definition 6.2 M ∈ MALm
≺

(Γ) iff M ∈ MLLL(Γ) and there is no M ′ ∈
MLLL(Γ) such that Ab(M ′) ≺ Ab(M).

The following theorems are corollaries of theorems from Chapters 2 and 5:

Theorem 6.1 If M ∈ MLLL(Γ)−MALm
≺

(Γ), then there is a M ′ ∈ MALm
≺

(Γ)
such that Ab(M ′) ≺ Ab(M).

Theorem 6.2 Each of the following holds:

1. M ∈ MALm
≺

(Γ) iff (M ∈ MLLL(Γ) and Ab(M) ∈ Φ≺(Γ))
2. If Γ has LLL-models, then Φ≺(Γ) = {Ab(M) |M ∈ MALm

≺
(Γ)}

6.2 Three Equivalent Semantic Characterizations

Superpositions and Lexicographic ALs Recall that the SALm
(I)-semantics

is defined in terms of the sequential superpositions of minimally abnormal selec-
tions, in view of the sets 〈Ω(i)〉i∈I – see Definition 3.4 on page 50. Below, it is
shown that this sequential selection leads to the same result as the lexicographic
selection of the ALm

@ -semantics – see Theorem 6.3.
We start with a number of facts about the SALm

(I)-semantics. By Facts 3.2
and 6.2.2, we have:

Fact 6.3 MSALm
1

(Γ) = MALm
1

(Γ) = MALm
(1)

(Γ) = MALm
@(1)

(Γ).

Also, in view of Definition 3.4, the sequence MSALm
1

(Γ),MSALm
2

(Γ), . . . de-
creases monotonically:

Fact 6.4 Each of the following holds for every i ∈ I:

1. MSALm
i

(Γ) ⊆ MSALm
i−1

(Γ).

2. MSALm
i

(Γ) =
⋂

j≤iMSALm
j

(Γ)

Lemma 6.1 Let i ∈ I. If M ∈ MSALm
i

(Γ) and M ′ ∈ MLLL(Γ) is such that
Ab(M ′) ∩ Ω(i) ⊆ Ab(M) ∩ Ω(i), then M ′ ∈ MSALm

i
(Γ).

Proof. Assume that the antecedent holds, but M ′ 6∈ MSALm
i

(Γ). Let j ≤ i
be the smallest j ∈ I such that M ′ 6∈ MSALm

j
(Γ). By Definition 3.4, there is

an M ′′ ∈ MSALm
j−1

(Γ) such that Ab(M ′′) ∩ Ωj ⊂ Ab(M ′) ∩ Ωj . In view of the

supposition, Ab(M ′)∩Ωj ⊆ Ab(M)∩Ωj , whence (†) Ab(M ′′)∩Ωj ⊂ Ab(M)∩Ωj .
By the supposition and Definition 3.4, M ∈ MSALm

j−1
(Γ). By (†) and Definition

3.4, M 6∈ MSALm
j

(Γ), whence also M 6∈ MSALm
i

(Γ) — a contradiction.
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Theorem 6.3 MSALm
(I)

(Γ) = MALm
@

(Γ).

Proof. (MSALm
(I)

(Γ) ⊆ MALm
@

(Γ)) Assume that M ∈ MSALm
(I)

(Γ)−MALm
@

(Γ).

By Definition 3.4, M ∈ MLLL(Γ). Hence, by Definition 5.1 and Definition 5.2,
there is an i ∈ I and an M ′ ∈ MLLL(Γ) such that (1) for every j < i: Ab(M ′) ∩
Ωj = Ab(M)∩Ωj , and (2) Ab(M ′)∩Ωi ⊂ Ab(M)∩Ωi. It follows that (1’) for every
j < i: Ab(M ′) ∩ Ω(j) = Ab(M) ∩ Ω(j) and (2’) Ab(M ′) ∩ Ω(i) ⊂ Ab(M) ∩ Ω(i).
By Definition 3.4, M ∈ MSALm

(i−1)
(Γ). But then also M ′ ∈ MSALm

(i−1)
(Γ),

which implies that M 6∈ MSALm
(i)

(Γ). By Definition 3.4, M 6∈ MSALm
(I)

(Γ) — a

contradiction.

(MALm
@

(Γ) ⊆ MSALm
(I)

(Γ)) Assume that M ∈ MLLL(Γ)−MSALm
(I)

(Γ). Take

the smallest i ∈ I for which M 6∈ MSALm
(i)

(Γ). By Definition 3.4, there is

an M ′ ∈ MSALm
(i−1)

(Γ) such that Ab(M ′) ∩ Ω(i) ⊂ Ab(M) ∩ Ω(i). Note that

M ′ ∈ MLLL(Γ). Also, it follows that there is a k ≤ i such that (1) for every
j ∈ I, j < k: Ab(M ′) ∩ Ωj = Ab(M) ∩ Ωj , and (2) Ab(M ′) ∩ Ωk ⊂ Ab(M) ∩ Ωk.
But then M 6∈ MALm

@
(Γ) by Definitions 5.1 and 5.2.

Hierarchic and Lexicographic ALs As explained in Chapter 4, the HALm-
semantics is obtained by taking the intersection of the sets MALm

(i)
(Γ) with i ∈ I.

Just as for SALm
(I), we can easily prove that this semantics is equivalent to that

of the logic ALm
@ , characterized by the triple 〈LLL, 〈Ωi〉i∈I ,m〉:

Theorem 6.4 MHALm(Γ) = MALm
@

(Γ)

Proof. (MHALm(Γ) ⊆ MALm
@

(Γ)) Suppose M ∈ MLLL(Γ)−MALm
@

(Γ). By
Definition 5.1 and Definition 5.2, there is an i ∈ I and an M ′ ∈ MLLL(Γ)
such that (1) for every j < i: Ab(M ′) ∩ Ωj = Ab(M) ∩ Ωj, and (2) Ab(M ′) ∩
Ωi ⊂ Ab(M) ∩ Ωi. It follows that (2’) Ab(M ′) ∩ Ω(i) ⊂ Ab(M) ∩ Ω(i). Thus
M 6∈ MALm

(i)
(Γ), whence by Definition 4.2, M 6∈ MHALm(Γ).

(MALm
@

(Γ) ⊆ MHALm(Γ)) Suppose M ∈ MLLL(Γ)−MHALm(Γ). Hence
there is an i ∈ I: M 6∈ MALm

(i)
(Γ), whence by Definition 5.2, there is an M ′ ∈

MLLL(Γ): Ab(M ′) ∩ Ω(i) ⊂ Ab(M) ∩ Ω(i). It follows that there is a k ≤ i such
that (1) for every j < k: Ab(M ′) ∩ Ωj = Ab(M) ∩ Ωj, and (2) Ab(M ′) ∩ Ωk ⊂
Ab(M) ∩ Ωk. Thus M 6∈ MALm

@
(Γ).

Some Corollaries The following corollary is one of the central results pre-
sented in this chapter. It shows that the semantics of hierarchic adaptive logics
and logics in the ALm

@ -format define the same consequence relation. Moreover,
there is a class of superposed adaptive logics for which the semantics is equivalent
to that of HALm and ALm

@ as well. This class of superposed adaptive logics is
characterized by the same sequences of flat adaptive logics as hierarchical adap-
tive logics, namely sequences of the form 〈ALm

(1),ALm
(2), . . . 〉. The fact that three

different paths of devising selection semantics for prioritized logics lead to the
same semantic consequence relation demonstrates the centrality, robustness and
usefulness of the latter.
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Corollary 6.1 MALm
@

(Γ) = MSALm
(I)

(Γ) = MHALm(Γ). Hence, Γ |=ALm
@
A iff

Γ |=SALm
(I)
A iff Γ |=HALm A.

In the remainder of this section, let PAL ∈ {ALm
@ ,SALm

(I),HALm}. Since

ALm
@ is sound and complete with respect to |=ALm

@
(see Corollary 5.1), the corol-

lary equips us with alternative semantic selection procedures for ALm
@ :

Corollary 6.2 Each of the following holds:

1. If Γ `ALm
@
A, then Γ |=PAL A.

2. Where Γ ⊆ Ws: if Γ |=PAL A, then Γ `ALm
@
A.

By Theorems 5.17 and 6.3, it follows that SALm
(I) satisfies a specific kind of

Strong Reassurance:2

Corollary 6.3 SALm
(I) satisfies SR3: if M ∈ MLLL(Γ)−MSALm

(I)
(Γ), then

there is an M ′ ∈ MSALm
(I)

(Γ) and an i ∈ I such that Ab(M ′) ∩ Ω(i) ⊂ Ab(M) ∩

Ω(i). If M ∈ MLLL(Γ)−MSALm
(I)

(Γ). Alternatively, if M ∈ MLLL(Γ)−

MSALm
(I)

(Γ), then there is an M ′ ∈ MSALm
(I)

(Γ) such that Ab(M ′) @ Ab(M).

6.3 Soundness of SALm
(I)

In view of the soundness of HALm (see Theorem 4.6), the completeness of ALm
@

and the preceding section, it can easily be inferred that for every Γ ⊆ Ws,
CnHALm(Γ) ⊆ CnALm

@
(Γ) – see Corollary 6.6 below. To obtain a similar result

for SALm
(I), I first prove that these logics are also sound with respect to their

semantics. Recall that SAL-logics are not in general sound and complete; nor
are logics of the more restricted class SALm – see Chapter 3, Section 3.3.3.

Soundness of SALm
(I) For the proof of Theorem 6.5 below, we need to establish

a specific property of the ALm
≺ -semantics. It states that if every member of a set

Γ′ is true in all ALm
≺ -models of Γ, then MALm

≺
(Γ ∪ Γ′) = MALm

≺
(Γ):

Lemma 6.2 If Γ′ ⊆ {A | Γ |=ALm
≺
A}, then MALm

≺
(Γ ∪ Γ′) = MALm

≺
(Γ).3

Proof. Suppose (†) Γ′ ⊆ {A | Γ |=ALm
≺
A}.

(MALm
≺

(Γ ∪ Γ′) ⊆ MALm
≺

(Γ)) Consider an M ∈ MALm
≺

(Γ ∪ Γ′). By Defi-
nition 6.2, M ∈ MLLL(Γ ∪ Γ′) and hence M ∈ MLLL(Γ). Assume that M 6∈
MALm

≺
(Γ). By Theorem 6.1, there is an M ′ ∈ MALm

≺
(Γ) such that Ab(M ′) ≺

Ab(M). However, in view of (†), M ′  A for every A ∈ Γ′, whence also
M ′ ∈ MLLL(Γ ∪ Γ′). By Definition 6.2, M 6∈ MALm

≺
(Γ ∪ Γ′) — a contradic-

tion.

2See page 81 where SR3 was introduced and compared to other variants of Strong Reassur-
ance. Recall that SR3 was already proven for HAL

m and AL
m
@ independently – see Theorems

4.15, resp. 5.17.
3This lemma generalizes Lemma 5.19 from Chapter 5, Section 5.3.3 – there it was shown

that the consequent of the lemma holds for AL
m
@ whenever Γ′ ⊆ CnAL

m
@

(Γ).
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(MALm
≺

(Γ) ⊆ MALm
≺

(Γ ∪ Γ′)) Consider an M ∈ MALm
≺

(Γ). By (†), M  A
for every A ∈ Γ′. By Definition 6.2, M is an LLL-model of Γ. We thus obtain
that M is a LLL-model of Γ∪Γ′. Assume that M 6∈ MALm

≺
(Γ ∪ Γ′). By Theorem

6.1, there is an M ′ ∈ MLLL(Γ ∪ Γ′): Ab(M ′) ≺ Ab(M). Hence M ′ ∈ MLLL(Γ).
By Definition 6.2, M 6∈ MALm

≺
(Γ) — a contradiction.

To understand the following theorem, recall that the logic SALm
(i) (i ∈ I)

is obtained by the sequential superposition of the logics 〈ALm
(j)〉j≤i. Item 2 of

the theorem below states that every logic SALm
(i) is sound with respect to its

semantics. As shown below, the soundness of SALm
(I) is an immediate corollary

of this.

Theorem 6.5 Each of the following holds for every i ∈ I:

1. For every M ∈ MSALm
(i)

(Γ), Ab(M) ∩ Ω(i) ∈ Φ(i)(CnSALm
(i−1)

(Γ))

2. If A ∈ CnSALm
(i)

(Γ), then Γ |=SALm
(i)
A.

Proof. (i = 1) Ad 1. Suppose M ∈ MSALm
(1)

(Γ). By Fact 3.2, M ∈ MALm
(1)

(Γ).

Hence by Theorem 2.1.1, Ab(M)∩Ω(1) ∈ Φ(1)(Γ). The rest is immediate in view
of Fact 2.1.

Ad 2. Suppose A ∈ CnSALm
(1)

(Γ) = CnALm
(1)

(Γ). By the soundness of ALm
(1),

A is true in every M ∈ MALm
(1)

(Γ). By Fact 3.2, A is true in every M ∈

MSALm
1

(Γ).
(i⇒ i+1) Ad 1. By item 2 of the induction hypothesis, Fact 6.4 and Theorem

6.3 respectively, CnSALm
(i)

(Γ) ⊆ {A | Γ |=SALm
(i)
A} ⊆ {A | Γ |=SALm

(i+1)
A} =

{A | Γ |=ALm
@(i+1)

A}. By Lemma 6.2,

MALm
@(i+1)

(Γ) = MALm
@(i+1)

(Γ ∪ CnSALm
(i)

(Γ))

whence by the reflexivity of SALm
(i), MALm

@(i+1)
(Γ) = MALm

@(i+1)
(CnSALm

(i)
(Γ)).

By Theorem 6.3,

MSALm
(i+1)

(Γ) = MSALm
(i+1)

(CnSALm
(i)

(Γ)) (6.1)

Suppose (†) M ∈ MSALm
(i+1)

(Γ). By (6.1), M ∈ MSALm
(i+1)

(CnSALm
(i)

(Γ)).

By Definition 3.4, M is an LLL-model of CnSALm
(i)

(Γ), whence by Fact 5.2,

Ab(M) ∩ Ω(i+1) is a choice set of Σ(i+1)(CnSALm
(i)

(Γ)).

Suppose Ab(M) ∩ Ω(i+1) 6∈ Φ(i+1)(CnSALm
(i)

(Γ)). Hence, there is a choice set

ψ of Σ(i+1)(CnSALm
(i)

(Γ)), such that ψ ⊂ Ab(M) ∩ Ω(i+1). By Fact 5.3, there

is an LLL-model M ′ of CnSALm
(i)

(Γ) such that Ab(M ′) ∩ Ω(i+1) ⊆ ψ, whence

Ab(M ′)∩Ω(i+1) ⊂ Ab(M)∩Ω(i+1). Note that since M ∈ MSALm
(i)

(Γ), by Lemma

6.1, M ′ ∈ MSALm
(i)

(Γ). But then by Definition 3.4, M 6∈ MSALm
(i+1)

(Γ), which

contradicts (†).

Ad 2. Suppose A ∈ CnSALm
(i+1)

(Γ), whence by Definition 3.1, A ∈

CnALm
(i+1)

(CnSALm
(i)

(Γ)). By Theorem 2.7.1, for every ϕ ∈ Φ(i+1)(CnSALm
(i)

(Γ)),
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there is a ∆ ⊂ Ω(i+1) such that (†) CnSALm
(i)

(Γ) `LLL A ∨̌Dab(∆) and ∆∩ϕ = ∅.

By Theorem 3.1.1, (‡) A ∨̌Dab(∆) ∈ CnSALm
(i)

(Γ) for every such ∆.

Let M ∈ MSALm
(i+1)

(Γ). By item 1, there is a ϕ ∈ Φ(i+1)(CnSALm
(i)

(Γ)) such

that Ab(M)∩Ω(i+1) = ϕ. By Definition 3.4, M ∈ MSALm
(i)

(Γ). By the induction

hypotheses, M  B for every B ∈ CnSALm
(i)

(Γ), whence by (‡), M  A ∨̌Dab(∆)

for a ∆ ⊂ Ω(i+1) such that ϕ ∩ ∆ = ∅. But then, since Ab(M) ∩ Ω(i+1) = ϕ,
M  ¬̌Dab(∆), whence M  A.

Note that if A ∈ CnSALm
(I)

(Γ), then by Definition 3.1, there is an i ∈ I such

that A ∈ CnSALm
(i)

(Γ). Also, by Definition 3.4, if Γ |=SALm
(i)
A for an i ∈ I, then

Γ |=SALm
(I)
A. Hence, in view of Theorem 6.5.2, we immediately obtain:

Corollary 6.4 If A ∈ CnSALm
(I)

(Γ), then Γ |=SALm
(I)
A.

Relations between the three consequence relations By Corollary 5.1,
Corollary 6.1 and Theorem 6.3, we obtain:

Corollary 6.5 Where Γ ⊆ Ws: CnSALm
(I)

(Γ) ⊆ CnALm
@

(Γ)

Also, by Corollary 5.1, Corollary 6.1 and Theorem 4.6, we have:

Corollary 6.6 Where Γ ⊆ Ws: CnHALm(Γ) ⊆ CnALm
@

(Γ).

In Section C.3 of Appendix C, it is shown that HALm and SALm
(I) are in

general incomparable, i.e. for some logics HALm and SALm
(I), there are premise

sets Γ and Γ′ such that (i) CnHALm(Γ) 6⊆ CnSALm
(I)

(Γ) and (ii) CnSALm
(I)

(Γ′) 6⊆

CnHALm(Γ′). As will become clear there, this argument does not depend on
the particularities of the concrete systems, and can easily be generalized to other
superpositions of ALs and hierarchic ALs.

6.4 Equivalence Results

In the preceding, we saw that SALm
(I) and HALm are sound with respect to their

semantics characterizations, and that those characterizations are both equivalent
to the ALm

@ -semantics. As I will now show, the syntactic consequence relations
of these logics are also often equivalent. I will start with an equivalence result
that follows immediately from preceding theorems and corollaries, and illustrate
it by means of a simple example (Section 6.4.1). From Section 6.4.2 onwards,
this result is generalized to a much broader class of premise sets – how this is
done precisely, will be explained below.4

4Sections 6.4.2-6.4.5 are based on the joint paper with Christian Straßer, cited at the start
of this chapter. I added 6.4.1 to clarify the relation with other properties established in this
thesis, and to illustrate the equivalence results from this section.
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6.4.1 A Simple Equivalence Result

A Surprising Corollary In Chapters 3 and 4, it was shown that whenever
Φ(Γ) is finite, then all logics SAL and HAL are sound and complete with respect
to their semantics (see Corollary 3.2, resp. Corollary 4.8). In view of Corollary
6.1, this means that when Φ(Γ) is finite, SALm

(I) and HALm are equivalent to
ALm

@ :

Corollary 6.7 If Γ ⊆ Ws and Φ(Γ) is finite, then CnSALm
(I)

(Γ) = CnHALm(Γ) =

CnALm
@

(Γ)

This result is fairly surprising, in view of the structural differences between
these three formats. So let me insert an example that may help to understand
it better, and that at the same time illustrates the various proof theories from
preceding chapters.

Recall SK2m
(2) and HK2m. The first of these two logics is obtained by the

sequential superposition of Km
(2) on Km

(1); the second by the hierarchic combina-
tion of the same two flat ALs. Let K2m

@ be the lexicographic AL defined by the
triple 〈K, 〈ΩK

1 ,Ω
K
2 〉,m〉.

Consider

Γeq = {♦p,♦q,♦♦r,♦♦s,¬p ∨ ¬q,¬p ∨ ¬r,¬q ∨ ¬r,¬r ∨ ¬s}

To get a bit more grip on it, note that this premise set has exactly four minimal
Dab-consequences Dab(∆) (∆ ⊆ ΩK

(2)):

Dab(∆1) = !1p ∨̌ !1q (from ♦p,♦q,¬p ∨ ¬q)
Dab(∆2) = !1p ∨̌ !2r (from ♦p,♦♦r,¬p ∨ ¬r)
Dab(∆3) = !1p ∨̌ !2r (from ♦q,♦♦r,¬q ∨ ¬r)
Dab(∆4) = !2r ∨̌ !2s (from ♦♦r,♦♦s,¬r ∨ ¬s)

Note that Σ(Γeq) = {∆1,∆2,∆3,∆4} has exactly three (⊂-)minimal choice
sets:

ϕ1 = {!1p, !1q, !2s}
ϕ2 = {!1p, !2r}
ϕ3 = {!1q, !2r}

I will now discuss the behavior of each of the three aforementioned logics one
by one, for this specific example.

First of all, there is the lexicographic AL K2m
@ . Note that ϕ2 @ ϕ1, and

also ϕ3 @ ϕ1. Hence Φ@(Γeq) = {ϕ2, ϕ3}. So intuitively, K2m
@ selects only two

interpretations of Γeq as those that are optimal according to the order @ — I will
explain right away what this means, both at the syntactic and semantic level.

The following is a K2m
@ -proof from Γeq:5

5I omit reference to the stage in the X-symbols. The marks represent marking for K2m
@ at

stage 20.
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1 ♦p PREM ∅
2 ♦q PREM ∅
3 ♦♦r PREM ∅
4 ♦♦s PREM ∅
5 ¬p ∨ ¬q PREM ∅
6 ¬p ∨ ¬r PREM ∅
7 ¬q ∨ ¬r PREM ∅
8 ¬r ∨ ¬s PREM ∅
9 p 1;RC {!1p} X

10 q 2;RC {!1q} X

11 p ∨ q 9;RU {!1p}
12 p ∨ q 10;RU {!1q}
13 r 3;RC {!2r} X

14 ¬r 6,9;RU {!1p}
15 ¬r 7,10;RU {!1q}
16 s 4;RC {!2s}
17 !1p ∨̌ !1q 1,2,5;RU ∅
18 !1p ∨̌ !2r 1,3,6;RU ∅
19 !1q ∨̌ !2r 2,3,7;RU ∅
20 !2r ∨̌ !2s 3,4,8;RU ∅

Note that at stage 20 of the above proof, all minimal Dab-consequences of
Γeq are derived (see lines 17-20). As a result, Φ@

20(Γeq) = Φ@(Γeq) = {ϕ2, ϕ3}.
Line 9 is marked in the above proof, since p is not derived on a condition that

does not overlap with ϕ2. Likewise, line 10 is marked since q is not derived on
a condition that has an empty intersection with ϕ3. Line 13 is marked because
its condition overlaps with both ϕ2 and ϕ3. Since all minimal Dab-consequences
of Γeq have been derived at stage 20, lines 11, 12 and 14-16 remain unmarked in
every extension of this proof. Hence p ∨ q, ¬r and s are finally K2m

@ -derivable
from Γeq.

It can also be easily verified that p and q are not K2m
@ -consequences of Γeq, in

view of the K2m
@ -semantics. By Theorem 5.4, there are two kinds of K2m

@ -models
of Γeq: modelsM ∈ MK(Γeq) for which Ab(M) = ϕ2, and modelsM ′ ∈ MK(Γeq)
for which Ab(M ′) = ϕ3. Models of the first kind verify !1p and hence falsify p;
those of the second kind verify !1q and hence falsify q.

Let us now turn to the second logic, i.e. the superposition-logic SK2m
(2). Note

that !1p ∨̌ !1q is the only minimal Dab(1)-consequence of Γeq. Hence, Φ(1)(Γeq) =
{{!1p}, {!1q}}. This means that, just as with K2m

@ , we can finally Km
(1)-derive

p∨q and ¬r from Γeq (both formulas are finally derivable on the conditions {!1p}
and {!1q}). Hence also !2r ∈ CnKm

(1)
(Γeq).

As a result, !2r ∨̌ !2s is not a minimal Dab-consequence of CnKm
(1)

(Γeq). The

only minimal Dab(2)-consequences of CnKm
(1)

(Γeq) are !1p ∨̌ !1q and !2r. Thus,

Φ(2)(CnKm
(1)

(Γeq)) = {{!1p, !2r}, {!1q, !2r}} = Φ@(Γeq), and hence s can be finally

Km
(2)-derived from CnKm

(1)
(Γeq) on the condition {!2s}.

The following proof shows how p ∨ q,¬r and s can be finally SK2m
(2)-derived

from Γeq.
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1 ♦p PREM 〈∅, ∅〉
2 ♦q PREM 〈∅, ∅〉
3 ♦♦r PREM 〈∅, ∅〉
4 ♦♦s PREM 〈∅, ∅〉
5 ¬p ∨ ¬q PREM 〈∅, ∅〉
6 ¬p ∨ ¬r PREM 〈∅, ∅〉
7 ¬q ∨ ¬r PREM 〈∅, ∅〉
8 ¬r ∨ ¬s PREM 〈∅, ∅〉
9 p 1;RC 〈{!1p}, ∅〉 X1

10 q 2;RC 〈{!1q}, ∅〉 X1

11 p ∨ q 9;RU 〈{!1p}, ∅〉
12 p ∨ q 10;RU 〈{!1q}, ∅〉
13 !1p ∨̌ !1q 1,2,5;RU 〈∅, ∅〉
14 !2r ∨̌ !1p 1,3,6;RU 〈∅, ∅〉
15 !2r 14;RC 〈{!1p}, ∅〉
16 !2r ∨̌ !1q 2,3,7;RU 〈∅, ∅〉
17 !2r 16;RC 〈{!1q}, ∅〉
18 r 3;RC 〈∅, {!2r}〉 X2

19 s 4;RC 〈∅, {!2s}〉
20 ¬r 1,6;RC 〈{!1p}, ∅〉
21 ¬r 2,7;RC 〈{!1q}, ∅〉

Note that the Dab-formula on line 13 is the only minimal Dab(1)-formula at

stage 20. Hence Φ
(1)
20 (Γeq) = {{!1p}, {!1q}}, whence lines 9 and 10 are 1-marked

at this stage, and remain marked in every further extension of the proof. Since
lines 15 and 17 are not 1-marked, !2r is a minimal Dab(2)-formula at stage 20,

and hence Φ
(2)
20 (Γeq) = {{!1p, !2r}, {!1q, !2r}}. As a result, line 18 is marked, but

lines 19-21 are not.
Since the only minimal Dab(1)-consequence of Γeq is derived at stage 21, and

since the only two minimal Dab(2)-consequences of CnKm
1

(Γeq) are derived at
stage 21, the marks remain stable in every further extension of the above proof.
As a result, p ∨ q, ¬r and s are finally SK2m

(2)-derived from Γeq in the above
proof.

Semantically, the picture is as follows for SK2m
(2): first, all models M ∈

MK(Γeq) are selected for which either Ab(M)∩ΩK
(1) = {!1p}, or Ab(M)∩ΩK

(1) =

{!1q}. As a result, all models selected after the first round verify !2r. In the second
selection, only those models M from the previous step are retained, that do not
validate any level 2-abnormality other than !2r. So by the sequential selection
procedure, we again end up with those K-models of Γeq whose abnormal part
equals either ϕ2 or ϕ3.

Third and last, there is the logic HK2m. By the same reasoning as above,
we can show that p∨ q and ¬r are in the Km

(1)-consequence set of Γeq. Hence, in

view of the definition of HK2m, p ∨ q,¬r, s ∈ CnHK2m(Γeq). But how can we
finally HK2m-derive s from Γeq?

Note that r∨s can be derived from Γeq on two conditions, i.e. {!2r} and {!2s}.
The first of these two conditions has an empty intersection with ϕ1; the second
with both ϕ2 and ϕ3. Hence, r ∨ s ∈ CnKm

(2)
(Γeq).
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Recall that CnHK2m(Γ) is obtained by closing the union of CnKm
(1)

(Γ) and

CnKm
(2)

(Γ) under K. But then, since ¬r ∈ CnKm
(1)

(Γeq) and r ∨ s ∈ CnKm
(2)

(Γeq),

it follows that s ∈ CnHK2m(Γeq).
The fact that the closure under K is needed to obtain s, is illustrated by the

following proof:

1 ♦p PREM ∅ –1,2

2 ♦q PREM ∅ –1,2

3 ♦♦r PREM ∅ –1,2

4 ♦♦s PREM ∅ –1,2

5 ¬p ∨ ¬q PREM ∅ –1,2

6 ¬p ∨ ¬r PREM ∅ –1,2

7 ¬q ∨ ¬r PREM ∅ –1,2

8 ¬r ∨ ¬s PREM ∅ –1,2

9 !1p ∨̌ !1q 1,2,5;RU ∅ –1,2,∗

10 !1p ∨̌ !2r 1,3,6;RU ∅ –1,2,∗

11 !1q ∨̌ !2r 2,3,7;RU ∅ –1,2,∗

12 !1r ∨̌ !1s 3,4,8;RU ∅ –1,2,∗

13 p 1;RC {!1p} X

14 q 2;RC {!1q} X

15 p ∨ q 13;RU {!1p} –1,∗

16 p ∨ q 14;RU {!1q} –1,∗

17 r 3;RC {!2r} X

18 ¬r 1,6;RU {!1p} –1,∗

19 ¬r 2,7;RU {!1q} –1,∗

20 r ∨ s 3;RC {!2r} –2

21 r ∨ s 4;RC {!2s} –2

22 s 19,21;RU {!1p, !2r} –∗

Note that Φ
(1)
17 (Γeq) = {{!1p}, {!1q}} and Φ

(2)
17 (Γeq) = {ϕ1, ϕ2, ϕ3}. As a

result, lines 13 and 14 are 1-unmarked, and lines 15 and 16 are 2-unmarked at
stage 17. Since line 17 is derived by the rule RU from lines 13 and 15, line 17
is *-unmarked at stage 17. Again, the marks remain stable in every extension of
this proof, since all minimal Dab-consequences of Γeq are derived in it (see lines
9-12).

The set of HK2m-models is obtained by taking the intersection of two sets
of models:

(i) MKm
(1)

(Γeq) = {M ∈ MK(Γeq) | Ab(M) ∩ ΩK
(1) = {!1p} or Ab(M) ∩ ΩK

(1) =

{!1q}}, and
(ii) MKm

(2)
(Γeq) = {M ∈ MK(Γeq) | Ab(M) ∩ ΩK

(2) ∈ {ϕ1, ϕ2, ϕ3}}

Since those M ∈ MKm
(2)

(Γeq) with Ab(M) = ϕ1 are not members of MKm
(1)

(Γeq),

we again end up with exactly those K-models of Γeq that correspond to either
ϕ2 or ϕ3.

Weaker Equivalence Criteria In the remainder of this section, weaker con-
ditions are shown to be sufficient for the soundness and completeness of the class
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of logics SALm
(I), and for all logics HAL. In other words, the restricted com-

pleteness results from Chapters 3 and 4 are generalized to a broader range of
premise sets. This generalization is made possible by the introduction of the sets
cΦ(Γ) and cΦ@(Γ) – see below. In addition, we present a hierarchy of conditions
for the soundness and completeness of SALm

(I), resp. HAL.
The relations between the various equivalence criteria are depicted in Figure

6.1 on page 148. At the end of Section 6.4.5, we give some simple examples that
show the results from this section are truly generalizations (and not just more
technical formulations) of Corollary 6.7 above.

6.4.2 The Basic Criteria for Equivalence

Note that the following is the case:

Theorem 6.6 Where Γ ⊆ W and PAL ∈ {SALm
(I),HALm}: if

MLLL(CnPAL(Γ)) = MPAL(Γ) (6.2)

then

1. Γ |=PAL A iff A ∈ CnPAL(Γ), and
2. CnPAL(Γ) = CnALm

@
(Γ).

Proof. Ad 1. (⇒) If Γ |=PAL A then A is true in every M ∈ MLLL(CnPAL(Γ)).
By the completeness of LLL and the fact that CnPAL(Γ) is closed under LLL
(in case PAL = SALm

(I) see Theorem 3.1.2, in case PAL = HALm this holds by

definition), A ∈ CnPAL(Γ). (⇐) See Corollary 6.4, resp. Theorem 4.6.
Ad 2. Immediate in view of item 1, Corollary 6.1 and the soundness and

completeness of ALm
@ .

Equation (6.2) expresses that the set of PAL-models is characterized by
means of the PAL-consequence set: the models of the prioritized adaptive logic
are exactly those LLL-models that verify the PAL-consequences. This is a cen-
tral criterion since it is sufficient for both, the soundness and completeness of
PAL (point 1.), and for the equivalence of the syntactic consequence relations of
the three prioritized adaptive logics that are discussed in this chapter (point 2.).

The criteria for soundness and equivalence are defined by means of sets of
complements of minimal choice sets. Where ≺ ∈ {⊂,@}, let

cΦ≺(Γ) =def {Ω − ϕ | ϕ ∈ Φ≺(Γ)}

Likewise, let
cΦ@(i)(Γ) =def {Ω(i) − ϕ | ϕ ∈ Φ@(i)(Γ)}

and let
cΦ(i)(Γ) =def {Ω(i) − ϕ | ϕ ∈ Φ(i)(Γ)}

In Sections 6.4.3 and 6.4.4 we will give syntactic criteria in terms of these
sets, that warrant (6.2) for SALm

(I), resp. HALm. But first, let us show that this
holds for flat and lexicographic ALs.
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Lemma 6.3 Where Γ ⊆ Ws: if cΦ≺(Γ) has no infinite minimal choice sets, then
MLLL(CnALm

≺
(Γ)) = MALm

≺
(Γ).

Proof. Suppose cΦ≺(Γ) has no infinite minimal choice sets. That MALm
≺

(Γ) ⊆
MLLL(CnALm

≺
(Γ)) is immediate in view of Definition 6.2 and the soundness of

ALm
≺ . So assume that M ∈ MLLL(CnALm

≺
(Γ))−MALm

≺
(Γ). By Theorem 6.2,

for every ϕ ∈ Φ≺(Γ), there is an Aϕ ∈ Ω − ϕ such that M  Aϕ. Note that
{Aϕ | ϕ ∈ Φ≺(Γ)} is a choice set of cΦ≺(Γ). Hence by the supposition, there is
a finite Θ ⊆ {Aϕ | ϕ ∈ Φ≺(Γ)}, such that Θ is a choice set of cΦ≺(Γ). It follows
by Theorem 6.2 that Γ |=ALm

≺
¬̌ ∧̌Θ, and hence by the completeness of ALm

≺ ,
also Γ `ALm

≺
¬̌ ∧̌Θ. But then M 6∈ MLLL(CnALm

≺
(Γ)) — a contradiction.

Lemma 6.4 If MLLL(CnALm
≺

(Γ)) = MALm
≺

(Γ), then cΦ≺(Γ) has no infinite
minimal choice sets.

Proof. Let Θ be an infinite minimal choice set of cΦ≺(Γ). Assume there is no
LLL-model of CnALm

≺
(Γ)∪Θ. By the compactness of LLL, there is a finite {Aj |

j ∈ J} ⊂ Θ such that CnALm
≺

(Γ) |=LLL ∨̌j∈J ¬̌Aj . Hence by the soundness6

of ALm
≺ , every ALm

≺ -model of Γ falsifies an Aj (j ∈ J). By Theorem 6.2, for
every ϕ ∈ Φ≺(Γ), there is a j ∈ J such that Aj 6∈ ϕ. But then {Aj | j ∈ J} is
a choice set of cΦ≺(Γ) — a contradiction to the minimality of Θ. So there is a
LLL-model M of CnALm

≺
(Γ) ∪ Θ.

Assume M ∈ MALm
≺

(Γ). By Theorem 6.2, there is a ϕ ∈ Φ≺(Γ) such that
Ab(M) = ϕ. However, since Θ is a choice set of cΦ≺(Γ), there is anA ∈ (Ω−ϕ)∩Θ
— a contradiction. Hence M ∈ MLLL(CnALm

≺
(Γ))−MALm

≺
(Γ).

Corollary 6.8 Where Γ ⊆ Ws:
cΦ≺(Γ) has no infinite minimal choice sets iff

MLLL(CnALm
≺

(Γ)) = MALm
≺

(Γ).

Where ≺ = ⊂, the same result can be obtained for a specific class of premise
sets Γ ⊆ W̌s:

Lemma 6.5 Where Γ = CnLLL(Γ): cΦ(Γ) has no infinite minimal choice sets
iff MLLL(CnALm(Γ)) = MALm(Γ).

Proof. (⇒) Immediate in view of the proof for Lemma 6.3 – replace Theorem
5.1.2 by Theorem 2.23. (⇐) Immediate in view of Lemma 6.4.

The above results are of crucial importance for the completeness and equiv-
alence results of both SALm

(I) and HALm, which we shall present subsequently.
The following additional lemmas will also be useful in the remainder:

Lemma 6.6 For every ϕ ∈ Φ@(i)(Γ), there is a ψ ∈ Φ@(Γ) such that ψ ∩ Ω(i) =
ϕ.

Proof. Case 1. Γ is not LLL-satisfiable. In that case, Γ `LLL A for every
A ∈ Ω, whence Φ@(i)(Γ) = {Ω(i)} and Φ@(Γ) = {Ω}. Hence the lemma follows
immediately.

6Note that every AL
m
≺ -model of Γ is an LLL-model.
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Case 2. Γ is LLL-satisfiable. Suppose ϕ ∈ Φ@(i)(Γ) for an i ∈ I. By
Theorem 5.4, there is an M ∈ MALm

@(i)
(Γ) such that Ab(M) ∩ Ω(i) = ϕ. Note

that M ∈ MLLL(Γ). If M ∈ MALm
@

(Γ), then by Theorem 5.3, Ab(M) ∈ Φ@(Γ),
whence the lemma follows immediately. So suppose M 6∈ MALm

@
(Γ). Then by

Theorem 6.1, there is an M ′ ∈ MALm
@

(Γ) such that Ab(M ′) @ Ab(M).
Assume (†) Ab(M ′) ∩ Ω(i) 6= Ab(M) ∩ Ω(i). In view of Definitions 5.1 and

6.1, there is a j ≤ i such that Ab(M ′) @(j) Ab(M). By Fact 6.1.3, Ab(M ′) @(i)

Ab(M). But then M 6∈ MALm
@(i)

(Γ) — a contradiction. Hence (†) fails: Ab(M ′)∩

Ω(i) = Ab(M)∩Ω(i). Since by Theorem 5.3, Ab(M ′) ∈ Φ@(Γ), the lemma follows
immediately.

Lemma 6.7 For every ϕ ∈ Φ@(Γ), ϕ ∩ Ω(i) ∈ Φ@(i)(Γ).

Proof. Assume that ϕ ∈ Φ@(Γ), but ϕ ∩ Ω(i) 6∈ Φ@(i)(Γ). Note that since ϕ is a

choice set of Σ(Γ), ϕ∩Ω(i) is a choice set of Σ(i)(Γ). Hence there is a ψ ∈ Φ@(i)(Γ)
such that ψ@(i) ϕ. By Lemma 6.6, there is a ψ′ ∈ Φ@(Γ) such that ψ′∩Ω(i) = ψ.
But then by Fact 6.1.2, ψ′ @ ϕ — a contradiction.

Corollary 6.9 Φ@(i)(Γ) = {ϕ ∩ Ω(i) | ϕ ∈ Φ@(Γ)}.

Lemma 6.8 If cΦ@(Γ) has no infinite minimal choice sets, then for every i ∈ I,
cΦ@(i)(Γ) has no infinite minimal choice sets.

Proof. Let Θ be an infinite minimal choice set of cΦ@(i)(Γ). By Corollary 6.9,
(†1) Θ is a minimal choice set of {Ω(i) − (ϕ ∩ Ω(i)) | ϕ ∈ Φ@(Γ)} = {Ω(i) − ϕ |
ϕ ∈ Φ@(Γ)}.

Assume that for some ϕ ∈ Φ@(i)(Γ), Ω(i) − ϕ = ∅. But then ϕ = Ω(i) and
whence Φ@(i)(Γ) = {Ω(i)}. Hence cΦ@(i)(Γ) = {∅} which is a contradiction to
the minimality of Θ. Thus:

(†2) for all ϕ ∈ Φ@(i)(Γ), Ω(i) − ϕ 6= ∅

By (†1) and (†2), for all ϕ ∈ Φ@(Γ), Ω(i) − ϕ 6= ∅. By (†1) and since Ω(i) − ϕ ⊆
Ω − ϕ, Θ is a choice set of cΦ@(Γ).

Assume there is a Θ′ ⊂ Θ which is a choice set of cΦ@(Γ). Since Θ ⊆ Ω(i), also
(†3) Θ′ ⊂ Ω(i). Note that (†4) for each ϕ ∈ Φ@(Γ), ((Ω−ϕ)−(Ω(i)−ϕ))∩Ω(i) = ∅.
By (†3) and (†4), Θ′ is a choice set of cΦ@(i)(Γ), which contradicts the minimality
of Θ. Hence Θ is a minimal choice set of cΦ@(Γ).

6.4.3 Restricted Completeness and Equivalence for SALm

(I)

The basic completeness/equivalence criterion for SALm
(I) reads as follows:

(FSALm
(I)

) cΦ@(Γ) has no infinite minimal choice sets

In the remainder, we will show that FSALm
(I)

is equivalent to equation (6.2)

from Theorem 6.6, for SALm
(I).
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Lemma 6.9 If for all i ∈ I, MLLL(CnSALm
i

(Γ)) = MSALm
i

(Γ), then

MLLL(CnSALm(Γ)) = MSALm(Γ)

Proof. We have: MLLL(CnSALm(Γ)) = MLLL(
⋃

i∈I CnSALm
i

(Γ)) =
⋂

i∈I MLLL(CnSALm
i

(Γ)) =
⋂

i∈I MSALm
i

(Γ) = MSALm(Γ).

Lemma 6.10 Where Γ ⊆ Ws: if Γ satisfies FSALm
(I)

, then MLLL(CnSALm(Γ)) =

MSALm(Γ).

Proof. Suppose Γ ⊆ Ws and Γ satisfies FSALm
(I)

. Thus, cΦ@(Γ) has no infinite

minimal choice sets.
If Γ is not LLL-satisfiable, then by Fact 3.1.5 and the monotonicity of LLL,

CnSALm
(i)

(Γ) is not LLL-satisfiable for every i ∈ I. Also, by Definition 3.4,

Γ is not SALm
(i)-satisfiable for every i ∈ I. Hence MLLL(CnSALm

(i)
(Γ)) =

MSALm
(i)

(Γ) = ∅, whence the lemma follows immediately. So suppose that Γ is

LLL-satisfiable. We will prove by induction that for every i ∈ I,
MLLL(CnSALm

(i)
(Γ)) = MSALm

(i)
(Γ), whence by Lemma 6.9, the property fol-

lows immediately.
(i = 1) By the supposition, Fact 6.2.1 and Lemma 6.8, cΦ(1)(Γ) has no infinite

minimal choice sets. Hence by Lemma 6.3, MLLL(CnALm
(1)

(Γ)) = MALm
(1)

(Γ).

The rest is immediate in view of Facts 6.3 and 3.1.1.
(i ⇒ i + 1) Let Γ′ = CnSALm

(i)
(Γ). By Definition 6.2, MALm

(i+1)
(Γ′) = {M ∈

MLLL(Γ′) | there is no M ′ ∈ MLLL(Γ′) such that Ab(M ′)∩Ω(i+1) ⊂ Ab(M)∩
Ω(i+1)}. By the induction hypothesis and Definition 3.4,

MALm
(i+1)

(Γ′) = MSALm
(i+1)

(Γ) (6.3)

By Theorem 6.3 and (6.3), MALm
(i+1)

(Γ′) = MALm
@(i+1)

(Γ). By Theorems 2.1 and

5.4, we obtain that Φ(i+1)(Γ′) = Φ@(i+1)(Γ), whence also

cΦ(i+1)(Γ′) = cΦ@(i+1)(Γ) (6.4)

By the supposition and Lemma 6.8, cΦ@(i+1)(Γ) has no infinite minimal choice
sets. Hence in view of (6.4), cΦ(i+1)(Γ′) has no infinite minimal choice sets. By
Theorem 3.1.1 and Lemma 6.5,

MLLL(CnALm
(i+1)

(Γ′)) = MALm
(i+1)

(Γ′) (6.5)

Hence in view of Definition 3.1, MLLL(CnSALm
(i+1)

(Γ)) = MALm
(i+1)

(Γ′). By

(6.3), MLLL(CnSALm
(i+1)

(Γ)) = MSALm
(i+1)

(Γ).

Lemma 6.11 Where Γ ⊆ Ws: if MLLL(CnSALm
(I)

(Γ)) = MSALm
(I)

(Γ) then Γ

satisfies FSALm
(I)

.

Proof. Suppose cΦ@(Γ) has an infinite minimal choice set. By Lemma 6.4,
MLLL(CnALm

@
(Γ)) 6= MALm

@
(Γ). By the soundness of ALm

@ , MALm
@

(Γ) ⊆
MLLL(CnALm

@
(Γ)). It follows that there is an M ∈ MLLL(CnALm

@
(Γ))−

MALm
@

(Γ). By Corollary 6.5 and the monotonicity of LLL, M ∈
MLLL(CnSALm

(I)
(Γ)). By Corollary 6.1, M 6∈ MSALm

(I)
(Γ).
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Corollary 6.10 Where Γ ⊆ W: Γ satisfies FSALm
(I)

iff MLLL(CnSALm
(I)

(Γ)) =

MSALm
(I)

(Γ).

In view of Theorem 6.6, we immediately obtain:7

Corollary 6.11 Where Γ ⊆ W: if Γ satisfies FSALm
(I)

, then each of the follow-

ing holds:

1. A ∈ CnSALm
(I)

(Γ) iff Γ |=SALm
(I)
A

2. CnSALm
(I)

(Γ) = CnALm
@

(Γ)

6.4.4 Restricted Completeness and Equivalence for HALm

As we will now show, every logic HAL is sound and complete whenever it obeys
the following criterion:

(FHAL) for every i ∈ I, cΦ(i)(Γ) has no infinite minimal choice sets

Lemma 6.12 Where Γ ⊆ Ws: if Γ satisfies FHAL, then MLLL(CnHAL(Γ)) =
MHAL(Γ).

Proof. Suppose the antecedent holds. By Lemma 6.8, it follows that (†) for
every i ∈ I, MLLL(CnAL

xi
(i)

(Γ)) = MAL
xi
(i)

(Γ). By Definition 4.1, (†) and Defini-

tion 4.2 consecutively, we have MLLL(CnHAL(Γ)) = MLLL(
⋃

i∈I CnAL
xi
(i)

(Γ)) =
⋂

i∈I MLLL(CnAL
xi
(i)

(Γ)) =
⋂

i∈I MAL
xi
(i)

(Γ) = MHAL(Γ).

Unlike for SALm
(I), the right-left direction of the above lemma fails. To see

why, consider Θ = {!1pi∨!1pj∨!2q | i, j ∈ N, i 6= j}. Although cΦ(2)(Θ) has one
infinite minimal choice set (i.e. the set {!1pi | i ∈ N}), it can be shown that
MK+(CnHK2m(Θ)) = MHK2m(Θ).

By Theorem 6.6, we immediately obtain:8

Corollary 6.12 Where Γ ⊆ Ws: if Γ satisfies FHAL, then each of the following
holds:

1. A ∈ CnHALm(Γ) iff Γ |=HALm A
2. CnHALm(Γ) = CnALm

@
(Γ)

6.4.5 Some Weaker Completeness and Equivalence Crite-
ria

In the preceding, we saw two sufficient syntactic criteria for the completeness
results for SALm

(I), resp. HAL. As we will now show, several more straightfor-
ward criteria can be listed, each of which imply that either one or both of the

7SALm

(I)
is not complete for all premise sets – we refer to Section C.3 for a counterexample.

Notably, this example also illustrates that in some cases, HALm may yield more consequences
that SALm

(I)
.

8As shown in Section C.1, unrestricted completeness fails for HAL
m.
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conditions for completeness are obeyed. Hence in concrete applications, there are
various ways to establish that e.g. CnSALm

(I)
(Γ) = CnHALm(Γ) = CnALm

@
(Γ), or

that Γ |=HAL A iff A ∈ CnHAL(Γ). The following is proven at the end of this
section:

Theorem 6.7 Each of the following holds for every Γ ⊆ Ws:

1. Σ(Γ) is finite iff every ϕ ∈ Φ(Γ) is finite.
2. If every ϕ ∈ Φ(Γ) is finite, then Φ(Γ) is finite.
3. If Φ(Γ) is finite, then for all i ∈ I, Φ(i)(Γ) is finite.
4. If Φ(i)(Γ) is finite for every i ∈ I, then Γ satisfies FHAL.
5. If Φ(Γ) is finite, then Φ@(Γ) is finite.
6. If Φ@(Γ) is finite, then for all i ∈ I, Φ@(i)(Γ) is finite.
7. If Φ@(Γ) is finite, then Γ satisfies FSALm

(I)
.

8. Γ satisfies FSALm
(I)

iff for no i ∈ I, cΦ@(i)(Γ) has infinite minimal choice
sets.

Σ(Γ) is finite

f.a. ϕ ∈ Φ(Γ),
ϕ is finite

Φ(Γ) is finite
f.a. i ∈ I,

Φ(i)(Γ) is finite
Γ satisfies

FHAL

Φ@(Γ) is finite f.a. i ∈ I,
Φ@(i) is finite

Γ satisfies
FSALm

(I)

f.a. i ∈ I, cΦ@(i)(Γ)
has no infinite

minimal choice sets

Figure 6.1: Syntactic criteria for completeness and equivalence – “f.a.” abbrevi-
ates “for all”.

Figure 6.1 illustrates the relation between the criteria listed in Theorem 6.7
and the criteria FSALm

(I)
and FHAL.

Proof of Theorem 6.7 For the proof of Theorem 6.7, we will rely on two
facts, a lemma about minimal choice sets, and a lemma that states that where
i ∈ I, ALm

@ is a conservative extension of ALm
@(i)

. The first fact was proven in

[137] (Lemma 3.2.4), the second is an immediate consequence of Theorem 6.3
and Definition 3.4.

Fact 6.5 If every ϕ ∈ Φ(Γ) is finite, then Φ(Γ) is finite.
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Fact 6.6 MALm
@

(Γ) = MSALm
(I)

(Γ) =
⋂

i∈I MSALm
(i)

(Γ) =
⋂

i∈I MALm
@(i)

(Γ).

Lemma 6.13 If Σ is a finite set of sets, then Σ has no infinite minimal choice
sets.

Proof. Let Σ = {Θi | i ≤ n} and let ϕ be an infinite choice set of Σ. For every
i ≤ n, let Ai be an arbitrary element of ϕ∩Θi, and let ϕ′ = {A1, . . . , An}. Note
that since ϕ′ is finite, ϕ′ ⊂ ϕ. Since ϕ′ is a choice set of Σ, ϕ is not a minimal
choice set of Σ.

Lemma 6.14 Each of the following holds:

MALm
@

(Γ) ⊆ MALm
@(i)

(Γ)

Where Γ ⊆ Ws: CnALm
@(i)

(Γ) ⊆ CnALm
@

(Γ).

Proof. Ad 1. Assume that M ∈ MALm
@

(Γ)−MALm
@(i)

(Γ). By Definition 5.2,

M ∈ MLLL(Γ). Hence By Theorem 5.17, there is an M ′ ∈ MLLL(Γ) such
that Ab(M ′) @(i)Ab(M). But then by Fact 6.1.2, Ab(M ′) @ Ab(M), and hence
M 6∈ MALm

@
(Γ) — a contradiction.

Ad 2. Immediate in view of item 1, the soundness of ALm
@(i)

, and the com-

pleteness of ALm
@ for all Γ ⊆ Ws.

Proof of Theorem 6.7. Let Γ ⊆ Ws. Ad 1. (⇐) Immediate in view of Lemma
6.13. (⇒) Suppose that every ϕ ∈ Φ(Γ) is finite. By Fact 6.5, Φ(Γ) is finite,
whence also

⋃

Φ(Γ) and ℘(
⋃

Φ(Γ)) are finite. As explained in Chapter 2, Section
2.2,

⋃

Σ(Γ) = U(Γ) =
⋃

Φ(Γ). It follows that Σ(Γ) ⊆ ℘(
⋃

Φ(Γ)), whence Σ(Γ)
is finite.

Ad 2. This is Fact 6.5.

Ad 3. Immediate in view of Lemma 3.6.

Ad 4 and 7. Immediate in view of Lemma 6.13.

Ad 5. Immediate in view of Theorem 5.2.

Ad 6. Let i ∈ I. Let ϕ, ψ be arbitrary members of Φ@(i)(Γ) such that ϕ 6= ψ.
By Lemma 6.6, there are ϕ′, ψ′ ∈ Φ@(Γ) such that ϕ′∩Ω(i) = ϕ and ψ′∩Ω(i) = ψ.
Hence also ϕ′ 6= ψ′. So the cardinality of Φ@(Γ) is at least as great as that of
Φ@(i)(Γ).

Ad 8. (⇒) This is Lemma 6.8. (⇐) Suppose that for no i ∈ I, cΦ@(i)(Γ) has
infinite minimal choice sets. Hence (†) for every i ∈ I, MLLL(CnALm

@(i)
(Γ)) =

MALm
@(i)

(Γ). By (†), Lemma 6.14 and the monotonicity of LLL, for every

i ∈ I, MLLL(CnALm
@

(Γ)) ⊆ MALm
@(i)

(Γ). By Fact 6.6, MLLL(CnALm
@

(Γ)) ⊆

MALm
@

(Γ). Also, by the soundness of ALm
@ , MLLL(CnALm

@
(Γ)) ⊇ MALm

@
(Γ).

Hence MLLL(CnALm
@

(Γ)) = MALm
@

(Γ). By Lemma 6.4, cΦ@(Γ) has no infinite
minimal choice sets.
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Counterexamples for the converses To finish this section, let us briefly
show that the converses of items 2-7 of Theorem 6.7 fail. We will not give full
proofs for these claims, but simply list the counterexamples and some of their
most salient properties.

Ad 2. Let Θ1 = {!1p∨!1qi | i ∈ N}. Note that there is an infinite minimal
choice sets of Σ(Θ1), i.e. the set ϕ = {!1qi | i ∈ N}. Still, Φ(Θ1) = {{!1p}, ϕ} is
finite.

Ad 3 and 6. Let Θ2 = {!ipi1∨!ipi2 | i ∈ N}. Let Φ(Θ2) be the set of minimal
choice sets with respect to the flat adaptive logic Km

∪ = 〈K,
⋃

i∈N
ΩK

(i),m〉 and

let Φ@(Θ2) be the set of minimal choice sets with respect to the prioritized
adaptive logic Km

@ = 〈K, 〈ΩK
(i)〉i∈N,m〉. Note that for every i ∈ N, Σ(i)(Θ2) is

finite, whence Φ(i)(Θ2) and Φ@(i)(Θ2) have only finitely many minimal choice
sets. However, Φ(Θ2) = Φ@(Θ2) is infinite.

Ad 4 and 7. Let Θ3 = {!1p2n∨!1p2n+1 | n ∈ N}. Note that Φ(1)(Θ3) =
Φ@(1)(Θ3) is infinite. Nevertheless, every minimal choice set of cΦ(1)(Θ3) =
cΦ@(1)(Θ3) is a couple: cΦ(1)(Θ3) = {{!1p2, !

1p3}, {!1p4, !
1p5}, . . .}.

Ad 5. Let Θ4 = {!1pi∨!1pj∨!2q | i, j ∈ N, i 6= j}. Let Ψ = {{!1pi | i ∈ N −
{k}} | k ∈ N}. Note that Φ(2)(Θ4) = {{!2q}} ∪ Ψ, whereas Φ@(2)(Θ4) = {{!2q}}.

6.5 Derived Results

In this brief section, we show that a restricted version of Cumulative Transitivity,
Fixed Point and the Deduction Theorem can easily be obtained for SALm

(I) and
HALm, in view of the soundness and equivalence results from the two preceding
sections. In the remainder of this section, let PAL ∈ {HALm,SALm

(I)}.

Theorem 6.8 Where Γ ⊆ Ws and Γ satisfies FPAL: if Γ′ ⊆ CnPAL(Γ), then
CnPAL(Γ ∪ Γ′) ⊆ CnPAL(Γ). (Restricted Cumulative Transitivity)

Proof. Suppose the antecedent holds. By the soundness of PAL and Corollary
6.1, Γ′ ⊆ {A | Γ |=PAL A} = {A | Γ |=ALm

@
A}. Hence by Corollary 6.1 and

Lemma 6.2:

MPAL(Γ) = MALm
@

(Γ) = MALm
@

(Γ ∪ Γ′) = MPAL(Γ ∪ Γ′) (6.6)

Suppose that A ∈ CnPAL(Γ ∪ Γ′). By the soundness of PAL, A is true in every
M ∈ MPAL(Γ ∪ Γ′). Hence by (6.6), A is true in every M ∈ MPAL(Γ). Since Γ
obeys FPAL, it follows that A ∈ CnPAL(Γ).

Theorem 6.9 Where Γ ⊆ Ws and Γ satisfies FPAL: CnPAL(Γ) =
CnPAL(CnPAL(Γ)). (Restricted Fixed Point)

Proof. Suppose the antecedent holds. (CnPAL(Γ) ⊆ CnPAL(CnPAL(Γ))) Imme-
diate in view of the reflexivity of PAL.

(CnPAL(CnPAL(Γ)) ⊆ CnPAL(Γ)) By the reflexivity of PAL, CnPAL(Γ) =
Γ∪CnPAL(Γ). But then CnPAL(CnPAL(Γ)) = CnPAL(Γ∪CnPAL(Γ)), whence
by the restricted cumulative transitivity of PAL, CnPAL(CnPAL(Γ)) ⊆
CnPAL(Γ).



6.6. SALM VERSUS SALM
(I), HALM AND ALM

@ 151

The following Corollary summarizes Corollaries 6.5 and 6.6, and is used in
the proof of Theorem 6.10 below:

Corollary 6.13 Where Γ ⊆ Ws: CnPAL(Γ) ⊆ CnALm
@

(Γ).

Theorem 6.10 Where Γ ⊆ Ws and Γ satisfies FPAL: if B ∈ CnPAL(Γ∪{A}),
then A ⊃̌B ∈ CnPAL(Γ). (Restricted Deduction Theorem)

Proof. Suppose the antecedent holds. By Corollary 6.13, B ∈ CnALm
@

(Γ ∪
{A}). Hence, since the Deduction Theorem holds for ALm

@ , A ⊃̌B ∈ CnALm
@

(Γ).
By Corollary 6.11.2 (for SALm

(I)), resp. Corollary 6.12.2 (for HALm) and the

supposition, A ⊃̌B ∈ CnPAL(Γ).

6.6 SALm Versus SALm
(I), HALm and ALm

@

Theorem 6.11 MSALm(Γ) ⊆ MSALm
(I)

(Γ).

Proof. Assume that M ∈ MSALm(Γ)−MSALm
(I)

(Γ). By Definition 3.4, there is

an i ∈ I such that M 6∈ MSALm
(i)

(Γ). By Corollary 6.1, M 6∈ MALm
@(i)

(Γ). Let

j ≤ i be the smallest j ∈ I such that M 6∈ MALm
@(j)

(Γ). By Definition 6.2, there

is an M ′ ∈ MLLL(Γ) such that each of the following holds:

(i) Ab(M ′) ∩ Ωj ⊂ Ab(M) ∩ Ωj
(ii) Ab(M ′) ∩ Ω(j−1) = Ab(M) ∩ Ω(j−1)

Since M ∈ MSALm(Γ), by Definition 3.4, M ∈ MSALm
j−1

(Γ). Hence by (ii) and

the fact that M ′ ∈ MLLL(Γ), M ′ ∈ MSALm
j−1

(Γ). But then by Definition 3.4,

M 6∈ MSALm
j

(Γ), such that M 6∈ MSALm(Γ) — a contradiction.

In Section 3.3.2 of Chapter 3, it was shown that whenever Φ(Γ) is finite,
then SALm and SALm

(I) are sound and complete with respect to their semantics

(see Corollary 3.2). In Chapter 4, it was shown that given the same restriction,
HALm is at least as strong as ALm. From these facts and Corollary 6.7, we can
derive:

Corollary 6.14 Where Γ ⊆ Ws: if Φ(Γ) is finite, then CnALm(Γ) ⊆
CnSALm

(I)
(Γ) = CnHALm(Γ) = CnALm

@
(Γ) ⊆ CnSALm(Γ).

In Section C.7 of Appendix C, examples are presented which illustrate that
Corollary 6.14 cannot be generalized to all premise sets Γ ⊆ Ws.

It can easily be shown that logics of the format SALm are often stronger than
the corresponding logic SALm

(I) in case Φ(Γ) is finite. Recall that SK2m is ob-

tained by the superposition of the logic Km
2 = 〈K,ΩK

2 ,m〉 on Km
1 = 〈K,ΩK

1 ,m〉.
Let Γe2 = {♦p,♦q,♦♦r,¬p∨¬q,¬p∨¬r} — this set was introduced in Exam-

ple 3.2 in Section 3.1.2 of Chapter 3. As explained there, r ∈ CnSK2m(Γe2). The
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reason is that CnKm
1

(Γe2) has no Dab2-consequences.9 Hence r can be finally
Km

2 -derived from CnKm
1

(Γe2), on the condition {!2r}.
However, r 6∈ CnK2m

@
(Γe2). That is, the set of @-minimal choice sets of Γe2 is

Φ@2(Γe2) = Φ(2)(Γe2) = {{!1p}, {!1q, !2r}}. The lexicographic AL does not allow
us to choose between either of these choice sets, since they are incomparable
with regards to the level 1-abnormalities they contain. At the semantic level,
this means !2r is true in some @-minimal abnormal models of Γe2, and hence r
is false in an M ∈ MK2m

@
(Γe2).

Note that Φ(2)(Γe2) is finite. Hence CnK2m
@

(Γe2) = CnHK2m(Γe2) =
CnSK2m

(2)
(Γe2) in view of the equivalence results from the current chapter. So we

can derive:

Proposition 6.1 There are Γ ⊆ Ws, such that each of the following holds:

1. Φ(2)(Γ) is finite
2. CnSK2m(Γ) 6⊆ CnSK2m

(2)
(Γ)

3. CnSK2m(Γ) 6⊆ CnHK2m(Γ)
4. CnSK2m(Γ) 6⊆ CnK2m

@
(Γ)

6.7 The Reliability-variants

In this section, I prove each of the claims (v)-(vii) from the introduction of this
chapter (see page 132). For reasons of space, I confine myself to the proofs, and
will only briefly indicate why the converse of certain theorems fails – these are
mostly technical results which are called upon in Section 6.8. The main results of
this section are summarized by Corollaries 6.15 and 6.16 below. In the remainder,
I will rely freely on the following two properties:

(i) Where Γ ⊆ Ws and i ∈ I, CnSALi
(Γ) is LLL-closed (see Theorem 3.1.1).

(ii) Every logic AL,SAL,HAL,AL@ is reflexive.

6.7.1 SALr

(I) is at least as strong as HALr

Lemma 6.15 Where Γ ⊆ Ws and i ∈ I: if A ∈ CnSALr
i
(Γ), then Γ `LLL

A ∨Dab(∆) for a ∆ ⊂ Ω(i) such that ¬̌Dab(∆) ∈ CnSALr
i
(Γ).

Proof. (i = 1) Suppose A ∈ CnSALr
1
(Γ) = CnALr

1
(Γ). By Theorem 2.6, there is

a ∆ ⊂ Ω1 such that Γ `LLL A ∨̌Dab(∆) and ∆ ∩ U1(Γ) = ∅. By Theorem 2.6,
¬̌Dab(∆) ∈ CnALr

1
(Γ) = CnSALr

1
(Γ).

(i ⇒ i + 1) Suppose A ∈ CnSALr
i+1

(Γ). By Theorem 2.6 and Definition

3.1, there is a Θ ⊂ Ωi+1 such that (†) CnSALr
i
(Γ) `LLL A ∨̌Dab(Θ), and Θ ∩

U i+1(CnSALr
i
(Γ)) = ∅. By Theorem 2.6, (‡) ¬̌Dab(Θ) ∈ CnALr

i+1
(CnSALr

i
(Γ)) =

CnSALr
i+1

(Γ).

By (†) and the fact that CnSALr
i
(Γ) is LLL-closed, A ∨̌Dab(Θ) ∈ CnSALr

i
(Γ).

By the induction hypothesis, there is a Θ′ ⊆ Ω(i), such that Γ `LLL

9!2r ∨̌ !1p is not a Dab2-formula, and we cannot derive !2r on a condition that does not
overlap with the minimal choice set {!1p} ∈ Φ1(Γe2)).
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A ∨̌Dab(Θ) ∨̌Dab(Θ′) and ¬̌Dab(Θ′) ∈ CnSALr
i
(Γ). By the reflexivity of ALr

i+1,
¬̌Dab(Θ′) ∈ CnSALr

i+1
(Γ). Together with (‡) and the fact that CnSALr

i+1
(Γ) is

LLL-closed, this implies that ¬̌Dab(Θ ∪ Θ′) ∈ CnSALr
i+1

(Γ).

Lemma 6.16 Where Γ ⊆ Ws and i ∈ I, each of the following holds:

1. CnALr
(i)

(Γ) ⊆ CnSALr
(i)

(Γ).

2.
⋃

j≤i CnALr
(i)

(Γ) ⊆ CnSALr
(i)

(Γ).

Proof. Ad 1. Let i ∈ I and suppose A ∈ CnALr
(i)

(Γ). By Theorem 2.6, there is a

∆ ⊂ Ω(i) such that (1) Γ `LLL A ∨̌Dab(∆) and (2) ∆ ∩ U (i)(Γ) = ∅. Note that
since SALr

(i−1) is reflexive, (3) A ∨̌Dab(∆) ∈ CnSALr
(i−1)

(Γ).

Assume that

(?) ∆ ∩ U (i)(CnSALr
(i−1)

(Γ)) 6= ∅

Hence there is a minimal Dab(i)-consequenceDab(Θ) of CnSALr
(i−1)

(Γ), such that

Θ∩∆ 6= ∅. By Lemma 6.15, Γ `LLL Dab(Θ) ∨̌Dab(Λ) for a Λ ⊂ Ω(i−1), such that
(??) ¬̌Dab(Λ) ∈ CnSALr

(i−1)
(Γ).10 Let Λ′ be a minimal subset of Λ, such that

Γ `LLL Dab(Θ) ∨̌Dab(Λ′). Assume moreover that Γ `LLL Dab(Θ′) ∨̌Dab(Λ′)
for a Θ′ ⊂ Θ. In that case, by (??) and the reflexivity and LLL-closure of
CnSALr

(i−1)
(Γ), Dab(Θ′) ∈ CnSALr

(i−1)
(Γ), which contradicts the assumption that

Θ is a minimal Dab(i)-consequence of CnSALr
(i−1)

(Γ).

Hence, there is no Θ′ ⊂ Θ for which Γ `LLL Dab(Θ′) ∨̌Dab(Λ′). Together
with the minimality of Λ′, this implies that Dab(Θ ∪ Λ′) is a minimal Dab(i)-

consequence of Γ. But then Θ ∪ Λ′ ⊆ U (i)(Γ), and hence ∆ ∩U (i)(Γ) 6= ∅, which
contradicts (2).

Hence, (?) is false, which means that ∆ ∩ U (i)(CnSALr
(i−1)

(Γ)) = ∅. By (3)

and Theorem 2.6, A ∈ CnSALr
(i)

(Γ).

Ad 2. Immediate in view of item 1 and Theorem 3.1.2.

Theorem 6.12 Where Γ ⊆ Ws: CnHALr(Γ) ⊆ CnSALr
(I)

(Γ).

Proof. Suppose A ∈ CnHALr(Γ). Hence, there are B1, . . . , Bn such that (1) each
Bj ∈

⋃

i∈I CnALr
(i)

(Γ) and (2) {B1, . . . , Bn} `LLL A. By (i), there is a k ∈ I

such that each Bj ∈
⋃

i≤k CnALr
(i)

(Γ). Hence, in view of Lemma 6.16.2, each

Bj ∈ CnSALr
(k)

(Γ). Since CnSALr
(k)

(Γ) is closed under LLL, we can derive from

(ii) that A ∈ CnSALr
(k)

(Γ). By Definition 3.1, A ∈ CnSALr
(I)

(Γ).

We can use a simple example to show that the converse of Theorem 6.12
fails. Recall that the logic SK2r

(2) is obtained by the superposition of the logic

Kr
(2) = 〈K,ΩK

(2), r〉 on Kr
(1) = 〈K,ΩK

(1), r〉, and that HK2r is obtained by the
hierarchic combination of these two logics.

10Note that every logic SALr

(i)
is a logic in the format of superpositions of ALs, whence we

can also apply Lemma 6.15 to SAL
r

(i)
.
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Consider the set Γt = {♦p,♦♦q,♦♦r,¬p∨¬q,¬r ∨¬q} from page 105. There
it was explained that r 6∈ CnHK2r(Γt), in view of !2q ∨̌ !2r, which is a minimal
Dab(2)-consequence of Γt.

Note that Γt `Kr
1
¬!1p, since Γt has no Dab(1)-consequences. This means

that !2q is a Dab(2)-consequence of CnKr
1
(Γt), whence !2q ∨̌ !2r is not a minimal

Dab(2)-consequence of CnKr
1
(Γt). As a result, !2r 6∈ U (2)(CnKr

1
(Γt)), and hence

r ∈ CnKr
(2)

(CnKr
1
(Γt)) = CnSK2r

(2)
(Γt). So we have:

Proposition 6.1 There are Γ ⊆ Ws such that CnSK2r
(2)

(Γ) 6⊆ CnHK2r(Γ).

6.7.2 SALr is at least as strong as SALr

(I)

Lemma 6.17 Where Γ ⊆ Ws, i ∈ I and A ∈ Ω(i): if A 6∈ U (i+1)(CnSALr
(i)

(Γ)),

then each of the following holds:

1. A 6∈ U (i)(CnSALr
(i−1)

(Γ))

2. ¬̌A ∈ CnSALr
(i)

(Γ).

Proof. Ad 1. Suppose A ∈ U (i)(CnSALr
(i−1)

(Γ)). It follows that (†) there is a

minimal Dab(i)-consequence Dab(∆) of CnSALr
(i−1)

(Γ), such that A ∈ ∆.

Assume now that A 6∈ U (i+1)(CnSALr
(i)

(Γ)). By the reflexivity of ALr
(i),

Dab(∆) ∈ CnSALr
(i)

(Γ). Hence there is a ∆′ ⊆ ∆ − {A} such that Dab(∆′) ∈

CnSALr
(i)

(Γ). However, note that since ∆′ ⊂ ∆, also ∆′ ⊆ Ω(i). By Lemma 3.17

(see page 84), Dab(∆′) ∈ CnSALr
(i−1)

(Γ), which contradicts (†).

Ad 2. Immediate in view of item 1, Theorem 2.6 and Definition 3.1.

Lemma 6.18 Where Γ ⊆ Ws and i ∈ I, each of the following holds

1. U i(CnSALr
i−1

(Γ)) ⊆ U (i)(CnSALr
(i−1)

(Γ))

2. CnSALr
(i)

(Γ) ⊆ CnSALr
i
(Γ).

Proof. (i = 1) Ad 1 and 2. Immediate in view of Definition 3.1 and the fact that
Ω(1) = Ω1.

(i ⇒ i + 1) Ad 1. Suppose A ∈ U i+1(CnSALr
i
(Γ)). Hence there is a minimal

Dabi+1-consequence Dab(∆) of CnSALr
i
(Γ), with A ∈ ∆. Since CnSALr

i
(Γ) is

LLL-closed, Dab(∆) ∈ CnSALr
i
(Γ). By Lemma 6.15, Γ `LLL Dab(∆) ∨̌Dab(Θ)

for a Θ ⊂ Ω(i), such that (†) ¬̌Dab(Θ) ∈ CnSALr
i
(Γ). Since SALr

(i) is at least as

strong as LLL (see Fact 3.1.6), (‡) Dab(∆) ∨̌Dab(Θ) ∈ CnSALr
(i)

.

Assume that (?) A 6∈ U (i+1)(CnSALr
(i)

(Γ)). Hence by (‡) and the fact that

CnSALr
(i)

(Γ) is LLL-closed, Dab(∆′ ∪Θ) ∈ CnSALr
(i)

(Γ) for a ∆′ ⊆ (∆−A). By

item 2 of the induction hypothesis, Dab(∆′ ∪ Θ) ∈ CnSALr
i
(Γ). By (†) and the

fact that CnSALr
i
(Γ) is LLL-closed, Dab(∆′) ∈ CnSALr

i
(Γ). But then Dab(∆) is

not a minimal Dabi+1-consequence of CnSALr
i
(Γ) — a contradiction. Hence (?)

is false: A ∈ U (i+1)(CnSALr
(i)

(Γ)).
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Ad 2. Suppose that A ∈ CnSALr
(i+1)

(Γ). By Theorem 2.6, CnSALr
(i)

(Γ) `LLL

A ∨̌Dab(∆), for a ∆ ⊆ Ω(i+1) − U (i+1)(CnSALr
(i)

(Γ)). By the LLL-closure of

CnSALr
(i)

(Γ) and the induction hypothesis,

A ∨̌Dab(∆) ∈ CnSALr
i
(Γ) (6.7)

Let ∆i+1 = ∆ ∩ Ωi+1, and let ∆(i) = ∆ − Ωi+1. Note that for every B ∈

∆(i), B ∈ Ω(i) − U (i+1)(CnSALr
(i)

(Γ)). By Lemma 6.17.2, for every B ∈ ∆(i),

¬̌B ∈ CnSALr
(i)

(Γ). Hence by the induction hypothesis, for every B ∈ ∆(i),

¬̌B ∈ CnSALr
i
(Γ). Since CnSALr

i
(Γ) is LLL-closed, and by (6.7), we can derive

that
A ∨̌Dab(∆i+1) ∈ CnSALr

i
(Γ) (6.8)

By item 1, U i+1(CnSALr
i
(Γ)) ⊆ U (i+1)(CnSALr

(i)
(Γ)). It follows that ∆i+1 ⊆

Ωi+1 − U i+1(CnSALr
i
(Γ)). Hence by (6.8), Theorem 2.6 and Definition 3.1, A ∈

CnSALr
i+1

(Γ).

Theorem 6.13 Where Γ ⊆ Ws: CnSALr
(I)

(Γ) ⊆ CnSALr(Γ).

Proof. Suppose A ∈ CnSALr
(I)

(Γ). By Definition 3.1, A ∈ CnSALr
(i)

(Γ) for an

i ∈ I. By Lemma 6.18.2, A ∈ CnSALr
i
(Γ). By Definition 3.1, A ∈ CnSALr(Γ).

Recall the logic SK2r, which was obtained by the superposition of Kr
2 on

Kr
1. By Theorem 6.13, it follows that for every Γ ⊆ Wm, CnSK2r

(2)
(Γ) ⊆

CnSK2r(Γ). To see that the set inclusion is sometimes proper, consider the
set Γe2 = {♦p,♦q,♦♦r,¬p ∨ ¬q,¬p ∨ ¬r}. This set was introduced in Ex-
ample 3.2 in Section 3.1.2 of Chapter 3. There it was already shown that
r ∈ CnSK2r(Γe2) − CnSK2r

(2)
(Γe2).

Hence the converse of Theorem 6.13 fails:

Proposition 6.2 There are Γ ⊆ Ws such that CnSK2r(Γ) 6⊆ CnSK2r
(2)

(Γ).

The following corollary summarizes Theorems 4.20, 6.12 and 6.13:

Corollary 6.15 Where Γ ⊆ Ws: CnALr(Γ) ⊆ CnHALr(Γ) ⊆ CnSALr
(I)

(Γ) ⊆

CnSALr(Γ).

6.7.3 Lexicographic ALs versus Superpositions (1)

In this section, I prove that every logic ALr
@ is at least as strong as the cor-

responding logic SALr
(I), and I illustrate the fact that many logics ALr

@ are
actually stonger than the corresponding logics SALr

(I). For the proof, I use a
specific format, which is obtained by superposing lexicographic ALs. As far as I
can see, this format is not really interesting in itself, but it allows me to bridge
the gap between superpositions of ALs and lexicographic ALs.

Let SALr
@(0)

=df LLL. For every i ∈ I, define the logic SALr
@(i)

as follows:
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CnSALr
@(i)

(Γ) =df CnALr
@(i)

(. . . CnALr
@(2)

(CnALr
@(1)

(Γ)) . . .)

Since CnALr
@(i)

(Γ) is LLL-closed for all Γ ⊆ Ws (see Theorem 5.30), we

immediately have:

Fact 6.7 Where Γ ⊆ Ws and i ∈ I: CnLLL(CnSALr
@(i)

(Γ)) = CnSALr
@(i)

(Γ).

Lemma 6.19 For every i ∈ I, if A ∈ Ω(i) − U@(i)(Γ), then A ∈ Ω − U@(Γ).

Proof. Let i ∈ I. SupposeA ∈ Ω(i)−U
@(i)(Γ). Hence A ∈ Ω, andA 6∈

⋃

Φ@(i)(Γ).
It follows that for every ϕ ∈ Φ@(i)(Γ), A /∈ ϕ.

Assume that A ∈ U@(Γ). Hence A ∈ ψ for a ψ ∈ Φ@(Γ). However, by Lemma
6.7, ψ ∩ Ω(i) ∈ Φ@(i)(Γ), and hence A ∈ ϕ for a ϕ ∈ Φ@(i)(Γ) — a contradiction.

Lemma 6.20 Where Γ ⊆ Ws and i ∈ I, CnALr
@(i)

(Γ) ⊆ CnALr
@

(Γ).

Proof. Suppose A ∈ CnALr
@(i)

(Γ). By Lemma 5.11, Γ `LLL A ∨̌Dab(∆) for a

∆ ⊆ Ω(i) − U@(i)(Γ). But then by Lemma 6.19, ∆ ⊆ Ω − U@(Γ). Hence by
Lemma 5.10, A ∈ CnALr

@
(Γ).

Lemma 6.21 Where Γ ⊆ Ws: for all i ∈ I, CnSALr
@(i)

(Γ) ⊆ CnALr
@

(Γ).

Proof. (i = 1) Immediate in view of Lemma 6.20 and the fact that CnALr
@(1)

(Γ) =

CnSALr
@(1)

(Γ).

(i⇒ i+ 1) Note that by the definition of SALr
@(i+1)

,

CnSALr
@(i+1)

(Γ) = CnALr
@(i+1)

(CnSALr
@(i)

(Γ))

By Lemma 6.20, we have:

CnALr
@(i+1)

(CnSALr
@(i)

(Γ)) ⊆ CnALr
@

(CnSALr
@(i)

(Γ))

By the cumulative indifference of ALr
@ (see Corollary 5.3) and the induction

hypothesis,

CnALr
@

(CnSALr
@(i)

(Γ)) = CnALr
@

(Γ)

Lemma 6.22 Where Γ ⊆ Ws: if Γ `ALr
@
A, then there is a ∆ ⊆ Ω such that

Γ `LLL A ∨̌Dab(∆) and Γ `ALr
@
¬̌Dab(∆).

Proof. Suppose Γ `ALr
@
A. By Lemma 5.11, there is a ∆ ⊆ Ω such that Γ `LLL

A ∨̌Dab(∆) and ∆ ∩ U@(Γ) = ∅. Note that also Γ `LLL ¬̌Dab(∆) ∨̌Dab(∆),
whence by Lemma 5.10, Γ `ALr

@
¬̌Dab(∆).



6.7. THE RELIABILITY-VARIANTS 157

Lemma 6.23 Where Γ ⊆ Ws and i ∈ I: if A ∈ CnSALr
@(i)

(Γ), then there is a

∆ ⊆ Ω(i) such that Γ `LLL A ∨̌Dab(∆) and Γ `SALr
@(i)

¬̌Dab(∆).

Proof. (i = 1) Suppose A ∈ CnSALr
@(1)

(Γ) = CnALr
1
(Γ). By Lemma 5.11, there

is a ∆ ⊂ Ω1 such that Γ `LLL A ∨̌Dab(∆) and ∆ ∩U1(Γ) = ∅. By Lemma 5.10,
¬̌Dab(∆) ∈ CnALr

1
(Γ) = CnSALr

@(1)
(Γ).

(i ⇒ i + 1) Suppose A ∈ CnSALr
@(i+1)

(Γ). By Lemma 5.11 and Definition

3.1, there is a Θ ⊂ Ωi+1 such that (†) CnSALr
@(i)

(Γ) `LLL A ∨̌Dab(Θ), and

Θ ∩ U i+1(CnSALr
@(i)

(Γ)) = ∅. By Lemma 5.10,

(‡) ¬̌Dab(Θ) ∈ CnALr
@(i+1)

(CnSALr
@(i)

(Γ)) = CnSALr
@(i+1)

(Γ)

By (†) and Fact 6.7, A ∨̌Dab(Θ) ∈ CnSALr
@(i)

(Γ). By the induction hypothe-

sis, there is a Θ′ ⊆ Ω(i) such that Γ `LLL A ∨̌Dab(Θ) ∨̌Dab(Θ′) and ¬̌Dab(Θ′) ∈
CnSALr

@(i)
(Γ). By the reflexivity of ALr

@(i+1)
, ¬̌Dab(Θ′) ∈ CnSALr

@(i+1)
(Γ). To-

gether with (‡) and Fact 6.7, this implies that ¬̌Dab(Θ∪Θ′) ∈ CnSALr
@(i+1)

(Γ).

Lemma 6.24 Where Γ ⊆ Ws, each of the following holds for all i ∈ I:

1. U@(i)(CnSALr
@(i−1)

(Γ)) ⊆ U (i)(CnSALr
(i−1)

(Γ))

2. CnSALr
(i)

(Γ) ⊆ CnSALr
@(i)

(Γ).

Proof. (i = 1) Ad 1. Immediate in view of Fact 6.2.4, and the fact that
SALr

@(0)
=df LLL and SALr

(0) =df LLL.

Ad 2. Immediate in view of the fact that SALr
(1) = ALr

1 = ALr
@(1)

=
SALr

@(1)
.

(i ⇒ i + 1) Ad 1. Suppose A ∈ U@(i+1)(CnSALr
@(i)

(Γ)). Hence there is a

∆ ⊆ Ω(i+1) such thatDab(∆) is a minimal Dab-consequence of CnSALr
@(i)

(Γ). By

Lemma 6.23, Γ `LLL Dab(∆) ∨̌Dab(Θ), for a Θ ⊆ Ω(i) such that (†) ¬̌Dab(Θ) ∈
CnSALr

@(i)
(Γ).

Assume now that A 6∈ U (i)(CnSALr
(i−1)

(Γ)). Note that since SALr
(i) is at

least as strong as LLL, Dab(∆) ∨̌Dab(Θ) ∈ CnSALr
(i)

(Γ). Hence there is a

∆′ ⊆ ∆ − {A} such that

Dab(∆′) ∨̌Dab(Θ) ∈ CnSALr
(i)

(Γ)

By the induction hypothesis,

Dab(∆′) ∨̌Dab(Θ) ∈ CnSALr
@(i)

(Γ)

But then by (†) and the fact that CnSALr
@(i)

(Γ) is LLL-closed, we can de-

rive that Dab(∆′) ∈ CnSALr
@(i)

(Γ). Hence Dab(∆) is not a minimal Dab(i+1)-

consequence of CnSALr
@(i)

(Γ) — a contradiction.
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Ad 2. Suppose A ∈ CnSALr
(i+1)

(Γ). Hence by Lemma 5.11 and Definition 3.1,

there is a ∆ ⊂ Ω(i+1) such that (1) A ∨̌Dab(∆) ∈ CnLLL(CnSALr
(i)

(Γ)) and (2)

∆ ∩ U (i+1)(CnSALr
(i)

(Γ)) = ∅.

By the induction hypothesis, (1) and the monotonicity of LLL, A ∨̌Dab(∆) ∈
CnLLL(CnSALr

@(i)
(Γ)). By item 1 and (2), ∆ ∩ U@(i+1)(CnSALr

@(i)
(Γ)) = ∅.

Hence by Lemma 5.10, A ∈ CnALr
@(i+1)

(CnSALr
@(i)

(Γ)) = CnSALr
@(i+1)

(Γ).

Theorem 6.14 Where Γ ⊆ Ws: CnSALr
(I)

(Γ) ⊆ CnALr
@

(Γ).

Proof. Suppose A ∈ CnSALr
(I)

(Γ). By Definition 3.1, A ∈ CnSALr
(i)

(Γ) for an i ∈

I. Hence by Lemma 6.24.2, A ∈ CnSALr
@(i)

(Γ). By Lemma 6.21, A ∈ CnALr
@

(Γ).

By Theorems 4.20, 6.12 and 6.14, we have:

Corollary 6.16 Where Γ ⊆ Ws: CnALr(Γ) ⊆ CnHALr(Γ) ⊆ CnSALr
(I)

(Γ) ⊆

CnALr
@

(Γ).

Also, in view of Corollary 6.11 and the fact that ALm
@ is always at least as

strong as ALr
@, we can infer:11

Corollary 6.17 If Γ ⊆ Ws and Γ satisfies FSALm
(I)

, then CnSALr
(I)

(Γ) ⊆

CnSALm
(I)

(Γ).

To see that K2r
@ is sometimes stronger than SK2r

(2), we can use the premise

set introduced on page 139: Γeq = {♦p,♦q,♦♦r,♦♦s,¬p ∨ ¬q,¬p ∨ ¬r,¬q ∨
¬r,¬r ∨ ¬s}. As explained there, Φ@(Γeq) = {{!1p, !2r}, {!1q, !2r}}, and hence
U@(Γeq) = {!1p, !1q, !2r}. It follows that !2s is a @-reliable abnormality in view
of Γeq. So we can finally derive s on the condition {!2s} in a K2r

@-proof from
Γeq.

To see that s 6∈ CnSK2r
(2)

(Γeq), note that !2r 6∈ CnKr
1
(Γeq) — we can only

derive this formula on the conditions {!1p} and {!1q}, and U (1)(Γeq) = {!1p, !1q}.
Hence !2r ∨̌ !2s is a minimal Dab-consequence of CnKr

1
(Γeq), which implies that

!2s is not a reliable abnormality for the second logic in the superposition. As a
result:

Proposition 6.3 There are Γ ⊆ Ws such that CnK2r
@

(Γ) 6⊆ CnHK2r(Γ).

6.7.4 Lexicographic ALs versus Superpositions (2)

As stated in the introduction, logics ALr
@ and SALr are in general incomparable.

So let me briefly illustrate that SK2r sometimes yields more consequences than
K2r

@, and vice versa.

11It is not yet clear whether this result can be generalized to all premise sets Γ ⊆ Ws of all
premise sets Γ ⊆ W̌s.
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The set Γeq from the preceding section can also be used to show that SK2r is
not always at least as strong as K2r

@. By the same reasoning as the one above,
we can show that s 6∈ CnSK2r(Γeq).

To see that SK2r and K2r
@ are incomparable, consider the premise set Γe2 =

{♦p,♦q,♦♦r,¬p∨¬q,¬p∨¬r} from Section 3.1.2 of Chapter 3. As noted there,
r ∈ CnSK2r(Γe2).

Note that Γe2 has exactly two minimal Dab-consequences:

!1p ∨̌ !1q
!1p ∨̌ !2r

Hence Φ@(Γe2) = {{!1p}, {!1q, !2r}}. It follows that !2r ∈ U@(Γe2), and hence
r 6∈ CnK2r

@
(Γe2). So we have:

Proposition 6.4 There are Γ,Γ′ ⊆ Ws such that:

1. CnK2m
@

(Γ) 6⊆ CnSK2m(Γ)
2. CnSK2m(Γ′) 6⊆ CnK2m

@
(Γ′)

6.8 In Conclusion

6.8.1 Overview of the metatheoretic results

Let me briefly recapitulate the main results of Part I of this thesis. I have pre-
sented and studied three formats for prioritized ALs: sequential superpositions of
flat ALs, hierarchic combinations of flat ALs, and lexicographic ALs. For the first
two, I started from a definition of their syntactic consequence relation, and next
considered semantic and proof-theoretic characterizations of this consequence re-
lation. For lexicographic ALs, the consequence relation was defined directly in
terms of the proof theory; also for this format, a semantic characterization was
provided. For all three formats, I checked a fixed list of metatheoretic properties
that are known to hold for all ALs in standard format. Finally, in the current
chapter, several formats were compared in terms of the selection of models they
use, and of their logical strength. The following paragraphs summarize my main
conclusions:12

Semantics.

• Some superpositions of ALs are neither sound nor complete with respect to
their semantics. In some cases, even Semantic Reassurance fails for the se-
mantics. On the positive side, it was shown that all superpositions of ALs
that use the Reliability Strategy are sound and complete; also, when Φ(Γ) is
finite, then all logics SAL are sound and complete. Finally, in the current
chapter, we saw that all logics SALm

(I) are sound and satisfy a specific kind of
Strong Reassurance, given by SR3 – see page 81.

12As explained in Chapter 2, Section 2.7, completeness results are always restricted to premise
sets Γ ⊆ Ws. The same holds for several other properties, such as Cumulative Transitivity,
Idempotence, LLL-Closure and LLL-Invariance. I refer to the respective theorems where this
restriction is always made explicit.
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• Although all hierarhic ALs are sound with respect to their semantics, they
are not in general complete. Hierarchic combinations of logics 〈ALr

(i)〉i∈I are

complete. Also, whenever Φ(Γ) is finite (or given weaker restrictions – see the
current chapter), all logics HAL are sound and complete. In contrast to the
semantics of superpositions, the HAL-semantics satisfies SR3 and hence also
Semantic Reassurance.

• It was shown that lexicographic ALs are always sound and complete (for all
Γ ⊆ Ws) with respect to their semantics. Also, the AL@-semantics satisfies
SR3.

• The semantic consequence relations of SALm
(I), HALm and ALm

@ are equiv-

alent. Moreover, it was shown that for all Γ, MSALm(Γ) ⊆ MALm
@

(Γ) ⊆
MALm(Γ).

Proof Theories.

• Every prioritized AL considered in this thesis can be fully characterized by a
dynamic proof theory, which uses exactly the same notion of a proof and final
derivability as ALs in standard format, and hence only differs in its marking
definition. This result is particularly important since, as explained in Chapter
1, it is precisely their proof theory that turns ALs into very good candidates to
capture the external and internal dynamics of (prioritized) defeasible reasoning
methods. Also, since the proof formats of each of the prioritized ALs are
identical to that of the standard format, we can shift between these formats
within one and the same proof (see Chapter 3 where this was explained).

• For superpositions, we saw that it was only possible to obtain a proof theory in
the proof format of flat ALs, if we give up some intuitive desiderata concerning
the derivability of formulas at a stage. However, it was shown that if we slightly
change the notion of a condition – replacing sets by sequences of sets –, a much
more appealing proof theory can be used.

Metatheoretic properties.

• There are a number of properties which all the prioritized adaptive logics
considered in this thesis share with flat ALs: Reflexivity, LLL-Closure, LLL-
Invariance, Syntactic Reassurance. They all oscillate between their respective
LLL and ULL, and are equivalent to their ith upper limit logic (ULL(i)) for
premise sets that are normal up to level i.

• Lexicographic ALs score better than both superpositions of ALs and hierarchic
ALs in a number of respects: every logic AL@ is cumulatively transitive,
cautiously monotonic, and hence also idempotent – each of these properties
fail for the other formats in the general case. Also, it has been shown that
the Maximality of LLL and the three criteria for equivalence (see Section
2.5) can easily be generalized from AL to AL@.13 Finally, ALm

@ satisfies the
Deduction Theorem.

13For superpositions and hierarchic ALs, criterion (C1) of equivalence fails – the counterex-
amples are the same as those for the Fixed Point property. It is not yet clear whether criteria
(C2) and (C3), and the Maximality of LLL hold for these two formats of prioritized ALs.
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• Superpositions of logics 〈ALr
(i)〉i∈I are cumulatively transitive, cautiously mono-

tonic, and idempotent.
• Given certain restrictions on the premise sets (spelled out in the current chap-

ter), HALm and SALm
(I) are also cumulatively transitive, idempotent and

satisfy the Deduction Theorem. It remains an open question whether, under
the same restrictions, these logics are also cautiously monotonic.

Logical Strength.

• Each of the following holds for all Γ:

CnHALr(Γ) ⊆ CnHALm(Γ)
CnALr

@
(Γ) ⊆ CnALm

@
(Γ)

SALr and SALm are in general incomparable. However, given weak restric-
tions, SALm

(I) is at least as strong as SALr
(I) (see the penultimate section of

this chapter).
• Each of the following holds for all Γ ⊆ Ws:

CnALr(Γ) ⊆ CnHALr(Γ) ⊆ CnSALr
(I)

(Γ) ⊆ CnALr
@

(Γ)

CnALr(Γ) ⊆ CnHALr(Γ) ⊆ CnSALr
(I)

(Γ) ⊆ CnSALr(Γ)

ALr
@ and SALr are incomparable in terms of logical strength.

• The logics SALm,SALm
(I),HALm,ALm

@ are in general incomparable. How-

ever, if Φ(Γ) is finite, then CnSALm
(I)

(Γ) = CnHALm(Γ) = CnALm
@

(Γ) ⊆

CnSALm(Γ) for all Γ ⊆ Ws.

One additional noteworthy result that does not fit into any of these categories,
concerns the logics HALr: it was shown that these systems have an upper bound
complexity of Σ0

3, which is the same upper bound as that of ALr.
In view of these results, none of the three formats (superpositions, hierarchic

ALs and lexicographic ALs), nor any of their subformats (e.g. HALr or SALm
(I))

can be discarded. One possible exception is HALm, which is merely interesting
in view of its quasi-equivalence to ALm

@ . For all the other subformats, we can at
most say that it depends on other criteria, which of them is to be preferred. I
will specify some of these in the next paragraph.

6.8.2 A More General Evaluation

Logics and generic formats of logics can be chosen on the basis of various desider-
ata. Let me briefly consider some desiderata here, and show how these can help
us to evaluate the formats at hand.

First, some formats may be either too weak or too strong to capture a given
reasoning form.14 For instance, in Chapter 8, a superposition of ALs is discussed
which models a specific kind of abduction. This logic combines singular fact
abduction (i.e. to derive Aβ from ∀α(Aα ⊃ Bα) and Bβ) and inductive general-
ization (to derive ∀αAα from ∃αAα). As argued there, singular fact abduction

14This point is similar to the idea that in some contexts, Reliability is more suitable, whereas
in others, Minimal Abnormality is the preferable strategy – see Chapter 2.
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needs to be prioritized over inductive generalization – otherwise the logic is too
weak to serve its purpose. However, for the same reason, also a hierarchic AL
in the format of HALr would be too weak. An interesting topic for further re-
search would be to see whether, in some contexts, there are formats which are too
strong, in that the logics defined in those formats allow us to derive unjustified
conclusions from a given premise set.

Secondly, one may ask whether the ultimate aim of an adaptive logic is to
maximally approximate a given standard of normality – hence its upper limit
logic –, or rather to approximate it in such a way that the resulting consequence
relation has a number of Tarski-properties or properties that closely resemble
them, e.g. Idempotence and Cautious Monotonicity.

For instance, in the context of belief revision, we can distinguish between two
sorts of operations: single revisions of a prioritized belief base, and iterations
of such revisions. In the former case, sequential superpositions of the type of
SKm yield a very powerful consequence relation. However, when applied to
iterations of revision, such systems can lead to counterintuitive results. Suppose
for instance that, after revising a set of formulas Γ in view of the new information
A, we end up with the set of beliefs Γ′. Suppose moreover that B ∈ Γ′. In that
case, it would be strange that revising Γ′ with B results in a still different set
Γ′′ (hence, Γ′′ 6= Γ′). In other words, if B is part of the “output” of a given
revision operation, then revising our revision set once more with B should make
no difference. Hence, if prioritized ALs are used to model iterative belief revision
(of possibly infinite, complex premise sets), the formats AL@ and SALr

(I) seem
more suitable candidates than SALm or SALr.

This relates to a third desideratum, i.e. the ability to deal with very complex
premise sets. For example, when a logic is intended to explicate our reasoning
about obligations in a simple propositional language, then it seems hard to think
of concrete examples where there are infinitely many minimal choice sets of Σ(Γ).
Hence a deontic logician may consider the case where Φ(Γ) is infinite as irrelevant.
On the other hand, most propositional logics are merely propositional for the sake
of simplicity, and their extension to the predicative level is often (implicitly) taken
for granted. As shown in [157], at the predicative level, finite premise sets Γ can
already lead to the maximal upper bound complexity of CnALm(Γ). Likewise,
the negative results for superpositions and hierarchic ALs can be obtained from
finite premise sets at the predicative level.15 Hence, more is required to argue
one’s way out of the metatheoretic problems of e.g. logics like HALm.

A fourth question concerns the distinction between semantic and syntax-based
approaches in logic. Ideally, syntax and semantics should go hand in hand, but
in view of the above results, the adaptive logician’s job is not always ideal. If
the aim of a logician is to explicate dynamic reasoning forms, then the proof
theory of sequential superpositions seems very suitable, since it forces the user
to explicate (at the object-level) the way priorities allow us to block certain
derivations, and to let other derivations pass. If on the other hand, one wants

15For instance, consider the infinite set {!1pi∨!1pj | i, j ∈ N, i 6= j}, which was used to
generate an infinite Φ(Γ) in all the critical examples from this and previous chapters. If we
move to the predicative level, with abnormalities of the type !1Px = ∃x(♦1Px∧ ¬Px), we can
obtain a similar result from the singleton {∀x∀x(x = y ∨ !1Px ∨ !1Py)}.
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to provide an intuitive and meaningful semantics for the syntactic consequence
relation at hand, then lexicographic ALs are the best candidates (recall that the
semantics of superpositions suffers from various problems, i.a. that it does not
have the Reassurance property).

Finally, there is the complexity-issue. Although hierarchic ALs of the type
HALr have certain metatheoretic disadvantages, they have one clear advantage,
i.e. their low complexity. In Appendix D, I give an outline for a proof that,
where n ∈ N, superpositions of the logics 〈Kr

i 〉i≤n have a worst case complexity
of at least Σ0

2n+1. Also, since the formats of logics SALm,HALm and ALm
@ are

extensions of the standard format, it seems evident that prioritized logics that
have the Minimal Abnormality strategy are at least Π1

1-complex.16 Finally, also
sets CnALr

@
(Γ) can be Π1

1-complex, in view of a simple variant of the example
ΓR from [157]. I did not have the time to spell out full-blown proofs for these
claims, and neither did I find ways to minimize the upper bound complexity of
the aforementioned formats – this is work in progress. Nevertheless, it is very
likely that the various formats differ with respect to their complexity, and hence,
that the results of this research are relevant for our choice among several formats.

6.8.3 Topics for Further Research

There is another, perhaps even more compelling reason to be pluralistic concern-
ing the formats for prioritized ALs. Rather than a museum of systems and their
properties, the current study is intended to be a starting point of new research
lines. Some of these were already mentioned in Chapter 1. I will reconsider
them here, showing that the various formats for prioritized ALs allow for various
interesting hypotheses to be tackled in future work.

Partial Orders First and foremost, there is the question of how to deal with
partial orders within the adaptive logic framework. Recall that so far, no tools
were provided to do this, just as there is no generic way to capture prioritized de-
feasible reasoning by means of ALs in standard format. However, relying on the
current results, it seems that at least two generic formats for reasoning with par-
tially ordered information can be developed. The first is based on the alternative
semantics and proof theory of HALr; the second on the selection semantics of
ALm

@ . Let me briefly try to explain the rough idea behind each of these proposals
separately, for the sake of argument.

As indicated above, the distinctive feature of the alternative characterization
of HALr consists in the fact that abnormalities are avoided by minimizing the
unreliable part of Dab-formulas. That is, for any given minimal Dab-consequence
Dab(∆) of Γ, a preferred (non-empty) fragment ∆′ ⊆ ∆ is selected, and (only)
the abnormalities in ∆′ are unreliable in view of this Dab-consequence. The
preferred fragment consists of those abnormalities that are “the least harmful”,
in view of their priority level.

16As shown in [157], the flat AL CLuNm already has a worst case complexity of Π1
1 (see

also Chapter 2). This fact does not rely on specific aspects of CLuNm, and can easily be
generalized to e.g. the K-based flat ALs from the preceding chapters.
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In a similar vein, we can use any strict partial order ≺ on Ω, in order to select
preferred fragments pf≺(∆) = {A ∈ ∆ | there is no B ∈ ∆ : B ≺ A}. Whenever
the order ≺ is acyclic, it can easily be shown that for every non-empty ∆, pf≺(∆)
is also non-empty.17 The set of unreliable formulas in view of Γ could then be
defined as follows:

U≺(Γ) =
⋃

∆∈Σ(Γ) pf≺(∆)

Likewise, we can define the set of unreliable formulas at stage s as

U≺
s (Γ) =

⋃

∆∈Σs(Γ) pf≺(∆)

Finally, we can define a syntax and semantics on the basis of both sets – this is
but a matter of replacing every occurrence of U(Γ) and Us(Γ) in the definition of
ALr with U≺(Γ), resp. U≺

s (Γ). Although this is only a first idea, it seems that
the resulting consequence relation warrants reassurance and has the same upper
bound complexity as HALr and ALr.

An altogether different way to deal with partial orders, is by translating them
into a partial order ≺ on the power set of Ω.18 Note that ⊂ and @ are such
partial orders. Recall that both in the syntax and semantics of ALm

@ , the order
@ is crucial. Syntactically, it allows us to select a set of @-minimal choice sets
of Σs(Γ), which determines the marking at stage s. Semantically, it marks off
the set of selected models, viz. those that are minimal according to the order
@. Upon inspection of the proofs in Chapter 5, it turns out that one can easily
replace @ with any partial order ≺ on ℘(Ω), provided that ≺ extends ⊂, and
that it is smooth for all sets {Ab(M) |M ∈ MLLL(Γ)}. This idea is thus a very
straightforward generalization of the idea of lexicographic adaptive logics.19

To describe, explain and study each of these two proposals in detail, would
require yet another thesis. However, the main point I wanted to make is that, on
the basis of the current results, we can think of several ways to deal with partial
orders in the framework of adaptive logics.

Dynamic Priorities It was mentioned in Chapter 1 that so far, no one has
attempted to capture prioritized reasoning in which the priorities themselves
are defeasible or dynamic, within the adaptive logic framework. Again, various
ways to deal with this matter seem promising – I will explain two of them here,
restricting myself to reasoning on the basis of prioritized beliefs.

Suppose that we want to model the fact that the plausibility degree of a
certain belief is itself defeasible. The most obvious way to do this, is by means
of an additional layer of logical operators, that allow one to express such things
as “it is plausible that A has plausibility degree i”. The idea is that the adaptive
logic first allows us to derive “A has plausibility degree i” from this, and only

17An order ≺ on ∆ is acyclic iff there are no A1, . . . , An ∈ ∆ such that A1 ≺ . . . ≺ An ≺ A1.
18From any strict partial order ≺ on the set Ω, one can obtain a partial order ≺′ on the

set ℘(Ω) by a so-called “lifting criterion”. For example, one can let ∆ ≺′ ∆′ iff for every
A ∈ ∆′ − ∆, there is a B ∈ ∆ − ∆′ such that B ≺ A – this criterion was introduced by Brass
in his [40].

19It was Christian Straßer who first came up with a general proposal that relies on this idea
– heretofore, none of it has been published however.
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afterwards derive A from the latter. If at some point, the reasoner realizes that
in fact, A should receive a lower or higher priority degree, then he may extend his
premises accordingly. Although this idea seems to be fairly intuitive, it remains
to be seen how the various parameters of the resulting logic should be defined in
order to achieve a sensible and well-behaved system, and how the two notions of
plausibility in this construction should relate to each other.

There is also another, perhaps less technically involving way to deal with the
dynamics of priorities. For the sake of simplicity, let us consider the case where
a proposition A can have two levels of likelihood: either A is “very plausible”, or
it is “rather plausible”. Take a bi-modal logic BM with operators ♦a,♦b, where
each of these operators behave like the ♦-operator of K and are independent of
each other.20 In that case, there are three possible cases to consider:

(i) ♦aA and ♦bA both mean that A is very plausible
(ii) ♦aA means that A is very plausible; ♦bA means that A is rather plausible
(iii) ♦bA means that A is very plausible; ♦aA means that A is rather plausible

Accordingly, we can define three adaptive logics: (i) a flat AL which treats ab-
normalities of the form ♦aA ∧ ¬A (A ∈ W l

c) and those of the form ♦bA ∧ ¬A
(A ∈ W l

c) in the same way; (ii) an AL which prioritizes abnormalities of the first
kind over those of the second kind; and (iii) an AL which prioritizes abnormalities
of the second kind over those of the first kind. Note that, in view of the results
from this thesis, adaptive proofs in each of these three logics can have exactly the
same format. So we can switch between marking in view of each of these logics
to model changes in the priority degree of certain propositions.

Other Approaches to Non-monotonic Logic A different question is whether
we may use the same results to shed new light on other approaches to non-
monotonic logic. For instance, given the general well-behavedness of superposi-
tions, can we use similar ideas in e.g. (prioritized) belief revision, default logic,
or circumscription? As I will show in Chapter 10, the idea of superposing revi-
sion operations has quite a few interesting applications. Similarly, we may ask
whether it is possible to merge non-monotonic consequence relations as this is
done in hierarchic ALs, and what the resulting systems look like.

Computational Complexity A last topic for further research was already
mentioned before in this section, i.e. the computational complexity of (prioritized
and flat) adaptive logics. As explained there, more work is needed to determine
exactly what the computational complexity of prioritized ALs in the various
formats is. However, another question is whether certain restrictions on premise
sets allow us to minimize the upper complexity bound of the systems. The
hierarchy of conditions spelled out in Section 6.4.5 of this chapter seems to be a
good starting point for this endeavor. For instance, it can easily be shown that
in those cases where Γ has only finitely many minimal Dab-consequences – and
hence Σ(Γ) is finite –, every flat adaptive logic has an upper bound complexity

20More precisely: 6`BK ♦aA ⊃ ♦bA and 6`BK ♦bA ⊃ ♦aA.
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of Σ0
2.21 This leads to the question whether weaker restrictions allow us to

minimize the upper bound complexity of (flat or prioritized) ALs that use the
Minimal Abnormality Strategy.

21In such cases, A ∈ CnAL(Γ) iff there is a finite proof from Γ, such that A is derived on an
unmarked line l in this proof, and in every finite extension of the proof, line l remains unmarked.
This is so since whenever Σ(Γ) is finite, we can derive all minimal Dab-consequences of Γ in a
finite proof.
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Chapter 7

Prioritized Normative
Reasoning

This chapter is based on the paper “A Logic for Prioritized Normative Reason-
ing” (Journal of Applied Logic, to appear), which was co-authored by Christian
Straßer. We are indebted to Joke Meheus, Mathieu Beirlaen and the anonymous
referees for their comments and suggestions that helped improve that paper.

7.1 Introduction

7.1.1 Deontic Conflicts and Adaptive Logics

Deontic conflicts have been the subject of much debate in philosophical logic
and computer science.1 Roughly speaking, a deontic conflict occurs if two or
more obligations2 cannot be mutually realized – we will present a more precise
characterization of deontic conflicts in Section 7.1.3. In the face of such conflicts,
Standard Deontic Logic (henceforth SDL) leads to triviality in view of the rule
(D): from OA, infer ¬O¬A. Giving up (D) is necessary but not sufficient to allow
for deontic conflicts: whenever the premises feature a deontic conflict, the other
rules of SDL still cause deontic explosion, i.e. the conclusion that everything is
obligatory.

To solve this problem, various conflict-tolerant deontic logics have been de-
veloped over the last few decades. As Lou Goble points out in his [64, pp. 462-
465], there are basically three options to avoid deontic explosion in the face
of conflicting obligations: (i) reject the modal inheritance rule: from OA and
A ` B infer OB (see e.g. [63, 64]); (ii) reject the axiom of aggregation (AND):
OA ∧ OB ⊃ O(A ∧ B) (see e.g. [155, 60, 130]); (iii) weaken one or more of the
non-modal connectives. Examples of the third option can be found in [44, 124],
where the classical negation is replaced by a paraconsistent one, and in [98, 59],
where a relevant implication is used.

1See e.g. [155, 60, 61, 62, 130]. See [100] for an overview of the literature on deontic conflicts.
2In this chapter, we use the generic term “obligations” to refer to duties, imperatives, rules,

norms, (moral) laws, and so on.
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Implementing any of these options in terms of a monotonic logic falls prey to
the objection that a number of intuitive inferences are no longer valid. There is
a variety of non-monotonic formalizations that are conflict-tolerant and give rise
to stronger consequence relations (e.g. Input/Output logics with constraints [96]
and Horty’s [80]). However, these approaches typically lack a proof theory that
explicates the (dynamics of) reasoning on the basis of deontic conflicts.

Recently, adaptive deontic logics have been developed that are satisfactory in
all the discussed respects: while allowing for genuine deontic conflicts, they offer
a strong consequence relation and a dynamic proof theory (see [35, 109, 110, 138,
139]). Every such adaptive logic is based on a monotonic conflict-tolerant deontic
logic that is designed in terms of one of the three options (i)–(iii). The general
idea of the adaptive logics is that the omitted rules of standard deontic logic are
recuperated as much as possible – unless this leads to some form of explosion. In
this way we obtain a significantly larger consequence set compared to the logic
that defines the monotonic core of the adaptive logic. Moreover, given that the
adaptive logics are defined in the standard format, an intuitive dynamic proof
theory that is sound and complete with respect to a static semantics, and a great
number of metatheoretic results are immediately available – see Chapter 2.

Take for example the (flat) adaptive logics P2.2r and P2.2m from [110].
These have as their lower limit logic the logic SDLaPe from [60]. The semantics
of SDLaPe offers a way to interpret conflicts between prima facie obligations.
The latter are expressed by the modal operator Oe. (AND) does not hold for
these: 0SDLaPe

(OeA ∧ OeB) ⊃ Oe(A ∧ B). Goble’s system also allows for the
expression of actual, all-things-considered obligations: obligations that behave
classically and are considered as guiding our actions. These are expressed with
the aid of the operator Oa. Aggregation holds for such obligations: `SDLaPe

(OaA ∧OaB) ⊃ Oa(A ∧B), and also `SDLaPe
(OaA ∧OeB) ⊃ Oe(A ∧B).

The logics P2.2r and P2.2m from [110] make it possible to turn prima facie
obligations into all-things-considered obligations, on the condition that they are
not contradicted by other prima facie obligations. This is realized by allowing
for conditional applications of the rule (OeOa): OeA ⊃ OaA. As a consequence,
we regain the rule of aggregation for all those obligations that are not involved
in a conflict. The rules of SDL are thus recuperated by making the detour via
all-things-considered obligations.

7.1.2 Ordered Sets of Obligations

In this chapter, the idea implemented in P2.2r and P2.2m will be applied to
prioritized obligations. Our logic MPm

@ allows one to derive from a prima facie
obligation to bring about A the all-things-considered obligation to bring about
A, on the assumption that there is no conflicting obligation with at least the
same priority. Note that in many cases, our norms come in different degrees
of importance, specificity or urgency. For instance, in most countries, there is
a fixed hierarchy between different kinds of traffic rules: those enforced by the
signaling boards, by marks on the road, by traffic lights, or by a police officer’s
commands. In some specific situation, e.g. when we happen to be at the site of
a car accident, the traffic rules may be overruled by more urgent and compelling
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obligations, such as taking an injured kid away from the site of the accident.
When a conflict arises in these cases, the agents typically reason from their prima
facie obligations and their respective degrees of priority, to find out what they
ought to do.

The idea that prima facie obligations are to some extent ordered, and that
this may help to resolve contradictions between them, was initiated by Ross in his
[128]. Formal investigations of this idea started with [2], and are still ongoing, see
e.g. [39, 68, 70]. Most authors in the field start from an ordered set of obligations,
and provide a criterion to fix a set of all-things-considered obligations. However,
they do not provide a proof theory that explicates the reasoning that could lead
to such a selection. As we will argue, adaptive logics are a good candidate to fill
this lacuna.

Our logic MPm
@ allows us to solve the problem of prioritized conflicts within

the format of lexicographic adaptive logics that was studied in Chapter 5. As a
result, many important meta-theorems, as well as a full-blown proof theory and
semantics are immediately available.

To completely settle the working ground, we need to make two restrictions.
First of all, in line with the restrictions from Chapter 1, we will focus on sets of
obligations that are ordered in a modular way. This means that the set of prima
facie obligations can be represented by a tuple: O = 〈O1,O2, . . .〉, where O1 con-
tains the most important obligations, O2 the obligations that are less important,
O3 obligations that are still less important, and so on. We will sometimes write
that an obligation A has priority level i, by which we mean that A ∈ Oi. Note,
however, that the same obligation may occur in different sets Oi. We will use
O to refer to the set O1 ∪ O2 ∪ . . ., hence the set of all prima facie obligations
(irrespective of their priority level). Second, we will restrict ourselves to the
framework of monadic deontic logic in this chapter.3 We will return to these
restrictions in the concluding section.

7.1.3 Some Examples

Before turning to the formal system, let us present some concrete examples.
These will help us to clarify the logic we present below, and to compare it to
other approaches in the literature. Case 1 is inspired by [68, pp. 6-7], Case 2 by
the visiting daughters example from [81, p. 581], and Case 3 is an extension of
the Johnson example from [110, p. 8].

Case 1. Mary had a car accident, with some minor material damage as
a result. She faces the obligation to stay at the site of the accident to fill in
insurance papers (S). However, she also promised her mother to pick her up
from the supermarket and take her home (M). Finally, her boss asked her to
post an urgent letter this same morning (P ). It is impossible to post the letter
in time, and to fill in the entire insurance poll: S excludes P . However, she can
call her mother to notify her she will be a bit later, and hence do both S and
M without too much trouble. The obligation to do S has a higher priority than
both the one to do P and the one to do M , while the latter two are equally
important.

3See [138, 139] for some adaptive logics based on dyadic deontic logics.
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Case 2. Michael has promised his daughter to pay her a visit today (D).
However, he receives the news that his uncle is very ill, and now faces the problem
that he should also visit him (U). The obligation to do U is more urgent than
the one to do D. Moreover, U and D are practically incompatible. Finally,
Michael also told his nephew he would drop by whenever he was around (N).
The nephew lives close to the uncle, hence U and N can be combined easily,
while N and D exclude each other. Visiting the nephew is less important than
visiting the daughter.

Case 3. Tom’s mother asks him to go to the shop and buy bread, cheese, and
either pork or tofu (B ∧ C ∧ (P ∨ T )). Since Tom (a fifteen year old boy) wants
to be a vegan, he’d rather not buy either cheese or pork (¬C ∧ ¬P ). However,
Tom also knows that his little sister is very fond of pork, and hence in order to
please her, he should buy pork (P ). Since it is after all his mother who does
the cooking, her orders take priority over Tom’s vegan principles. Satisfying his
sister is however less important than those principles.

P, M

S

N

D

U

P

¬C ∧ ¬P

B ∧ C ∧ (P ∨ T )

Figure 7.1: Illustrations for the priorities among the obligations in Cases 1–3.
Dotted lines indicate incompatibilities while solid lines indicate priorities where
obligations at the bottom of the graph have the highest priority.

Figure 7.1 represents the priority-relations and conflicts in the different cases.
For now, we leave it to the reader to decide what the actual obligations of Mary,
Michael and Tom are, given the above descriptions.

In the first two examples, we used a notion of impossibility, e.g. when we
said in Case 1 that it is “impossible” for Mary to both stay at the site of the
accident (S) and post the letter (P ). Inspired by input-output logic [96], we
will henceforth speak of “constraints” to refer to statements about practical or
physical matters of fact that restrict the kind of actions we may perform.4 We
will assume the set of constraints C to be consistent.

We may now express in a more precise way what is meant by a deontic conflict.
A deontic conflict is always relative to the set of prima facie obligations O and a
set of constraints C. That our prima facie obligations conflict with our constraints
means that, in view of the latter, we cannot mutually realize each of the former.

4Constraints are hence strongly related to the concept of “derogation” as studied in e.g. [2].
To derogate O in A means to interpret O in such a way that A is no longer entailed by it.
Although we do not discuss them here, one might also have deontic constraints on the set of
actual obligations. For example, where A is a basic human right, a judge may want to select a
subset of O in such that the negation of A does not follow from the remaining set of obligations.
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More formally, it means that O ∪ C is inconsistent.5 As we indicated before, our
actual obligations should properly guide our actions, whence we want them to
be conflict-free according to this general concept: we want it to be possible that
each of them can be carried out, without violating the set of constraints at hand.

The remainder of this chapter is structured as follows. In Section 7.2, we will
discuss how the various examples are translated into premise sets for the adaptive
logic MPm

@ . The latter is presented in Section 7.3. Section 7.4 presents some
meta-theoretic results that are specific to the context of prioritized obligations.
We will return to the examples in Section 7.5 to illustrate the proof theory of
MPm

@ and to compare some existing criteria for preferred obligations to this new
system. We mention some prospects for further research and loose ends in the
concluding section.

7.2 The Logic MPs

In this section, we define the lower limit logic of MPm
@ , which is called MPs.

The latter can be seen as SDL extended with a multi-modal variant of the logic
P from [60].

7.2.1 The Language of MPs

The language of MPs contains an infinite number of conflict-tolerant ought-
operators: O1, O2, O3, . . .. The formula OiA should be read as: there is a prima
facie obligation of priority level i that tells us to do or bring about A. It is
important to note that the priority of the normative standard gets higher as the
priority index gets lower. O1-obligations are thus the strongest, most compelling
prima facie obligations, O2-obligations are weaker, and so on. Each Oi-operator
behaves exactly like the Oe-operator from SDLaPe – see Section 7.1.1. Actual
obligations will be denoted by the O-operator without index. This O-operator
behaves just as the ordinary O-operator from SDL.

As before, let Lc refer to the standard language of classical propositional logic,
and let W l

c denote the set of literals (sentential letters and their negations) in
Wc. The language Lo is Lc extended with the modal operators O and 〈Oi〉i∈N.
Although it is possible to define the respective duals P and 〈Pi〉i∈N, we will not
do so here, since we are only interested in reasoning about obligations.

The set of well-formed formulas of Lo is defined as the smallest set Wo that
satisfies the following conditions:6

(i) Wc ⊂ Wo

(ii) if A ∈ Wc then OA ∈ Wo

(iii) if A ∈ Wc then OiA ∈ Wo for every i ∈ N

(iv) if A ∈ Wo then ¬A ∈ Wo

(v) if A,B ∈ Wo then A ∨B,A ∧B,A ⊃ B,A ≡ B ∈ Wo

We will now explain how an ordered set of obligations, together with a set of
constraints, is translated into a premise set Γ ⊆ Wo. Where O = 〈O1,O2, . . .〉 is

5Since constraints may also be of a purely logical kind, our concept includes more basic
deontic conflicts, such as having the obligation to do A and the obligation to do ¬A.

6As is clear from the definition of Wo, we do not allow for nested obligations.
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a sequence of sets of propositions that represent obligatory states or actions, we
first define:

ΓO =df {OiA | A ∈ Oi, i ∈ N}

In our simplified formal framework, physical and practical constraints can be
translated as follows: where A is a constraint, ¬O¬A is introduced as a premise.
Thus, the impossibility to do both S and P will be expressed by ¬O¬(¬P ∨
¬S). This is justified by the observation that we want our actual obligations
to be obeyable in a practical sense, as required by the “ought implies can”-
principle (OIC): OA ⊃ ♦A (where ♦A expresses that A is physically or practically
possible). Note that (OIC) implies ¬♦A ⊃ ¬OA by contraposition. Of course, a
more natural approach would make use of additional nomological modalities, but
this would severely complicate the language of the system. Logical constraints
will be dealt with solely by the logic MPs itself, as we will explain in Section
7.2.2.

Recall that the set C represents the set of (physical and practical) constraints
relative to the context in which we reason about our normative system(s). In
order to apply this idea in a sensible way, it should be assumed that C is consistent
and closed under conjunction. For instance, where A,B ∈ C, we need to assume
that A∧B is also a constraint – compare this to the fact that when A and B are
both physically necessary, then also A ∧B is physically necessary.

Although this seems in principle a reasonable assumption, it would be prefer-
able if we could simply start with a set of constraints, and let the system, i.e. the
translation in co-operation with the logic, close these under conjunction. This is
what we will do in the following.

In general, we define

ΓC =df {¬O¬(
∧

∆) | ∆ is a finite and non-empty subset of C}

However, where C is finite, we can simply let ΓC =df {¬O¬(
∧

C)} – it can
easily be verified that this simpler formulation is equivalent to the above trans-
lation.7 Finally, let

ΓO,C =df ΓO ∪ ΓC

Let us illustrate this translation function by the examples from Section 7.1.3.
These are translated as follows:

Case 1 : Γ1 = {O1S,O2P,O2M,¬O¬(¬S ∨ ¬P )}

Case 2 : Γ2 = {O1U,O2D,O3N,¬O¬((¬U ∨ ¬D) ∧ (¬N ∨ ¬D))}

Case 3 : Γ3 = {O1(B ∧ C ∧ (P ∨ T )), O2(¬C ∧ ¬P ), O3P}

7Recall that the O-operator of MPs behaves exactly like the O-operator of SDL. That the
simpler formulation is entailed by the official formulation, is immediate. For the other direction,
it suffices to see that `SDL ¬O¬(A ∧ B) ⊃ ¬O¬A.



7.2. THE LOGIC MPS 175

7.2.2 The Logic MPs

In order to allow for conflicting obligations, we will generalize Goble’s multi-
relational semantics for the system P – see e.g. [60]. The latter is itself a gener-
alization of the semantics of SDL: not one, but many accessibility relations are
in play. Goble defines a model in terms of a set of serial accessibility relations:
R = {R1, R2, . . .}. To handle prioritized sets of obligations, two basic changes to
Goble’s P-system will be made.

First of all, we use a set of sets of serial accessibility relations R = {R1,R2, . . .}.
Where i ∈ N, Ri refers to a set of prima facie obligations of priority level i, that
all have the same priority level i. This way, two prima facie obligations with the
same priority may still be conflicting. As may be expected, the Oi-operator is
linked to the set Ri.

The other change has to do with the additionalO-operator. Since we want this
operator to behave classically, it is stipulated that there is a single accessibility
relation R that corresponds to the accessibility relation of SDL. This implies
that the logic itself takes care of the logical constraints on the set of actual
obligations: for every self-contradictory formula A, ¬OA is an MPs-theorem.

An MPs-model M is a quintuple 〈W,R, R, v, w0〉, where W is a set of possible
worlds, R = {R1,R2, . . .} is a set of non-empty sets of serial accessibility relations
on W , R is a serial accessibility relation, v : S ×W → {0, 1} is an assignment
function and w0 ∈ W is the actual world.

The valuation vM defined by the model M is characterized by:

C1 where A ∈ S, vM (A,w) = v(A,w)
C2 vM (¬A,w) = 1 iff vM (A,w) = 0
C3 vM (A ∨B,w) = 1 iff vM (A,w) = 1 or vM (B,w) = 1
C4 vM (A ∧B,w) = 1 iff vM (A,w) = 1 and vM (B,w) = 1
C5 vM (A ⊃ B,w) = 1 iff vM (A,w) = 0 or vM (B,w) = 1
C6 vM (A ≡ B,w) = 1 iff vM (A,w) = vM (B,w)
C7 vM (OiA,w) = 1 iff, for an Rj ∈ Ri, vM (A,w′) = 1 for all w′ such that

Rjww
′

C8 vM (OA,w) = 1 iff vM (A,w′) = 1 for all w′ such that Rww′

An MPs-model M verifies A, M  A iff vM (A,w0) = 1. |=MPs
A iff all

MPs-models verify A. We say that M is an MPs-model of Γ, M  Γ iff M  A
for every A ∈ Γ. We use MMPs

(Γ) to refer to the set of MPs-models of Γ.
Finally, Γ |=MPs

A iff all MPs-models of Γ verify A.

A syntax for MPs is obtained as follows. We extend an axiomatization of
classical propositional logic (henceforth CL) with the following axioms (where
A,B ∈ Wc):

K O(A ⊃ B) ⊃ (OA ⊃ OB)
D OA ⊃ ¬O¬A

and close it under modus ponens (MP) and the following rules (whereA,B ∈ Wc):

RN if ` A, then ` OA
RMi where i ∈ N: if ` A ⊃ B, then ` OiA ⊃ OiB

Pi where i ∈ N: if ` A, then ` ¬Oi¬A
RNi where i ∈ N: if ` A, then ` OiA
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where ` indicates membership in the set of MPs-axioms. The two axioms (K)
and (D) together with the rules (MP) and (RN) deliver SDL for O. The rules
(RMi), (Pi) and (RNi) deliver Goble’s P for all operators Oi. Note that there
are no bridging rules that link the different ought-operators: OA does not imply
that OiA or vice versa; OiA does not imply that OjA for any j 6= i. Note also
that OiA 0MPs

¬Oi¬A and OiA,Oj¬A 0 OkB for any i, j, k ∈ N. In Section 7.4,
we will discuss even more general results with regards to the conflict-tolerance of
MPs.

We define Γ `MPs
A iff there are B1, . . . , Bn ∈ Γ such that `MPs

(B1 ∧
. . . ∧ Bn) ⊃ A. Note that this definition entails that the consequence relation is
compact. The proof of the following theorem is outlined in Section 7.2.3 below:

Theorem 7.1 Γ `MPs
A iff Γ |=MPs

A (Soundness and Completeness for
MPs)

7.2.3 Soundness and Completeness of MPs

Soundness is proven by the usual inductive procedure and is safely left to the
reader. To prepare for the completeness proof, a canonical model M∆

c =
〈Wc,R, R, vc,∆〉 is defined as follows:8

(i) Wc is the set of maximal consistent extensions of MPs;
(ii) R = {R1,R2, . . .}, where Ri = {RAi | A ∈ Wc} and RAi = {(w,w′) ∈

Wc ×Wc | OiA /∈ w or A ∈ w′};
(iii) R = {(w,w′) ∈Wc ×Wc | either OA /∈ w or A ∈ w′} for an A ∈ Wc;
(iv) for every w ∈Wc, p ∈ S: vc(p, w) = 1 iff p ∈ w;
(v) and ∆ is an arbitrary element of Wc.

Note that by the definition Ri is non-empty for each i. Moreover, each RAi ∈ Ri

is serial. Suppose that OiA /∈ w. Then RAi ww
′ for all w′ ∈ Wc. Suppose that

OiA ∈ w. Assume there is no w′ ∈ Wc such that A ∈ w′. Then, `MPs
¬A.

By (Pi), `MPs
¬OiA. Hence, OiA /∈ w, — a contradiction. Hence there is a

w′ ∈ Wc for which A ∈ w′. Thus, RAi ww
′. By the same argument R is serial.

Altogether this shows that M∆
c is an MPs-model.

Lemma 7.1 For all A ∈ WM and all w ∈Wc, vM∆
c

(A,w) = 1 iff A ∈ w.

Proof. This is shown by an induction on the complexity of A. The argument is
straightforward. We only show the induction step for A = OiB, the rest is left to
the reader. Suppose OiB ∈ w. Note that RBi ∈ Ri is defined in such a way that
if RBi ww

′ then B ∈ w′ and whence by the induction hypothesis vM∆
c

(B,w′) = 1.
Hence, vM∆

c
(OiB,w) = 1.

Suppose now that vM∆
c

(OiB,w) = 1. There is a RCi ∈ Ri such that if RCi ww
′

then vM∆
c

(B,w′) = 1. Assume that {C,¬B} is consistent. Then there is a
w′′ ∈ Wc for which C,¬B ∈ w′′. Hence B /∈ w′′. By the induction hypothesis
vM∆

c
(B,w′′) = 0. Thus, (w,w′′) /∈ RCi . Whence, OiC ∈ w and C /∈ w′′,—a

contradiction. Hence, `MPs
C ⊃ B and by (RMi), `MPs

OiC ⊃ OiB.

8This is very much inspired by the canonical model defined by Lou Goble in [60, p. 126].
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Suppose OiC ∈ w, then OiB ∈ w by (MP). Suppose (†) OiC /∈ w. Assume
{¬B} is consistent. Hence, there is a maximal consistent extension w′′′ of {¬B}.
Since by (†) RCi ww

′′′, also vM∆
c

(B,w′′′) = 1. Thus, by the induction hypothesis,
B ∈ w′′′,—a contradiction. Hence, `MPs

B. By (RNi), `MPs
OiB. Hence

OiB ∈ w.

Lemma 7.2 Every MPs-consistent set of sentences Γ is satisfiable in MPs.

Proof. By Lindenbaum’s Lemma there is a maximal consistent extension Γ′ of
Γ. By Lemma 7.1 and since Γ ⊆ Γ′, MΓ′

c  Γ.

Theorem 7.2 If Γ |=MPs
A then Γ `MPs

A.

Proof. Suppose Γ |=MPs
A. Hence, Γ ∪ {¬A} is not satisfiable in MPs. Hence

by Lemma 7.2, Γ ∪ {¬A} `MPs
A. As a result, Γ `MPs

A.

7.3 The Prioritized Adaptive Logic MPm
@

7.3.1 The Adaptive Approach

Recall that the central aim of this chapter is to capture how we can reason from
an ordered set O of prima facie obligations and a set C of constraints towards a
set of actual obligations. This can be realized by the dynamic proof theory of
MPm

@ , which is discussed in Section 7.3.2. As MPm
@ is defined in the format of

a lexicographic AL, and uses the strategy @-Minimal Abnormality, it suffices to
specify the sequence of sets of abnormalities, which we will do here.

In our current formal framework, to derive actual obligations from prima facie
obligations may be realized by the following rule (where i ∈ N):

(OiO) if OiA, then OA

Recall that this rule is not valid in MPs. Moreover, adding (OiO) to the ax-
ioms of MPs would result in plain triviality whenever our prima facie obligations
are jointly incompatible.

The adaptive logic we will present uses the language and inference rules of
MPs, but enhances it with the defeasible application of (OiO). As soon as such
a particular application turns out to be harmful, the logic ensures that it is
retracted. However, other applications of the same rule may still be allowed for
by the logic.

As explained in Chapter 1, the central motor behind adaptive logics is the
assumption that abnormalities are false “until and unless proven otherwise”. In
the current case, abnormalities express that something is a prima facie obligation
(of some priority level i), but not an actual obligation. Hence any formula of the
form OiA∧¬OA is an abnormality. Consider Γ1 = {O1S,O2P,O2M,¬O(S∧P )}.
The adaptive logic derives OM on the assumption that O2M ∧ ¬OM is false.
Note that Γ1 `MPs

OM ∨(O2M ∧¬OM). Hence, taking as our abnormalities all
formulas of the form OiA ∧ ¬OA, and prioritizing these abnormalities according
to the index i, we seem to get a logic that allows us to model defeasible inferences
on the basis of prioritized obligations.
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However, simply taking OiA ∧ ¬OA for any A ∈ Wc as the form of the
abnormalities leads to a flip-flop logic (see Section 2.4.2 in Chapter 2 for this
concept). In the current context, this means that we would obtain a logic that
considers every prima facie obligation as actual when there are no conflicts at all,
but that reduces to MPs as soon as a Dab-formula is derivable from the premise
set. For instance, from {O1p,O1q,¬O¬p}, we can derive the following minimal
disjunction of abnormalities:

(O1q ∧ ¬q) ∨ (O1(p ∨ ¬q) ∧ ¬O(p ∨ ¬q))

Hence in this very simple example, the prima facie obligation to do q would
become suspicious, even though the real problem lies with the prima facie obli-
gation to do p. This problem is overcome by using a slightly more complex form
of the abnormalities, borrowed from [110]. The idea behind this form of the ab-
normalities is this: let Θ be a finite and non-empty set of literals and let

∨

Θ be
the disjunction of the members of Θ (if Θ = {A},

∨

Θ = A). The obligation to
do

∨

Θ is said to behave abnormally, if for some i ∈ N, Oi
∨

Θ∧¬O
∨

Θ is true,
or if for some non-empty Θ′ ⊂ Θ, Oi

∨

Θ′ ∧ ¬O
∨

Θ′ is true.
This warrants that if some part of the disjunction

∨

Θ already behaves ab-
normally, then

∨

Θ automatically becomes suspicious as well. In the prototypical
example, we see that the prima facie obligation to do p∨¬q can no longer “infect”
the prima facie obligation to do q, since p behaves abnormally in itself.

7.3.2 Some Definitions

In this section, we will present the formal apparatus that characterizes the logic
MPm

@ . We start with some general preliminary tools and briefly explain the
MPm

@ -semantics. After that, we define the dynamic proof theory.

The General Framework. The logic MPm
@ is a lexicographic adaptive logic,

characterized by the triple 〈MP, 〈ΩMP
i 〉i∈N,m〉. In the remainder, we will briefly

specify the two first elements of this triple.9

MP is obtained from MPs by adding the checked connectives to Lo, and by
adding the usual classical axioms for these connectives to the set of MPs-axioms,
closing the whole under the rule MP+.10 In order to define the sequence of sets
of abnormalities, we need some technical preparations. Where Θ is a non-empty
and finite subset of W l

c, we will use the following abbreviation:

σi(Θ) =df

∨

{Oi
∨

Θ′ ∧ ¬O
∨

Θ′ | ∅ 6= Θ′ ⊆ Θ} (7.1)

To avoid notational clutter, we will skip the set brackets for concrete sets of
literals, e.g. we write σ(p,¬q) instead of σ({p,¬q}). To get better grip on the
form of the abnormalities and their abbreviation, consider the following examples:

9In view of Chapter 5, MPm
@ also has a Reliability-variant. We do not discuss this variant

here for reasons of space, and since we believe that the Minimal Abnormality Strategy gives
comparatively more intuitive results. For instance, if we have the obligation to save two twins
but the constraint that we cannot save them both, the Reliability-variant does not allow us to
derive the actual obligation to save at least one of them.

10Note that since MPs is supraclassical, MP is obtained from MPs in exactly the same way
as K was obtained from Ks – see Chapter 2, Section 2.4.
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σ2(p) = O2p ∧ ¬Op

σ2(¬q) = O2¬q ∧ ¬O¬q

σ3(¬p, q) = (O3¬p ∧ ¬O¬p) ∨ (O3q ∧ ¬Oq) ∨ (O3(¬p ∨ q) ∧ ¬O(¬p ∨ q))

σ1(p, q, r) = (O1p∧¬Op)∨(O1q∧¬Oq)∨(O1r∧¬Or)∨(O1(p∨q)∧¬O(p∨q))∨(O1(p∨
r)∧¬O(p ∨ r))∨ (O1(q ∨ r)∧¬O(q ∨ r))∨ (O1(p∨ q ∨ r)∧¬O(p ∨ q ∨ r))

Note that the number of disjuncts of an abnormality σi(Θ) grows exponen-
tially with the number of literals in Θ. Also, where Θ′ is a non-empty subset of
Θ, we have that `MP σi(Θ′) ⊃ σi(Θ).

Where i ∈ N, the ith set of abnormalities is defined as

ΩMP
i =df {σ

i(Θ) | ∅ 6= Θ ⊂ W l
c}

Note that ΩMP
i ∩ ΩMP

j = ∅ for every i, j ∈ N, i 6= j. We thus obtain the

sequence of abnormalities 〈ΩMP
i 〉i∈N. Let henceforth ΩMP =

⋃

i∈N
ΩMP
i , and

let Dab(∆) denote a disjunction of members of a finite ∆ ⊂ ΩMP. In the re-
mainder of this chapter, we skip the superscript MP in the names of the sets of
abnormalities, to avoid notational clutter.

Semantics. Let us illustrate the AL@-semantics once more, for the case of
MPm

@ . The set of MPm
@ -models of Γ is a subset of the set of MP-models of Γ.

As explained in Chapter 5, models are selected resp. deselected by the adaptive
logic in view of their abnormal part and the lexicographic order @. Consider
the following example:

∆ = {σ1(p), σ2(q,¬r), σ3(r), σ4(¬p, q)}
∆′ = {σ1(p), σ2(q,¬r), σ2(s), σ4(¬p, q)}
∆′′ = {σ1(p), σ2(q,¬r), σ2(s), σ3(r)}
∆′′′ = {σ1(¬q), σ2(q,¬r), σ2(s), σ3(r)}

According to Definition 5.1, ∆ @ ∆′ @ ∆′′. That is, ∆ beats ∆′ at level
2, and ∆′ beats ∆′′ at level 3. It follows immediately that ∆ @ ∆′′. However,
∆ 6@ ∆′′′, since the two are incomparable at level 1. All this becomes a lot more
clear as soon as we represent these sets of abnormalities Θ in columns, where
each separate column represents the intersection of Θ with an Ωi – see Table 7.1.

Ω Ω1 Ω2 Ω3 Ω4 . . .

〈∆ ∩ Ωi〉i∈N = {σ1(p)} {σ2(q,¬r)} {σ3(r)} {σ4(¬p, q)} . . .

〈∆′ ∩ Ωi〉i∈N = {σ1(p)} {σ2(q,¬r), σ2(s)} ∅ {σ4(¬p, q)} . . .

〈∆′′ ∩ Ωi〉i∈N = {σ1(p)} {σ2(q,¬r), σ2(s)} {σ3(r)} ∅ . . .

〈∆′′′ ∩ Ωi〉i∈N = {σ1(¬q)} {σ2(q,¬r), σ2(s)} {σ3(r)} ∅ . . .

Table 7.1: A representation of the sets ∆,∆′,∆′′ and ∆′′′ as tuples of sets of
abnormalities

In line with definition 5.2, the MPm
@ -models of Γ are those MP-models of Γ

whose abnormal part is @-minimal:
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Definition 7.1 M ∈ MMPm
@

(Γ) iff M ∈ MMP(Γ) and there is no M ′ ∈
MMP(Γ) such that Ab(M ′) @ Ab(M).

Definition 7.2 Γ |=MPm
@
A iff A is true in all M ∈ MMPm

@
(Γ).

Proof Theory. The MPm
@ -proof theory is defined according to the generic

definitions from Chapter 5 – see page 115. In the current section, we will hence
focus on the peculiarities of the proof theory of MPm

@ .
Recall that we wanted to allow for the defeasible application of the rule (OiO)

from Section 7.3.1. The third item of the following lemma shows how this rule
can be applied in an MPm

@ -proof, using the conditional rule RC:

Lemma 7.3 Each of the following holds:
1. Where Θ is a finite set of literals, Oi

∨

Θ `MP O
∨

Θ ∨̌σi(Θ).
2. Where A ∈ Wc and

∧

J

∨

Θj is a conjunctive normal form of A, OiA `MP

OA ∨̌
∨

J σ
i(Θj).

3. Where A ∈ Wc and OiA is derived on a line l of an MPm
@ -proof from Γ, we

can derive OA on a line l′ in an extension of this proof.

Proof. Ad 1. Suppose Oi
∨

Θ. Then by excluded middle, O
∨

Θ ∨̌(Oi
∨

Θ ∧
¬O

∨

Θ), and hence O
∨

Θ ∨̌σi(Θ).
Ad 2. Suppose OiA. By (RMi), for each j ∈ J , Oi

∨

Θj . By item (i),
O

∨

Θj ∨̌ σi(Θj) for each j ∈ J . Hence,
∧

J(O
∨

Θj) ∨̌
∨

J σ
i(Θj). Since ag-

gregation holds for O, O
∧

J

∨

Θj ∨̌
∨

J σ
i(Θj). Since inheritance holds for O,

OA ∨̌
∨

J σ
i(Θj).

Ad 3. Suppose OiA is derived on a line l of an MPm
@ -proof from Γ. Let the

condition of line l be ∆. By the conditional rule (RC) and item (ii), we can derive
OA on a line l′ in an extension of the proof, on the condition ∆ ∪ {

∨

J σ
i(Θj)},

where
∧

J

∨

Θj is a conjunctive normal form of A.

The MPm
@ -proof theory reflects a dynamic aspect of our reasoning about

conflicting obligations: we may take some obligation as an actual obligation at
some point, but only later on learn that this leads to a conflict on the level of the
actual obligations. This may be due to the additional information, but it may
also be the result of our reasoning about the same set of obligations. At that
point, we have to retract some of our earlier conclusions. In Section 7.5, we will
clarify this mechanism, using the canonical examples from Section 7.1.

7.3.3 Some Metatheoretic Properties

For the ease of reference, we restate some of the generic results for lexicographic
ALs for to the logic MPm

@ – we refer to Chapter 5 for more details.

Theorem 7.3 Each of the following holds:

1. Where Γ ⊆ Wo: Γ `MPm
@
A iff Γ |=MPm

@
A (Restricted Soundness and

Completeness)
2. If Γ `MPm

@
A, then Γ |=MPm

@
A (Soundness)
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Theorem 7.4 If M ∈ MMP(Γ)−MMPm
@

(Γ), then there is an M ′ ∈ MMPm
@

(Γ)
such that Ab(M ′) @ Ab(M).

Corollary 7.1 If Γ has MP-models, then Γ has MPm
@ -models. (Reassurance)

Theorem 7.5 Where Γ ⊆ Wo: CnMPm
@

(Γ) = CnMPm
@

(CnMPm
@

(Γ)). (Fixed
Point)

Theorem 7.6 Γ ⊆ CnMPm
@

(Γ). (Reflexivity)

Theorem 7.7 CnMP(Γ) ⊆ CnMPm
@

(Γ). (MPm
@ strengthens MP)

Note that no premise set of the form ΓO,C contains checked connectives,
whence the MPm

@ -consequence relation is sound and complete and idempotent
for all such premise sets.

7.4 Some Specific Properties of MPm
@

7.4.1 The Properties

In this section, we present some properties that are more specific to the logic
MPm

@ and its application to premise sets of the form ΓO,C . The first theorem and
corollary below indicate to what extent MP and MPm

@ are conflict-tolerant. The
other theorem and the subsequent corollaries express a lower bound on the set of
actual obligations that are MPm

@ -derivable from any set ΓO,C . We refer to Section
7.4.2 for the proofs of Theorems 7.8 and 7.9. Recall that where O = 〈O1,O2, . . .〉,
O =df

⋃

i∈N
O.

Theorem 7.8 ΓO,C has MP-models iff (every A ∈ O is CL-satisfiable and C is
CL-satisfiable).

So ΓO,C may contain any conflict, as long as the set of constraints is internally
consistent and there are no prima facie obligations that are contradictory in
themselves. A nice property of deontic adaptive logics in general is that they
are just as conflict-tolerant as their lower limit logic. For MPm

@ , this follows
immediately from the property of Reassurance (see Corollary 7.1). Hence we
obtain:

Corollary 7.2 If every A ∈ O is CL-satisfiable and C is CL-satisfiable, then
ΓO,C has MPm

@ -models.

Note that since the O-operator from MPm
@ behaves according to the O-

operator from SDL, it follows that whenever ΓO,C is MP-satisfiable, then there
is a B ∈ Wc such that ΓO,C 0MPm

@
OB. Hence the logic MPm

@ also avoids deontic
explosion, as long as the antecedent of Corollary 7.2 holds.

To spell out a lower bound on the set of actual obligations that are MPm
@ -

derivable from a set ΓO,C , we first introduce two more concepts:11

11Our notion of “conflict-freeness” is equivalent to the notion of “coherence” used in [71,
p. 7], if we restrict the latter to unconditional obligations.
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Definition 7.3 We call ΓO,C

• conflict-free up to level n iff the set {A ∈ Oi | i ≤ n} ∪ C is CL-satisfiable.

• conflict-free iff O ∪ C is CL-satisfiable.

Note that ΓO,C is conflict-free whenever the prima facie obligations are not
in conflict with the set of constraints – see Section 7.1.3 where we explained our
notion of a deontic conflict relative to a set of constraints.

Theorem 7.9 If ΓO,C is conflict-free up to level n, then the following holds for
all i ≤ n: if ΓO,C `MPm

@
OiA, then ΓO,C `MPm

@
OA.

The following properties can easily be obtained from Theorem 7.9 and pre-
viously mentioned results. Corollary 7.3(i) follows from Theorem 7.9 in view of
Theorem 7.7, Corollary 7.3(ii) follows from Theorem 7.9 in view of Theorem 7.6.
Corollary 7.4 follows from Theorem 7.9 and Corollary 7.3 in view of Definition
7.3.

Corollary 7.3 If ΓO,C is conflict-free up to level n, then each of the following
holds for all i ≤ n:

(i) if ΓO,C `MP OiA, then ΓO,C `MPm
@
OA

(ii) if OiA ∈ ΓO,C, then ΓO,C `MPm
@
OA

Corollary 7.4 If ΓO,C is conflict-free, then each of the following holds for all
i ∈ N:
(i) if ΓO,C `MPm

@
OiA, then ΓO,C `MPm

@
OA

(ii) if ΓO,C `MP OiA, then ΓO,C `MPm
@
OA

(iii) if OiA ∈ ΓO,C, then ΓO,C `MPm
@
OA

Corollary 7.4 implies that if there is no conflict between any of the prima facie
obligations in view of the constraints, then all prima facie obligations and their
CL-consequences will be considered as actual obligations (irrespective of their
priority). Note that Theorem 7.9 only serves as a lower bound on CnMPm

@
(Γ);

as we will see in the next section, MPm
@ is actually a lot stronger than this lower

bound.

7.4.2 Proof of Theorems 7.8 and 7.9

We prove the left-right direction and the right-left direction of Theorem 7.8 as
two separate lemmas.

Lemma 7.4 If ΓO,C has MP-models, then every A ∈ O is CL-satisfiable and C
is CL-satisfiable.

Proof. Assume that for some A ∈ O, A is not CL-satisfiable. Let M =
〈W,R, R, v, w0〉 be an MP-model of ΓO,C — we derive a contradiction. Note
that OiA ∈ ΓO,C , whence there is a Rj ∈ Ri such that, for all w ∈ W such that
Rjw0w, vM (A,w) = 1. However, since A is not CL-satisfiable, vM (A,w′) = 0
for all w′ ∈W . Since Rj is serial, we can derive a contradiction.
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Assume that C is not CL-satisfiable. Hence by the compactness of CL, there
are A1, . . . , An ∈ C such that A1 ∧ . . . ∧ An is not CL-satisfiable. Let B =
A1 ∧ . . . ∧ An, and let M = 〈W,R, R, v, w0〉 be an MP-model of ΓO,C — we
derive a contradiction. Note that ¬O¬B ∈ ΓO,C , whence there is a w ∈ W such
that Rw0w and vM (B,w) = 1. However, for every w′ ∈ W , vM (B,w′) = 0 since
B is not CL-satisfiable.

Lemma 7.5 If every A ∈ O is CL-satisfiable and C is CL-satisfiable, then ΓO,C

has MP-models.

Proof. Suppose (1) every A ∈ O is CL-satisfiable and (2) C is CL-satisfiable.
Let M = 〈W,R, R, v, w0〉 be defined as follows:

(i) W = {wA | A ∈ O}∪{wC , w0}. For each A ∈ O, wA is a maximal consistent
set in L that contains A – by (1), there is such a wA for every A ∈ O. wC , w0

are maximal consistent sets such that C ⊆ wC , w0 – by (2), there are such
wC , w0.

(ii) Ri = {RA | A ∈ Oi}, where RA = {(w0, wA), (wA, wA)}.
(iii) R = {(w0, wC), (wC , wC)}.
(iv) For every w ∈W, p ∈ S: v(p, w) = 1 iff p ∈ w.

It is easy to see that M is a model of ΓO,C . Let OiA ∈ ΓO,C . Then A ∈ Oi. We
have M  OiA iff vM (OiA,w0) = 1 iff for some Ri ∈ Ri, vM (A,w′) = 1 for all
w′ ∈W for which Riw0w

′. Note that RA = {(w0, wA), (wA, wA)} ∈ Ri and that
by the construction and the induction hypothesis vM (A,wA) = 1.

Let ¬O¬A ∈ ΓO,C . Hence A = B1 ∧ . . . ∧ Bn, for B1, . . . , Bn ∈ C. We have
M  ¬O¬A iff vM (O¬A,w0) = 0 iff (there is a w′ ∈ W for which Rw0w

′ and
vM (¬A,w′) = 0) iff vM (¬A,wC) = 0 iff vM (A,wC) = 1 iff vM (B1∧. . .∧Bn, wC) =
1 iff vM (B1, wC) = 1 and . . . and vM (Bn, wC) = 1. The latter holds by the
construction.

For the proof of Theorem 7.9, we first prove three lemmas:

Lemma 7.6 If ΓO,C is MP-satisfiable and conflict-free up to level n, then there
is an MP-model M ′ of ΓO,C such that Ab(M ′) ∩ (Ω1 ∪ . . . ∪ Ωn) = ∅.

Proof. Suppose ΓO,C is MP-satisfiable and conflict-free up to level n. By
Lemma 7.4, every A ∈ O is CL-satisfiable and C is CL-satisfiable. Let M
be the model of ΓO,C constructed in the proof of Lemma 7.5. We construct
M ′ = 〈W ′,R′, R′, v′, w0〉 from M in the following way:

(i) W ′ = {wA | A ∈ Oi where i > n} ∪ {w′
C , w0}. w′

C is a maximal consistent
extension (with respect to CL) of C∪O1∪. . .∪On – since ΓO,C is conflict-free
up to level n, there is such a w′

C .
(ii) R′ = {(w0, w

′
C), (w′

C , w
′
C)}.

(iii) R′ = {Ri | i > n} ∪ {R′
i | i ≤ n} where R′

i = {R′} for each i ≤ n.
(iv) For every w ∈W ′, p ∈ S: v′(p, w) = 1 iff p ∈ w.

By the construction, we can show that (1) M ′ is an MP-model of ΓO,C , and (2)
M ′  OiA iff M ′  OA for all i ≤ n. The proof of (1) is analogous to the one
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above. Let OiA ∈ ΓO,C . Then A ∈ Oi. We have M  OiA iff vM (OiA,w0) = 1
iff for some Ri ∈ Ri, vM (A,w′) = 1 for all w′ ∈ W for which Riw0w

′.
Suppose first that i > n. Note that RA = {(w0, wA), (wA, wA)} ∈ Ri and

that by the construction vM (A,wA) = 1. Suppose now that i ≤ n. Note that
R′ = {(w0, w

′
C), (w′

C , w
′
C)} ∈ Ri and that by the construction vM (A,w′

C) = 1.
Let ¬O¬A ∈ ΓO,C . Then A = B1 ∧ . . . ∧ Bn, for B1, . . . , Bn ∈ C. We have

M  ¬O¬A iff vM (O¬A,w0) = 0 iff (there is a w′ ∈ W for which Rw0w
′ and

vM (¬A,w′) = 0) iff vM (¬A,w′
C) = 0 iff vM (A,w′

C) = 1 iff vM (B1∧. . .∧Bn, w′
C) =

1 iff vM (B1, w
′
C) = 1 and . . . and vM (Bn, w

′
C) = 1. The latter holds by the

construction.
Ad (2): By the construction, M  OA iff vM (OA,w0) = 1 iff vM (A,w′

C) = 1
iff vM (OiA,w0) = 1 for all i ≤ n. The latter holds since Ri = {R′} for all i ≤ n.

Lemma 7.7 If ΓO,C is MP-satisfiable and conflict-free up to level n, then for
every MPm

@ -model M of ΓO,C: Ab(M) ∩ (Ω1 ∪ . . . ∪ Ωn) = ∅.

Proof. Suppose ΓO,C is MP-satisfiable and conflict-free up to level n. Let M ∈
MMP(ΓO,C) be such that Ab(M) ∩ (Ω1 ∪ . . . ∪ Ωn) 6= ∅. Let M ′ be the model
constructed in Lemma 7.6. Then in view of Definition 5.1, Ab(M ′) @ Ab(M),
whence M 6∈ MMP(ΓO,C).

Lemma 7.8 If ΓO,C `MPm
@
OiA, then ΓO,C `MPm

@
OA ∨̌Dab(∆) for a ∆ ⊂ Ωi.

Proof. Let Γ = ΓO,C . Suppose Γ `MPm
@
OiA. By the reflexivity of MP,

CnMPm
@

(Γ) `MP OiA. Let
∧

J

∨

Θj be a conjunctive normal form of A. By

Lemma 7.3.2, CnMPm
@

(Γ) `MP OA ∨̌
∨

J σ
i(Θj) and by Theorem 7.7,

CnMPm
@

(Γ) `MPm
@
OA ∨̌

∨

J σ
i(Θj). By Theorem 7.5, Γ `MPm

@
OA ∨̌

∨

J σ
i(Θj).

Since {σi(Θj) | j ∈ J} ⊂ Ωi, the lemma follows immediately.

Proof of Theorem 7.9. The last two lemmas make the proof of Theorem 7.9
rather short. Suppose ΓO,C is conflict-free up to level n and ΓO,C `MPm

@
OiA,

where i ≤ n. Then by Lemma 7.8, ΓO,C `MPm
@
OA ∨̌Dab(∆) for a ∆ ⊂ Ωi. By

the soundness of MPm
@ (Theorem 7.3), for every MPm

@ -model M of ΓO,C : (†)
M  OA ∨̌Dab(∆). There are two cases to consider:

Case 1. ΓO,C is not MP-satisfiable. Then it immediately follows that ΓO,C is
MPm

@ -trivial, whence ΓO,C `MPm
@
OA for all A ∈ Wc.

Case 2. ΓO,C is MP-satisfiable. Then for every M ′ ∈ MMPm
@

(Γ), M ′ 

¬Dab(∆) in view of Lemma 7.7. Hence M  ¬Dab(∆), which implies by (†):
M  OA. By the completeness of MPm

@ (Theorem 7.3), ΓO,C `MPm
@
OA.

7.5 The Examples Reconsidered

7.5.1 Illustration of the Proof Theory

We will use the first example to illustrate the proof theory of MPm
@ . Recall

that Γ1 = {O1S,O2P,O2M,¬O¬(¬S ∨ ¬P )}. Since replacement of equiva-
lents holds within the scope of the O-operator, this premise set is equivalent



7.5. THE EXAMPLES RECONSIDERED 185

to Γ′
1 = {O1S,O2M,O2P,¬O(S ∧ P )} — we will use the latter set for the sake

of simplicity. We start an MPm
@ -proof from Γ′

1 with the use of the rule PREM:

1 O1S PREM ∅
2 O2M PREM ∅
3 O2P PREM ∅
4 ¬O(S ∧ P ) PREM ∅

At this stage, there is no marking at all: since no Dab-formulas have been
derived, Φ@

4 (Γ′
1) = {∅}. Mary may infer from this that M is an actual obliga-

tion, on the conditional assumption that O2M ∧ ¬OM is false. Hence the proof
continues like this:12

5 OM ∨ σ2(M) 2; RU ∅
6 OM 5; RC {σ2(M)}

The crucial move is made between stage 5 and 6: we can see that by the
application of the conditional rule RC, the abnormality O2M ∧ ¬OM is pushed
to the condition. Below, we will skip the intermediary step represented at line 5
– note that this is perfectly in line with the definition of the conditional rule RC.
Since Φ@

6 (Γ′
1) = {∅}, line 6 is unmarked at this stage, which indicates that, at

this stage, OM is considered to follow from the premise set. To illustrate once
more why the definition of final MPm

@ -derivability refers to extensions of a proof,
consider the following continuation of the proof (we restate line 6):

6 OM 5; RC {σ2(M)}X8

7 ¬O(S ∧ P ∧M) 4; RU ∅
8 σ1(S) ∨ σ2(P ) ∨ σ2(M) 1,2,3,7; RU ∅

At stage 8 of the proof, the second element of line 8 is the only Dab-formula in
the proof, hence it is a minimal Dab-formula. According to the definitions from
Section 7.3.2, Σ8(Γ′

1) = {{O1S∧¬OS,O2P∧¬OP,O2M∧¬OM}}. There are two
@-minimal choice sets of Σ8(Γ′

1): Φ@
8 (Γ′

1) = {{O2P ∧ ¬OP}, {O2M ∧ ¬OM}}.
This implies that line 6 is marked at stage 8, which is indicated by the X

8-sign.
However, we can extend the proof such that line 6 becomes unmarked at a

later stage:

6 OM 5; RC {O2M ∧ ¬OM}
7 ¬O(S ∧ P ∧M) 4; RU ∅
8 σ1(S) ∨ σ2(P ) ∨ σ2(M) 1,2,3,7; RU ∅
9 σ1(S) ∨ σ2(P ) 1,3,4; RU ∅

As a result, the formula on line 8 is not a minimal Dab-formula anymore. We
get that Φ@

9 (Γ′
1) = {{O2P ∧ ¬OP}}. In this particular case, line 6 will remain

unmarked in every extension of the proof. Along the same lines, we can extend
the proof to finally derive OS:

10 OS 1; RC {σ1(S)}

The formula at line 9 does not block this derivation, since σ1(S) is freed from
suspicion, so to speak, by the abnormality σ2(P ) – note that {σ2(P )} @ {σ1(S)}.

12Recall that according to the notational conventions from Section 7.3.2, σ2(M) abbreviates
O2M ∧ ¬OM .



186 CHAPTER 7. PRIORITIZED NORMATIVE REASONING

7.5.2 Mediocrity Does Not Rule

Consider the following MPm
@ -proof from Γ2 = {O1U,O2D,O3N,¬O¬((¬U ∨

¬D) ∧ (¬N ∨ ¬D))}:

1 O1U PREM ∅
2 O2D PREM ∅
3 O3N PREM ∅
4 ¬O¬((¬U ∨ ¬D) ∧ (¬N ∨ ¬D)) PREM ∅
5 OU 1; RC {σ1(U)}
6 OD 2; RC {σ2(D)} X

9

7 ON 3; RC {σ3(N)}
8 σ1(U) ∨ σ2(D) 1,2,4; RU ∅
9 σ2(D) ∨ σ3(N) 2,3,4; RU ∅

Note that Σ9(Γ′
2) = {{σ1(U), σ2(D)}, {σ2(D), σ3(N)}}, and hence Φ@

9 (Γ′
2) =

{{σ2(D)}} — the set ϕ = {σ1(U), σ3(N)} is not a @-minimal choice set of
Σ9(Γ′

2), since {σ2(D)} @ {σ1(U), σ3(N)}. As a result, only line 6 is marked.
Line 5 will remain unmarked in every extension of this proof, whence OU is
finally derivable: Michael has the obligation to visit his sick uncle. Since this
removes the obligation to visit his daughter, we can also derive that Michael has
to pass by his nephew (at line 7) – note that both U and N can be fulfilled,
and all that kept Michael from visiting his nephew was the (now overridden)
obligation to visit his daughter.

This example is instructive in that it shows a clear difference between MPm
@

and the criterion of “Least Exposure” from Alchourrón and Makinson [2]. Ac-
cording to this criterion, an obligation A is preferred if and only if it is an element
of a maximal consistent subset Θ of the prima facie obligations, and every other
maximal consistent subset ∆ that does not contain A is more exposed. In our
terminology, that ∆ is more exposed than Θ means that ∆ contains obligations
with a higher priority index than any of the obligations in Θ.

Now consider the example. There are two maximal consistent subsets: {U,N}
and {D}. Since the latter is less exposed than the former, the criterion proposed
by Alchourrón and Makinson yields D as a preferred obligation: Michael ought
to visit his daughter, which also means that he cannot visit his uncle and his
nephew. Hansen refers to this as the “Mediocrity Rules”-problem in his [68], and
sees it as a severe drawback of the criterion of Least Exposure. This problem
is avoided by MPm

@ : an obligation can only be suspended if it is involved in a
deontic conflict, with obligations of the same or a higher priority level.

7.5.3 Analyzing Conflicts

Consider Case 3, and its translation into Γ3 = {O1(B ∧ C ∧ (P ∨ T )), O2(¬C ∧
¬P ), O3P}. As show in Figure 7.1, there is a conflict between the first and second
obligation, and between the second and third one. However, a specific property of
the logic MPm

@ is that it reduces such conflicts to conflicts between disjunctions
of literals. As we will argue in this section, this makes MPm

@ more appropriate
to deal with complex obligations than various other approaches in the literature.
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Let us first explain what is going on for this particular example. Note that
Γ3 `MP O1B,O1C,O1(P ∨ T ), O2¬C,O2¬P . This has several important conse-
quences. First of all, since the obligation to buy bread has the highest priority
and does not contradict any of the other prima facie obligations, this becomes
an actual obligation. The following proof shows how we can finally derive OB
from Γ3:

1 O1(B ∧ C ∧ (P ∨ T )) PREM ∅
2 O2(¬C ∧ ¬P ) PREM ∅
3 O3P PREM ∅
4 O1B 1;RU ∅
5 OB 4;RC {σ1B}

The second consequence requires a little more explanation. Consider only
the obligations of rank 1 and 2. For these, the real problem – so MP tells us –
lies with C: Tom should buy cheese, but this runs against his vegan convictions.
Since his mother’s command takes priority, he will have to violate his principles
for this particular item on the shopping list. However, the obligation to buy
either pork or tofu can be fulfilled without any problem: Tom just has to buy
tofu instead of pork. All this is illustrated by the following continuation of the
proof:13

6 O1C 1; RU ∅
7 O1(P ∨ T ) 1;RU ∅
8 O2¬C 2;RU ∅
9 O2¬P 2;RU ∅
10 OC 6;RC {σ1(C)}
11 O¬C 8;RC {σ2(¬C)} X

12

12 σ1(C) ∨̌ σ2(¬C) 6,8;RD ∅
13 O(P ∨ T ) 7;RC {σ1(P, T )}
14 O¬P 9;RC {σ2(¬P )}
15 OT 13,14;RU {σ1(P, T ), σ2(¬P )}

Note that Φ@
12(Γ3) = . . . = Φ@

15(Γ3) = {{σ2(¬C)}} in view of the Dab-formula
on line 12. So we have derived that Tom should buy bread, cheese and tofu. What
then about his little sister? In the current case, she will clearly not get what she
want. The following continuation of the proof shows how the derivation of OP
from O3P is blocked:

16 O3P PREM ∅
17 OP 16;RC {σ3(P )} X

18

18 σ2(¬P ) ∨̌ σ3(P ) 9,16;RU ∅

Note that Σ18(Γ3) = {{σ1(C), σ2(¬C)}, {σ2(¬P ), σ3(P )}}. Hence Φ@
18(Γ3) =

{{σ2(¬C), σ3(P )}}, which implies that at stage 18, line 17 is marked. It can
easily be verified that the marking of lines 1-18 remain stable in every extension
of the above proof. Hence OB, OC and OT are finally derived in the proof.

13As explained in Section 7.3.2, σ2(P, T ) abbreviates (O2(P ∨ T ) ∧ ¬O(P ∨ T )) ∨ (O2P ∧
¬OP ) ∨ (O2T ∧ ¬OT ).
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In general, MPm
@ has the ability to analyze prima facie obligations, and

thereby to save as much from a prima facie obligation as possible in case it
is involved in a conflict. This is due to the fact that (i) MP validates modal
inheritance (RMi) and (ii) MPm

@ is a strengthening of MP (see Theorem 7.7).
MPm

@ has this ability in common with the logics P2.2r and P2.2m from [110].
Most of the existing criteria in the literature on prioritized information (be-

liefs, obligations, default rules) rely on (a selection among) the maximal consis-
tent subsets from a (possibly inconsistent) base, and therefore depend quite heav-
ily on the way this base is formulated. Examples are again Alchourrón and Makin-
son’s Least Exposure, but also Brewka’s preferred remainders, Nebel’s prioritized
removals, Prakken’s criterion for hierarchic rebuttal and Sartor’s “prevailing” re-
lation.14 More recently, the same basic idea was applied in Input/Output-logic
by Boella and Van Der Torre, see [39]. Notwithstanding all the subtle differences
between these systems, they have one thing in common: if an obligation (belief,
default rule) is stated as a conjunction (such as e.g. O2(¬C ∧ ¬P )), and one of
the conjuncts is involved in a conflict, this renders the whole obligation useless.

Consider Tom’s prima facie obligations in their initial formulation: O3 =
{B∧C ∧ (P ∨T ),¬C ∧¬P, P}. The following are the maximal consistent subsets
of O3:

∆a
3 = {B ∧ C ∧ (P ∨ T ), P}

∆b
3 = {¬C ∧ ¬P}

Note that ∆a
3 ∩ ∆b

3 = ∅. Hence, if we consider only those obligations as actual
that are in both ∆a

3 and ∆b
3, Tom can buy whatever he likes. If we consider

∆a
3 as the “best” maximal consistent subset of O3, then Tom should buy both

cheese and pork, and hence totally abandon his vegan principles. Finally, if we
consider ∆b

3 as the “best” maximal consistent subset of O3, then Tom is obliged to
violate his mother’s order to buy bread and cheese. It can easily be verified that
if we replace the sets ∆a

3 and ∆b
3 by CnCL(∆a

3) and CnCL(∆b
3), the problems

remain. Put differently, approaches that are based on a selection of maximal
consistent subsets of O – possibly closing the selected sets by under CL – yield
counterintuitive results in this specific case.

The fact that MPm
@ analyzes conflicts by analyzing the prima facie obligations

that cause them, makes this logic very suitable to deal with complex prima facie
obligations. That is, the logic does not rely on the assumption that, before the
reasoning process takes place, we first analyze all our obligations into very specific
obligations – it is the logic itself that does this work. In Chapter 9, several logics
for belief revision are presented which share this feature with MPm

@ .

7.6 Conclusion

Let us briefly summarize the main results of this chapter. We have developed
a logic MPm

@ that deals with unconditional prioritized obligations and has a
dynamic proof theory. We have described its main features and established a
number of intuitive properties of it. Finally, concrete examples were presented,

14See [68] for an overview of these consequence relations.
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which illustrate the proof theory and highlight some differences with other ap-
proaches in the literature.

We promised to say a bit more about the restrictions we made in the intro-
duction. Removing one or more of these is a task for future research. First of
all, as already pointed out in Chapter 1, it would be interesting to see if we can
develop systems that give up the restriction that the order on the set of obliga-
tions has to be modular. To do so would imply that we cross the safe boundaries
of the existing generic formats for adaptive logics. This work will hence require
thorough investigations on the metatheoretical level.

We also restricted ourselves to a monadic framework. The extension to a
dyadic deontic logic might lead to some problems, e.g. should obligations with
more specific conditions receive a higher priority rank, or should contrary-to-duty
obligations overrule conflicting unconditional obligations whenever the former
are canceled? We refer to [138, 139, 70] for discussions of the various problems
and paradoxes relating to conditional obligations. An extension of MPm

@ to the
dyadic case should be able to cope with these issues to some extent.





Chapter 8

Two Logics for the
Abduction of
Generalizations

This chapter is based on two joint papers with Tjerk Gauderis: “Abduction of
Generalizations” (forthcoming in Theoria), and “Adaptive Logics for the Ab-
duction of Generalizations” (in preparation). We thank Dagmar Provijn, Bert
Leuridan, Erik Weber, Joke Meheus and two anonymous referees for their many
helpful comments on the first of these two papers. I also thank Joke Meheus for
her critical remarks on a previous draft of this chapter.

8.1 Introduction

Abduction is generally defined as “the process of forming an explanatory hy-
pothesis” [118, p. 216]. In this chapter we will focus on a specific “pattern of
abduction” (to use a phrase introduced by Schurz [131]), which we call abduction
of generalizations (henceforth AG). The following are prototypical examples of
AG:1

All chocolate tastes sweet.
Everything that contains sugar, tastes sweet.
All chocolate contains sugar.

All iron objects in this garage are corroded.
Whenever an iron object has been wet, it is corroded.
All iron objects in this garage have been wet.

Schurz called this type of inference “law-abduction”. The name “rule abduc-
tion” has also been used for a similar pattern [145]. But, as “law” and “rule”

1The first example is a variant of Schurz’ pineapple example [131]. In the second example,
we use “‘has been wet” as a shortcut for more accurate descriptions of what causes the corrosion
of an iron object, such as “has been left in a sufficiently humid environment for a sufficiently
long period”.
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are heavily debated concepts in philosophy of science and philosophy in general,
we will stick to the more neutral term generalizations. More examples and a
general characterization of AG will be presented in Section 8.2. It will be argued
that this pattern is ubiquitous in both everyday and scientific reasoning, and is
commonly recognized as a useful – be it fallible – means to form hypotheses.

Notwithstanding the importance of AG, little effort has been made so far to
study its characteristics, and to explicate it by means of a formal logic. As will
be explained in Section 8.2.2, most scholars in AI and formal logic have focused
on singular fact abduction, whereas philosophers of science have taken a more
general, but informal point of view on abduction. It is our aim to treat AG as a
distinct subject matter, and to see how one may understand and formalize it.

Outline of this Chapter A first analysis of AG is provided in Section 8.2. We
describe this pattern informally, showing that it is a widespread inference pattern;
secondly, we explain why it has been neglected in formal logic and philosophy of
science; finally, we argue for the specific importance of AG in scientific contexts.

In Section 8.3, we turn our focus to problems that emerge when representing
AG formally. We argue that a distinction in the object language is needed be-
tween what we call mere generalizations and the explanatory framework, for any
logic that models AG. In addition, we show that this distinction is useful in any
logic for abduction. We then present the lower limit logic T, which allows us to
express this distinction in a very simple way.

In Section 8.4, we will illustrate the idea of adaptive logics for abduction by
means of a simple example, viz. the logic LAr

�
for singular fact abduction. This

logic is interesting for two reasons. Firstly, it allows us to show certain pitfalls
for logics for abduction, and how the adaptive logics in this paper will evade
these. Secondly, the set of abnormalities of LAr

�
will play an important role in

the definition of SILAr, which we present in Section 8.7.

Before we discuss the logics for AG, we will present five variations on the
above chocolate example (Section 8.5). These prototypical examples and their
formal translation allow us to highlight important features of the logics in a very
simple way.

In the two subsequent sections, we will present the logics LAr
∀ and SILAr.2

Both logics are based on a specific idea of how best to think of AG. The first
one takes AG as a primitive inference pattern, and can be seen as the most
straightforward of the two. The second logic provides a reconstruction of AG by a
combination of inductive generalization and singular fact abduction, elaborating
on an idea from [52] and [145]. As the reader will note, we will devote considerable
space to the behavior of these systems for concrete examples, in order to argue
for specific choices in the definition of the logics. In Section 8.8, we explain an
important difference between LAr

∀ and SILAr. We present a summary of our
results and prospects for further research in Section 8.1.

2As the superscripts of the logics indicate, we will restrict the focus to adaptive logics that
use the Reliability Strategy. This simplifies the discussion of specific examples. We briefly
consider the Minimal Abnormality-variants of these logics in the concluding section.
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Preliminaries. In the remainder, let Lf be the standard language of classical
first order predicate logic (henceforth denoted by CL), obtained from the set of
propositional letters S = {p, q, r, . . .}, a set of constants C = {a, b, c, . . .}, a set of
variables V = {x, y, z, . . .}, a set of predicates P = {P,Q,R, . . .}, the connectives
¬,∨,∧,⊃,≡ and the quantifiers ∀ and ∃.3 Wf is the set of closed formulas in
Lf . An axiomatization of the first order fragment of CL without identity can be
found in Appendix B.

We will use A,B,C, . . . as metavariables for members of Wf and α, β as
metavariables for individual constants. Let F◦ denote the set of purely functional
formulas, i.e. formulas that do not contain individual constants, quantifiers, or
sentential letters. For example, Px ∧ (Qxy ∨Rx) is a purely functional formula,
whereas Pa ∨Qxy and Px ∧ ∃yQxy are not. Where A ∈ F◦, let ∀A abbreviate
the universal quantification over every variable that is free in A. Finally, where
A,B ∈ F◦, we use A‖B to denote the fact that A and B share no predicates.

8.2 Abduction of Generalizations

8.2.1 The phenomenon

Let us define abduction of generalizations informally, as every inference that fits
the following pattern:

(P1) “All A are B”
(P2) “Being C explains being B”
(H) “Therefore, all A are C”

In Section 8.3, we will explain how this definition can be operationalized in a first-
order modal language. But first, let us point out some general characteristics of
AG.

First of all, according to standard terminology, the first of the two premises
in the above schema plays the role of the explanandum (that which is to be
explained) in AG, whereas (H) is the explanatory hypothesis. The second premise
has a somewhat special status – we will discuss it in Section 8.3.1.

In the remainder, we will restrict ourselves to the Peircean or classical notion
of abduction, which is defined in a deterministic way: the truth of the explanatory
hypothesis implies the explanandum.4 For the above schema, this means that (H)
should imply (P1). This is the case whenever C-hood implies B-hood, or in other
words, when “all C are B”. In the remainder, we will start from the assumption
that (P2) implies (but is stronger than) “all C are B” – this will be further
explained in Section 8.3.1.

It should be noted that the status of the explanandum is slightly different
from its status in the classical notion of abduction, as defined e.g. by Peirce.

3Although we will only use unary predicates in concrete examples in this chapter, we do
not exclude predicates of a rank n ≥ 2. Also, for our present purposes, we need not include an
identity symbol in the language schema.

4We do not suggest that this notion of abduction cannot be meaningfully extended to other
accounts in which the motivation to adopt the abductive hypothesis is, for instance, probabilistic
or comparative. However, we restrict ourselves in this chapter, as most of the literature on
abduction does, to the classical case.
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According to Peirce, the explanandum is a (surprising) fact, which is supposed
to be observed – see [119, 5.189]. In the current definition, the explanandum
is a generalization, which implies that it cannot be observed as such. It may
e.g. be that this information was provided to us by an expert, or that we have
learned that “all A are B” by means of an inductive generalization on the basis
of a large number of observations. However, what is crucial and common in
both the classical account of abduction, and our definition of AG, is that the
explanandum is something that is itself beyond doubt in the context in which
we perform the abduction. In Section 8.8, we will consider the option that the
induction is performed in the same context as AG.

Secondly, AG is distinct from what is called singular fact abduction, in which
both the explanandum and the explanatory hypothesis are singular facts. Exist-
ing models for abduction usually limit themselves to singular fact abduction, as
we will see in the next section.

Thirdly, AG is not a novel reasoning pattern. It has been known at least
since Aristotle who treats something similar in his Posterior Analytica when he
considers the “middle term” of a definition. This pattern is, according to his view,
the essence of a good definition: it should not only say what the definiendum (A)
is, it should also be an explanation (C) for its observed properties (B). As an
example, he explains why horned animals (A) lack upper incisors (B) by defining
horned animals as a subclass of animals that have inflected hard material from
their mouth to their heads (C). According to Aristotle, this is a good definition
of a class because it explains the properties of that class.5 However, the reasoning
pattern we are considering is much broader than what Aristotle had in mind. A,
B and C can be any properties, and neither should A be a definiendum, nor C
a definiens.

Fourthly, AG is frequently applied in human reasoning, often in combination
with or following an instance of singular fact abduction. For instance, people do
not only wonder why their heads hurt (they drank too much last night) or why
there is a thunderstorm (it was very hot during the day). Not much of a reflective
mind is needed to start asking questions such as why it is that every time one
drinks a bit too much, one suffers from headaches, or why thunderstorms often
follow hot days. In other words, people do not only wonder why certain facts are
the case, they also wonder why certain regularities occur.

8.2.2 The Lack of Models for AG

Broadly speaking, two main currents in research on abduction can be discerned.
On the one hand, research in AI and formal logic mostly focuses on a syllogistic
interpretation of Peirce’s work, in which abduction is introduced as part of a

5See [6, II.10] for Aristotle’s distinction between two types of definitions and [6, II.12-14]
for his view on the role of the middle term in a definition. A good treatment of the analogy
between Aristotelian definitions and Peircean abduction can be found in [50]. In our opinion,
Schurz refers in [131] to the wrong concept when he links AG (in his words: law abduction)
to Aristotle. The concept “hitting upon the middle term” is only employed in the definition
of quick wit [6, I.34], in which it is illustrated with an example of a singular fact abduction.
In our view, a predecessor of AG can only be found in Aristotle’s treatment of the role of the
middle term in definitions.
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tripod that is clarified with the following famous beans-example of Peirce [119,
2.623]:

All the beans from this bag are white. (Rule)
These beans are from this bag. (Case)
These beans are white. (Result)

All reasoning deriving a result from a case and a rule is called deductive, all
reasoning deriving a rule from a case and a result inductive, and all reasoning
deriving a case from a rule and a result abductive. Having this schema in mind,
researchers in AI or formal logic generally focus on instances of singular fact
abduction, which are variations on the following inference rule:

Bα, ∀β(Aβ → Bβ)/Aα

This rule is usually combined with a number of conditions, e.g. that the hy-
potheses it yields should be mutually consistent with our background knowledge,
that they should be as parsimonious as possible (this term is explained below),
etc. Aliseda even adds a further condition suggested by Peirce, i.e. that the ob-
served fact should be surprising (in the sense that Bα cannot be derived from
the background theory alone) [4].

One notable exception to the exclusive focus on singular fact abduction is
Thagard [145]. He obtains a similar pattern as AG, which he calls “rule ab-
duction”, by adding to his logic program PI the ability to generalize the results
of singular fact abductions. Although his model does not abduce from general-
izations, it has the same goal as AG, i.e. to derive an explanation for why all
elements of a given class share a certain property.

On the other hand, research in philosophy of science usually departs from a
methodological interpretation of Peirce. In his later writings Peirce distinguishes
abduction, induction and deduction as different steps in a methodology of science
[118, p. 212–218]. Abduction is the process of forming an explanatory hypoth-
esis, from which deduction can draw predictions, which then can be tested by
induction.6 Research in this tradition, see e.g. [92, 131], considers abduction as
a very broad concept including analogical reasoning, visual abduction, common
cause reasoning, etc. Some still try to capture the concept of abduction under
the single schema of inference to the best explanation (IBE).7 However, these at-
tempts to reduce the broadness of the considered concept prevent the discovery
of interesting features of more specific patterns of abduction. Schurz explains
this as follows [131, p. 205]:

The majority of the recent literature on abduction has aimed at one
most general schema of abduction (for example IBE) which matches
every particular case. I do not think that good heuristic rules for

6It is generally acknowledged (see e.g. [52, p. 5–8]) that both interpretations can be found
in Peirce’s work, although they are not fully compatible. They represent an evolution in his
thinking, as he hinted himself when he remarked that he “was too much taken up in considering
syllogistic forms” [119, 2.102].

7See e.g. [76, 90, 48]. These scholars consider Peirce’s remark that abduction should be as
economical as possible [119, 7.220], as an essential and crucial condition.
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generating explanatory hypotheses can be found along this route,
because these rules are dependent of the specific type of abduction
scenario.

Schurz presents a taxonomy of distinct patterns of abduction, and argues that
such a taxonomy is indispensable if one wants to understand the many uses of
abduction. With Schurz’ arguments in mind, we think that it is best to remain
pluralistic on the logical form of abduction. We should maintain the rich concept
of abduction as it is understood in the philosophy of science, but, in order to
provide the formal rigor which is characteristic of the logic and AI community,
we have to focus on each of the different specific forms of abduction separately –
we will return to this point in the concluding section.

8.2.3 The Ubiquity of AG in Scientific Practice

At the end of Section 8.2.1, we mentioned several examples in which abduction of
generalizations is triggered by a question concerning the result of a singular fact
abduction. This question is brought up by a need for a deeper understanding
of the observed relations. We can recognize this curious spirit in the endeav-
ors of many scientists. For instance, Descartes was not satisfied with the folk
explanation of the rainbow, i.e. that a rainbow appears because the sun breaks
through shortly after a rain shower. He wanted to understand why rainbows
appear whenever the sun shines while it rains. We will argue that AG is at least
as important in scientific practice as singular fact abduction by considering two
general characteristics of this practice.8

Firstly, in scientific practice one attempts to formulate theories, which have
both a universal and falsifiable nature.9 One does not want an explanation
why, for instance, this particular person suffers from this disease. One wants
to understand why and how this disease is transmitted in general. Formulating
theories about particularities is seldom considered as good scientific practice; such
theories are often labeled as ad hoc. Theories are thus mainly formulated for a
whole class of objects and, by consequence, formulated in terms of generalizations.
These generalizations allow us to derive singular fact predictions by means of
which theories can be tested. Therefore, in the formation process of such theories,
reasoning methods resulting in generalizations, such as inductive generalization
or AG, are essential.

Secondly, augmented unification (as characterized, for instance, by [85]) is
generally seen as an indicator of scientific progress.10 Each application of AG is
in essence a unification step, because it explains an observational generalization,
e.g. “All A are B”, by characterizing its antecedent (A) as a subclass of a more
general class (C) for which the observed properties (B) hold. Therefore, AG is

8This claim is about scientific practice and not about scientific explanation. In scientific
explanation, a scientific theory is employed to explain a certain fact (which can be either a
singular fact or a generalization). Scientific practice is the activity of forming such scientific
theories and expanding current scientific knowledge.

9Universality should not be taken as an absolute notion, but as an achievable level of gen-
erality that is relative to the methods and scope of the specific field.

10Both the instrumentalist and realist view concerning the nature of scientific progress seem
to agree on this point [115].
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a key method to enhance unification in scientific practice. The most interesting
examples in the history of science can be found when a new theory is proposed as
a solution for some anomalies of an existing theory. In that case, the proponents
of the new theory also need to show that most of the already known and well-
tested observational laws, which are explained by the old theory, can be explained
by the new theory. For instance, Newton could explain Huygens’ pendulum law
using his general laws of motion by pointing out how the different parameters of
the pendulum law could be translated into his general mathematical framework.
In the same way, Bohr could explain by means of his atomic model why the wave
lengths of the visible emission spectrum of hydrogen can be calculated by the
Balmer formula.11

8.3 Towards a Formal Logic for AG

8.3.1 The Explanatory Framework

The pattern presented in the definition of AG (see Section 8.2) can be formally
explicated as follows:

(P1) ∀x(Ax ⊃ Bx)
(P2) ∀x(Cx ⊃ Bx)
(H) ∀x(Ax ⊃ Cx)

However, we must be careful here: the definition stipulates that C-hood explains
B-hood, not just that everything that has the property C also has the property
B. In other words, where (P1) and (H) can be of any kind, the set of possible
candidates for (P2) is restricted.12 We call this set the explanatory framework. It
consists of all generalizations of the form ∀x(Fx ⊃ Gx) where being F provides
an explanation for being G. Whether or not a generalization belongs to the
explanatory framework, depends on the context, i.e. on the phenomena we are
reasoning about. All we assume is that it is clear for each generalization, given the
abductive problem at hand, whether it is a member of the explanatory framework
or not. In the latter case we call it a mere generalization.

With this new terminology, we are now able to characterize all the lines of
the above schema: (P1) is the explanandum, (P2) is a generalization that is part
of the explanatory framework for the current context; (H) is the explanatory
hypothesis. An explanation or explanans for (P1) consists of an explanatory
hypothesis together with one or more elements of the explanatory framework
that connect the hypothesis to the explanandum.

Now what does it actually mean that F -hood explains G-hood? Needless to
say, the philosophical literature abounds in theories of explanation. However, as
we restrict ourselves to classical abduction (see Section 8.2.1), certain precondi-
tions apply. First, if F -hood explains G-hood, then F -hood should also imply

11A philosophical introduction to the circumstances of these two major milestones in science
can be found in [134], resp. [51].

12In our opinion, Schurz [131] puts too little emphasis on this point in his discussion of AG,
or “law abduction” as he calls it. In his schema, (P2) is called a “background law”, but as far
as we see, no explicit definition or circumscription is provided.
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G-hood. Second, as abduction is an inference, only argumentative accounts of
explanation are relevant. Hence, the choices to explicate the notion of “expla-
nation” in the definition of the explanatory framework of a (classical) abductive
problem are limited to accounts of explanation that have the structure of a de-
ductive argument such as a DN-argument (e.g. Hempel [78]), a causal argument
(e.g. Hausman [77]) or an augmented unification argument (e.g. Kitcher [85]).13

In any of these accounts, (P2) has a specific status – it must be either lawlike,
refer to an underlying causal mechanism, or be a more general argumentation
scheme. We use the more abstract term explanatory framework to express this
status of (P2). This specific status turns AG into a fundamentally asymmetric
inference. It is not possible to derive ∀x(Cx ⊃ Ax) from the same premises, since
A-hood does not explain B-hood. Hence, if a logic explicates AG, it should be
able to represent this asymmetry between (P1) and (P2) in its object language.

Before we explain how this can be done, let us briefly give an extra reason to
motivate the distinction between the explanatory framework and mere generaliza-
tions as a valuable asset for any logic that models abductive processes in general.
Mere generalizations are often used in abductions that involve knowledge about
methods or procedures. Consider the following premises:

(P1) The Geiger counter produces audible clicks close to the object a.
(P2) If the Geiger counter produces audible clicks, β-radiation is present.
(P3) If an object contains C-14, β-radiation is emitted.

Without the distinction between the explanatory framework and mere general-
izations, a logic for singular fact abduction treats (P2) and (P3) as having the
same formal structure. But a physicist interested in explaining the presence of
β-radiation is only interested in the hypothesis suggested by (P3), as the behav-
ior of the Geiger counter provides no explanation. On the other hand, (P2) is
needed to derive the fact that there is β-radiation in the first place (as it is not
directly observable). Hence, (P2) cannot be omitted from this abductive reason-
ing context. Only a logic that is able to represent explanatory frameworks can
handle this case properly.

8.3.2 A Modal Approach

The AG-logics presented below are all based on a predicative fragment of the
well-known modal logic T. As explained in Section 2.1 of Chapter 2, we first
have to define a “standard” logic Ts, and afterwards extend it with the checked
connectives to obtain the lower limit logic T.

Let Lt denote the extension of Lf with the necessity operator �. The set of
formulas Wt is the smallest set for which the following holds:

For all A ∈ Wf : A,�A ∈ Wt

For all A,B ∈ Wt: ¬A,A ∨B,A ∧B,A ⊃ B,A ≡ B ∈ Wt

13It is not implied that there are no other valuable accounts of explanation. We only claim
that (classical) abductive hypotheses (the only ones that are our concern here) are part of a
deductive argument that forms an explanation for the explanandum.
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Hence, the modal operator � does not occur in the scope of quantifiers, and we do
not allow for the iteration of modal operators. We merely use the modal operator
to distinguish between the explanatory framework and mere generalizations.14

Hence, �∀x(Px ⊃ Qx) and Pa ∨ �∃x(¬Rx) are, for instance, members of Wt,
whereas ��∀xPx or ∀x�Px are not. The language Ľt is obtained by adding the
checked connectives to Lt; W̌t is obtained by closing Wt under these connectives
(see page 18).

An axiomatization for the logic Ts over the language Lt is obtained by taking
the axioms of classical predicate logic (henceforth CL), adding the following
axioms:

K �(A ⊃ B) ⊃ (�A ⊃ �B)
T �A ⊃ A

and closing them under the following two rules:

RN where A ∈ Wt: from ` A, infer ` �A
MP from A,A ⊃ B, infer B

We will focus on the proof theoretic aspects of the adaptive logics for AG in
this chapter, and therefore omit a definition of the Ts-semantics. A standard
semantics in terms of Kripke-models with varying domains and a reflexive acces-
sibility relation R can be obtained for Ts, along the lines of [41]. We will return
to the semantic counterpart of our approach in the concluding section.

The language Lt allows us to represent the premises involved in abductive
reasoning processes with the expressive power of classical first-order logic, but
gives us the extra operator �, which allows us to indicate at the object level that
a certain generalization is in the explanatory framework. Recall that F◦ denotes
the set of purely functional formulas, i.e. formulas that do not contain individual
constants, quantifiers, or sentential letters. Also, where A ∈ F◦, ∀A denotes
the universal quantification over every variable that is free in A. The logic LAr

∀

treats any formula of the form �∀(A ⊃ B) with A,B ∈ F◦ as an element of the
explanatory framework.

The choice for Ts in order to model the explanatory framework has two
important consequences. First of all, in view of the rule RN and the axiom
K, classical logic consequences of the explanatory framework may themselves be
used to generate explanatory hypotheses. For instance, if �∀x(Px ⊃ Qx) and
�∀x(Qx ⊃ Rx) are premises of a particular abductive problem, not only these
formulas but also �∀x(Px ⊃ Rx) will be part of the explanatory framework.
Second, in view of axiom T, a generalization that is part of the explanatory
framework is also assumed to be true as such. This is the formal expression of
our restriction to the classical account of abduction, where “A explains B” entails
that “A implies B”.

14It might be possible to do without these restriction on the language, given a number of
additional axioms such as the 4-axiom (�A ≡ ��A), the Barcan formula and/or the inverse
Barcan formula. This would however severely complicate the logical apparatus, whereas the
extended language would contain several expressions that have no sensible interpretation in the
current context.
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The logic T is obtained by adding the usual axioms for the checked connec-
tives, and those that link the checked and non-checked connectives, to Ts (see
Chapter 2, Section 2.4 where K is obtained from Ks in an analogous way). As
we will explain below, the logics LA∀ and SILAr are non-monotonic extensions
of T. Since T is itself a monotonic extension of CL, our logics only provide
sensible consequences under the assumption that the explanatory framework and
the set of known facts relevant to the abductive problem are mutually consistent
– otherwise they yield a trivial consequence set.

Our formal expression of AG is in a sense minimal: iterations of boxes are
excluded, and explanation is expressed by rather simple formal tools. It is a
topic for further research whether our model can be meaningfully extended to in-
clude specific, more fine-grained accounts of explanation (e.g. adding asymmetric
axioms to specify causal arguments in the sense of Hausman [77]).

8.4 Singular Fact Abduction: LAr
�

In this section, we present a simple adaptive logic for singular fact abduction,
called LAr

�
. As already indicated in the introduction, this has two reasons: (i) it

allows us to show certain pitfalls for logics for abduction, and how the adaptive
logics in this chapter evade these, and (ii) LAr

� is a constituent of the combined
logic SILAr, which we present in Section 8.7.

LAr
� is obtained by a small variation on the logic LAr

s from [107]. The latter
system allows for the defeasible application of the rule ∀(A ⊃ B), Bα/Aα. In
the terminology from the current chapter, it treats all generalizations as part
of the explanatory framework. In LAr

�, the abductive steps are restricted to
those cases where A-hood explains B-hood, or formally, where we have derived
�∀(A ⊃ B).

The logic LAr
� is defined by the triple 〈T,ΩLAr

�
, r〉, where the set of abnor-

malities of LAr
�

is given by:15

ΩLAr
�

=df {�∀(A ⊃ B) ∧ (Bα ∧ ¬Aα) | A,B ∈ F◦ and A‖B}

We will abbreviate formulas of this kind by (A ⊃ B)α. The extra condition
that A and B share no predicates implies that A and B are logically independent,
whence any kind of self-explanation or circular explanation is avoided.16 This
also prevents certain counterintuitive or superfluous abductive steps, such as the
following:

(i) �∀x((Px ∧Qx) ⊃ Qx), Qa / Pa ∧Qa
(ii) �∀x(Px ⊃ Px), Pa / Pa
(iii) �∀x((Px ⊃ (Px ∨Qx)), Pa ∨Qa / Pa

There is also a technical reason for the restriction on the set of abnormalities.17

Consider the following prototypical example: Γs1 = {�∀x(Px ⊃ Qx), Qa}. Ob-

15Recall that, where A, B ∈ F◦, we use A‖B to denote the fact that A and B share no
predicates.

16See also [108, p. 221-222].
17To the best of our knowledge, this reason was not spelled out before in the literature.
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viously, we want to be able to finally derive the hypothesis Pa from Γs1, on the
condition (P ⊃ Q)a. But consider the following formula:

�∀x(¬Px ⊃ (¬Px ∨Qx)) ∧ (¬Pa ∨Qa) ∧ ¬¬Pa (8.1)

It can easily be verified that “(8.1) ∨̌(P ⊃ Q)a” is a minimal disjunction that
is T-derivable from Γs1. Hence if (8.1) would be an abnormality, then (8.1) ∨̌(P ⊃
Q)a would be a minimal Dab-consequence of Γs1, and hence (P ⊃ Q)a would be
an unreliable abnormality in view of this premise set. In that case, we would
not be able to finally derive Pa in this very simple case, whence we could hardly
speak of a logic that models singular fact abduction.

We will now illustrate the features of this specific logic by means of an ex-
ample. Consider Γs2 = {Qa,Qb,¬Ra,Rc,�∀x(Px ⊃ Qx), ∀x(Px ⊃ Rx)}. We
construct a proof from this premise set in which we abduce explanatory hypothe-
ses for the observed phenomenon Qa:

1 �∀x(Px ⊃ Qx) PREM ∅
2 Qa PREM ∅
3 Pa 1,2;RC {(P ⊃ Q)a}

Recall that we can write line 3 because Γs2 `T Pa ∨̌(�∀x(Px ⊃ Qx) ∧ (Qa ∧
¬Pa)). A key advantage of adaptive logics is that defeasible steps can be fully
integrated with deductive steps. We can continue our proof, for instance, as
follows:

4 ∀x(Px ⊃ Rx) PREM ∅
5 Ra 3,4;RU {(P ⊃ Q)a}

The formula on line 5 is the result of a deductive step, but, as this step relies
on a hypothesis, the condition of the hypothesis is transferred. In other words,
Ra can be derived on the same assumption as the hypothesis Pa itself.

Note that, according to the terminology introduced in Section 8.3, the formula
on line 4 is not part of the explanatory framework. Put differently, P -hood does
not explain R-hood according to the premise set Γs2. As a result, it is e.g. not
possible to derive Pc from the premises Rc and ∀x(Px ⊃ Rx).

At this point of the proof, it becomes clear that the hypothesis Pa is not
unproblematic. The condition of Pa can be derived on the empty condition in
the following way:

1 �∀x(Px ⊃ Qx) PREM ∅
2 Qa PREM ∅
3 Pa 1,2;RC {(P ⊃ Q)a} X

8

4 ∀x(Px ⊃ Rx) PREM ∅
5 Ra 3,4;RU {(P ⊃ Q)a} X

8

6 ¬Ra PREM ∅
7 ¬Pa 4,6;RU ∅
8 (P ⊃ Q)a 1,2,7;RU ∅
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This implies that, at stage 8, the condition of line 3 is no longer reliable.
Hence, line 3 and all lines that rely on it become marked at stage 8, as indicated
by the X

8-sign. Because the formula on line 8 consists of a single abnormality,
this abnormality will remain unreliable in every further extension of the proof,
which implies that line 3 will remain marked in every such extension. Hence Pa
is not finally derived at line 3 of the above proof.

A hypothesis that is finally derivable from Γs2 is, for instance, Pb:

9 Qb PREM ∅
10 Pb 1,2;RC {(P ⊃ Q)b}

The above proof cannot be further extended in such a way that line 10 is
marked. Hence, Pb is an LAr

�-consequence of Γs2. This illustrates the fact that
abduction, as modelled by LAr

�, is case-sensitive: the failure of an abduction in
one case does not imply that it also fails in similar cases.

The dynamic proof theory and the form of the abnormalities also ensure that
certain unjustified hypotheses are not finally derivable. For instance, it is neither
possible to finally derive random hypotheses from mere tautologies, nor to finally
derive contradictory hypotheses from a given explanandum.18 The following
proof from Γs3 = {Sa} illustrates how these mechanisms work:19

1 Pa ∨ ¬Pa -;RU ∅
2 �∀x(Rx ⊃ (Px ∨ ¬Px)) -;RU ∅
3 Ra 1,2;RC {(R ⊃ (P ∨ ¬P ))a} X

4−

4 (R ⊃ (P ∨ ¬P ))a ∨̌(¬R ⊃ (P ∨ ¬P ))a -;RU ∅
5 Sa PREM ∅
6 �∀x((Qx ∧ ¬Qx) ⊃ Sx) -;RU ∅
7 Qa ∧ ¬Qa 5,6;RC {((Q ∧ ¬Q) ⊃ S)a} X

8

8 ((Q ∧ ¬Q) ⊃ S)a 5;RU ∅

As the minimalDab-formulas of the form (B ⊃ (A∨¬A))α ∨̌(¬B ⊃ (A∨¬A))α

are theorems in T, no explanation can ever be finally derived for a tautology of
the form A ∨ ¬A. Similar theorems can be found for other kinds of tautolo-
gies. Likewise, contradictory explanations A can never be finally derived as an
explanation for Bα, since for such A, (A ⊃ B)α is always T-derivable from Bα.

Another important property of LAr
� is that it provides the most parsimonious

hypotheses. This requires some explanation. If “Y ” suffices to explain “X”, then
we should not raise the explanatory hypothesis “Y and Z”. More generally, we
want to derive only the logically weakest hypotheses that suffice to explain the
explananda.20

18These properties were first shown in [107]; the reasoning there is analogous to the current
one.

19The symbol X4− indicates that line 3 is marked from stage 4 onwards.
20As indicated by a referee, logical parsimony should be distinguished from expressive par-

simony. For instance, if “Y or Z” explains “X”, than the explanatory hypothesis “Y ” is
expressively more parsimonious because it contains less different terms (assuming that Y and
Z differ), but logically less parsimonious than the explanatory hypothesis “Y or Z” because
“Y ” logically entails “Y or Z”.
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Note that �∀x(Ax ⊃ Bx) `T �∀x((Ax ∧ Cx) ⊃ Bx) — this property is
known under the name Strengthening of the Antecedent. However, if A-hood
suffices to explain B-hood, then we should not derive Aα ∧ Cα from a given
premise Bα. The logic LAr

�
handles this problem in the following way:

1 Pa PREM ∅
2 �∀x(Qx ⊃ Px) PREM ∅
3 �∀x((Qx ∧Rx) ⊃ Px) 2;RU ∅
4 Qa ∧Ra 1,3;RC {((Q ∧R) ⊃ P )a} X

5

5 ((Q ∧R) ⊃ P )a ∨̌((Q ∧ ¬R) ⊃ P )a 2;RU ∅

More generally, minimal Dab-formulas of the form ((A ∧ C) ⊃ B)α ∨̌((A ∧
¬C) ⊃ B)α prohibit that any random strengthening of a hypothesis can be
derived.

The final feature which we will further exemplify is how this logic handles
multiple explanatory hypotheses. Consider, for example, the premise set:

Γs4 = {Ra,�∀x(Px ⊃ Rx),�(∀x)(Qx ⊃ Rx)}

At first sight, both Pa and Qa can be derived as hypotheses for Ra. But, as
shown in the proof below, these two hypotheses are not finally derivable from Γs4,
as their condition is unreliable in view of this premise set. Only the disjunction
of Pa and Qa is finally derivable.

1 �(∀x)(Px ⊃ Rx) PREM ∅
2 �(∀x)(Qx ⊃ Rx) PREM ∅
3 Ra PREM ∅
4 Pa 1,3;RC {(P ⊃ R)a} X

6

5 Qa 1,3;RC {(Q ⊃ R)a} X
7

6 (P ⊃ R)a ∨̌((Q ∧ ¬P ) ⊃ R)a 1,2;RU ∅
7 (Q ⊃ R)a ∨̌((P ∧ ¬Q) ⊃ R)a 1,2;RU ∅
8 �(∀x)((Px ∨Qx) ⊃ Rx) 1,2;RU ∅
9 Pa ∨Qa 3,8;RC {((P ∨Q) ⊃ R)a}

Hence, whenever two hypotheses Aα and Bα can explain a certain fact Cα,
the two individual hypotheses will not be finally derivable, since the minimalDab-
formulas of the form (A ⊃ C)α ∨̌((B ∧ ¬A) ⊃ C)α and (B ⊃ C)α ∨̌((A ∧ ¬B) ⊃
C)α will be derivable. However, the abnormality ((A ∨ B) ⊃ C)α will remain
reliable, whence we can derive the explanation Aα∨Bα. Similar results can easily
be obtained for three or more available explanations: whenever there are multiple
explanatory hypotheses, LAr

� only allows us to finally derive their disjunction.
This again illustrates the fact that LAr

� only delivers the most parsimonious
hypotheses.

8.5 Some Prototypical Examples

In this section we will discuss some prototypical premise sets, which represent
variants of the chocolate example from the introduction. These will allow us
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to illustrate the differences and similarities between the logics for AG that are
presented in the two subsequent sections.21

Let P stand for “is made of chocolate”, Q for “tastes sweet”, and R for
“contains sugar”. Suppose we know that everything made of chocolate tastes
sweet (∀x(Px ⊃ Qx)), and that the fact that an object contains sugar explains
why it tastes sweet (�∀x(Rx ⊃ Qx)). It can be assumed that we know of at
least one object, say a, that it is made of chocolate (and, hence, tastes sweet).
Moreover, as we consider the sweetness of chocolate to be in need of explanation,
we can safely assume that we know of at least one object, say b, that does not
taste sweet. The formalization of this example gives us our first prototypical
premise set:

Γc1 = {∀x(Px ⊃ Qx),�∀x(Rx ⊃ Qx), Pa,¬Qb}.

Note that Γc1 `T {Qa,¬Pb,¬Rb}. In this first case, each of the logics which
we will present below allows us to finally derive ∀x(Px ⊃ Rx), which is as
expected.

Let us now consider some variations on the first prototypical example. First,
if we come to know of an object c that tastes sweet but contains no sugar, should
we still be able to derive the hypothesis ∀x(Px ⊃ Rx)? And, second, should
it make a difference if we would also know that this object c is not made of
chocolate? The following extensions of Γc1 formalize these two cases:

Γc2 = Γc1 ∪ {Qc,¬Rc}

Γc3 = Γc1 ∪ {Qc,¬Rc,¬Pc}

Now suppose that we learn about a specific brand of chocolate for diabetics,
which does not contain sugar. This can be modeled by the following premise set:

Γc4 = Γc3 ∪ {Pd,¬Rd}

Obviously, in this case, we do not want to be able to finally derive the hy-
pothesis that all chocolate contains sugar. In view of the syntactic reassurance
of adaptive logics (see Part I of this thesis), we can immediately infer that none
of the logics presented below yields such a (trivializing) result. But even in this
case, one might wonder whether it should still be allowed that we derive the
singular hypothesis Ra as an explanation for Qa. As we will see, LAr

∀ does not
allow us to derive Qa from Γc4, whereas SILAr does.

The previous examples are all extensions of Γc1 with singular facts. However,
we may also try to see what happens if other explanations come into play, or
in the terminology from Section 8.3, if we add generalizations to the explana-
tory framework of our abductive problem. For instance, we might learn that if
something contains asparthane (a synthetic sweetener), then it also tastes sweet.
Hence, at this point, we know that both sugar and asparthane can explain the
sweetness of chocolate. So where S represents “contains asparthane”, we have:

21In the premise sets Γc1 − Γc5 presented here, singular facts are represented by means of
named objects, e.g. Pa,¬Qb, Qc,¬Rc. Although we will not discuss them here, similar results
were obtained for analogous premise sets that use existentially quantified formulae like e.g.
∃xPx,∃x¬Qx,∃x(Qx ∧ ¬Rx).
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Γc5 = Γc1 ∪ {�∀x(Sx ⊃ Qx)}

As we will see below, in this case, both LAr
∀ and SILAr will lead to the

conclusion that all chocolate contains either sugar or asparthane. Put differently,
just as LAr

�, LAr
∀ and SILAr only deliver the most parsimonious explanation,

relative to a given explanandum and explanatory framework.

8.6 The Logic LAr
∀

The General Idea The first logic for abduction of generalizations is also the
most straightforward one. It is called LAr

∀, where the subscript refers to the
crucial role of universally quantified formulas in AG. The motor behind LAr

∀ is
the conditional application of the inference schema of AG in its most obvious way,
as presented in Section 8.2. In our modal translation, this gives us the following
rule:

RAG : from ∀x(Ax ⊃ Bx),�∀x(Cx ⊃ Bx), infer ∀x(Ax ⊃ Cx)

To allow for the defeasible application of RAG, we need to define our set of
abnormalities accordingly. This requires some notational conventions. First, we
introduce the following abbreviation:

A 6→C B =df ∀(A ⊃ B) ∧ �∀(C ⊃ B) ∧ ¬∀(A ⊃ C)

According to this definition, A 6→C B can be read as: “although all A are
B, and although C-hood explains B-hood, it is not the case that all A are C.”
Using this abbreviation, we define the set of abnormalities of LAr

∀ as follows:

ΩLAr
∀

=df {A 6→C B | A,B,C ∈ F◦, A‖B and B‖C}

As in Section 8.4, the restrictions A‖B and B‖C are added to avoid self-
explanation, and to avoid that irrelevant abnormalities block the final derivability
of expected hypotheses – this will be explained in the next paragraph.22

The logic LAr
∀ is defined by the triple 〈T,ΩLAr

∀
, r〉. To get an idea of how

it works, consider the prototypical premise set Γc1 = {∀x(Px ⊃ Qx),�∀x(Rx ⊃
Qx), Pa,¬Qb}. The adaptive logic allows us to derive the hypothesis ∀x(Px ⊃
Rx), as happens in the following proof:

1 ∀x(Px ⊃ Qx) PREM ∅
2 �∀x(Rx ⊃ Qx) PREM ∅
3 ∀x(Px ⊃ Rx) 1,2;RC {P 6→R Q}

22It need not be imposed that the subformulas A and C of an abnormality do not share
any predicates. To see why, consider the garage-example from the introduction. Let I stand
for “is made of iron”, G for “is located in my garage”, C for “is corroded”, and W for “has
been wet”. Suppose we know, in addition, that there is at least one wooden object c in our
garage that has not been wet. Then this example can be modeled by Γg = {∀x((Ix ∧ Gx) ⊃
Cx), �∀x((Ix ∧ Wx) ⊃ Cx), Ia, Ga,¬Cb, Gc ∧ ¬Wc ∧ ¬Cc ∧ ¬Ic}. In this case, we need the
abnormality (I ∧ G) 6→(I∧W ) C to finally derive the hypothesis that all iron objects in this
garage have been wet.
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At line 3 of the above proof, ∀x(Px ⊃ Rx) is finally LAr
∀-derived from Γc1.

Hence LAr
∀ allows us to derive the hypothesis ∀x(Px ⊃ Rx) in a very simple

way, through a direct application of the reasoning pattern that is characteristic
for AG.

The Restrictions on the Abnormalities Let us now explain why the ab-
normalities are defined in such a way that A and B, but also B and C share no
predicates. The following continuation of the proof illustrates the need for the
first restriction:

4 Pa PREM ∅
5 �∀x((Qx ∧ ¬Rx) ⊃ Qx) -;RU ∅
6 (Pa ∧ ¬Ra) ∨̌(Pa ∧ ¬(Qa ∧ ¬Ra)) 4;RU ∅
7 ¬∀x(Px ⊃ Rx) ∨̌ ¬∀x(Px ⊃ (Qx ∧ ¬Rx)) 6;RU ∅
8 (P 6→R Q) ∨̌(P 6→(¬R∧Q) Q) 1,2,5,7;RU ∅

Consider the formula on the last line of the above proof. If P 6→(¬R∧Q) Q
would be an abnormality, then line 3 would be marked at stage 8 of this proof,
and ∀x(Px ⊃ Rx) would not be finally derivable from Γc1. However, since Q
and ¬R ∧ Q share a predicate, viz. Q, the formula P 6→(¬R∧Q) Q is not an
abnormality, and hence the formula on line 8 is not a Dab-formula in the logic
LAr

∀.
To explain the second restriction, i.e. B‖C in the definition of ΩLAr

∀
, consider

Γc2 = {∀x(Px ⊃ Qx),�∀x(Rx ⊃ Qx), Pa,¬Qb,Qc,¬Rc}. Note that although
R-hood explains Q-hood according to these premises, it is nevertheless the case
that c has property Q but not property R. There are two possible ways to deal
with this situation: either one considers this as a sufficient argument to withdraw
the hypothesis ∀x(Px ⊃ Rx), or one sticks to this hypothesis and concludes that
¬Pc is the case. The logic LAr

∀ takes the second option, but it can only do so
given the second restriction on the abnormalities.

As before, we illustrate this fact by means of an object-level proof. Since
Γc1 ⊂ Γc2, we can continue the above proof and add the premises Qc,¬Rc:

...
...

...
...

9 Qc PREM ∅
10 ¬Rc PREM ∅
11 Pc ∨̌ ¬Pc -;RU ∅
12 ∃x(Px ∧ ¬Rx) ∨̌ ∃x(¬Px ∧Qx ∧ ¬Rc) 9,10,11;RU ∅
13 ∀x((¬Px ∧Qx) ⊃ Qx) -;RU ∅
14 (P 6→R Q) ∨̌((¬P ∧Q) 6→R Q) 2,12,13;RU ∅
15 ¬Pc 3,10;RU {P 6→R Q}

It can easily be verified that the disjunction on line 14 is minimal, i.e. that
none of its disjuncts can be T-derived from Γc2. However, given the above defini-
tion of ΩLAr

∀
, the second disjunct of the formula on line 8 is not an abnormality,

whence (P 6→R Q) is a reliable abnormality at stage 15. Hence, tautologies such
as ∀x((¬Px ∧Qx) ⊃ Qx) (line 13) do not allow us to block the derivation of the
explanatory hypothesis ∀x(Px ⊃ Rx) from Γc2.
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Note that ¬Pc is finally derived on line 15 of the above proof, and hence
Γc2 `LAr

∀
¬Pc. As a result, the sets Γc2 and Γc3 are LAr

∀-equivalent.23

Dynamics of the Proof Theory The dynamic aspect of the LAr
∀-proof the-

ory can be illustrated by means of the premise set Γc4. Since this premise set is
an extension of Γc2, we can again continue the same proof and add the premises
Pd,¬Rd:

1 ∀x((Ix ∧Gx) ⊃ Cx) PREM ∅
2 �∀x((Ix ∧Wx) ⊃ Cx) PREM ∅
3 ∀x(Px ⊃ Rx) 2;RC {P 6→R Q} X

19

...
...

...
...

16 Pd PREM ∅
17 ¬Rd PREM ∅
18 ¬∀x(Px ⊃ Rx) 16,17;RU ∅
19 P 6→R Q 1,2,18;RU ∅

We have derived the Dab-formula P 6→R Q at line 19, which renders line 3
marked. Since the Dab-formula at line 19 only contains one disjunct, line 3 will
remain marked in every extension of the proof.

Multiple Explanatory Hypotheses As announced, LAr
∀ only allows us to

derive a “disjunctive” general hypothesis, if two or more explanations can be
found for a certain property that is shared by all members of a class. This
can be illustrated by means of the example Γc5 = {∀x(Px ⊃ Qx),�∀x(Rx ⊃
Qx),�∀x(Sx ⊃ Qx), Pa,¬Qb}.

At first sight, both the hypotheses ∀x(Px ⊃ Rx) and ∀x(Px ⊃ Sx) can be
derived from Γc5. But, as shown in the proof below, these two formulas are
not finally derivable. The hypothesis ∀x(Px ⊃ (Rx ∨ Sx)) is, however, finally
derivable from Γc5.24

1 ∀x(Px ⊃ Qx) PREM ∅
2 �∀x(Rx ⊃ Qx) PREM ∅
3 �∀x(Sx ⊃ Qx) PREM ∅
4 ∀x(Px ⊃ Rx) 1,2;RC {P 6→R Q} X

9

5 ∀x(Px ⊃ Sx) 1,3;RC {P 6→S Q} X
10

6 Pa PREM ∅
7 ¬∀x(Px ⊃ Rx) ∨ ¬∀x(Px ⊃ (Sx ∧ ¬Rx)) 6;RU ∅
8 �∀x((Sx ∧ ¬Rx) ⊃ Qx) 3;RU ∅
9 (P 6→R Q) ∨̌(P 6→S∧¬R Q) 1,2,7,8;RU ∅
10 (P 6→S Q) ∨̌(P 6→R∧¬S Q) 1,2,3,6;RU ∅
11 �∀x((Rx ∨ Sx) ⊃ Qx) 2,3;RU ∅
12 ∀x(Px ⊃ (Rx ∨ Sx)) 1,11;RC {P 6→R∨S Q}

23As shown in Chapter 2, two premise sets Γ and Γ′ are AL-equivalent whenever Γ `AL Γ′

and Γ′ `AL Γ. In the current case, we have Γc3 `LAr
∀

Γc2 by the reflexivity of LAr

∀
, and

Γc2 `LAr
∀

Γc3, since Γc2 `LAr
∀
¬Pc and Γc3 − Γc2 = {¬Pc}.

24Line 10 is derived in a way analogous to the derivation of line 9 – note that the predicates
R and S are symmetric on Γc5.
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Although we omit illustrations for reasons of space, it can easily be shown
that LAr

∀ also does not allow us to finally derive self-contradictory hypotheses,
or random hypotheses from a tautological explanandum such as ∀x(Px ⊃ Px).
Moreover, LAr

∀ avoids the problem of strengthening the antecedent in a way
similar to LAr

∀. For instance,

Γc1 `T (P 6→R∧S Q) ∨̌(P 6→R∧¬S Q)

Hence, we cannot finally LAr
∀-derive either ∀x(Px ⊃ (Rx∧ Sx)) or ∀x(Px ⊃

(Rx ∧ ¬Sx)) from Γc2.

8.7 The Logic SILAr

8.7.1 The General Idea

As mentioned in Section 8.2, Thagard incorporates a pattern that is similar to AG
in his logic program PI, by allowing for the inductive generalization of abduced
singular hypotheses – see [145, pp. 58-60]. The same approach to AG is proposed
by Flach and Kakas in their [52, Chapter 1]. Consider again the chocolate-
example as modeled by the premise set Γc1. Flach and Kakas’ suggestion is
spelled out in Table 8.1.

(P1) (∀x)(Px ⊃ Qx) All chocolate tastes sweet.
(P2) �(∀x)(Rx ⊃ Qx) Everything that contains sugar, tastes sweet.
(P3) Pa a is a made of chocolate.

Qa a tastes sweet. (by Classical Logic)

Ra a contains sugar. (by Singular Fact Abduction)

(∀x)(Px ⊃ Rx) All chocolate contains sugar. (by Inductive Generalization)

Table 8.1: The Flach&Kakas-Reconstruction of AG.

AG is thus reduced to a combination of singular fact abduction and inductive
generalization. More specifically, the conclusion of the AG is obtained via the
assumption that the explanation for a’s being Q can be generalized to the whole
class of objects that are P .

According to Schurz [131, p. 212], the decomposition of AG into singular fact
abduction and inductive generalization is “somewhat artificial”:25

Law-abductions are usually performed in one single conjectural
step. We don’t form the abductive hypothesis of containment of sugar
for each observed pineapple, one after the other, and then generalize
it, but we form the law-conjecture “pineapples contain sugar” at once.

25In Schurz’ example, the explanandum is the fact that all pineapples taste sweet.
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Nevertheless, it is useful to see whether the logical combination of singular fact
abduction and inductive generalization results in interesting observations, and
where it differs from the more direct approach to AG as constituted by LAr

∀.
Moreover, as will be explained below, the way we characterize the inductive step
in the reconstruction of AG slightly differs from what Schurz suggests: we need
not perform a whole series of singular fact abductions in order to be able to
generalize these. In our model, a single instance of a singular fact abduction
may already provide the basis for an induction, which gives us the conclusion of
an AG. Still, this does not lead to all an excessive amount of finally derivable
generalizations, as we will explain below.

In the remainder of this section, we will first introduce the adaptive logic IMr

for the inductive generalization of observed facts (Section 8.7.2). Next, we will
argue that in order to obtain a sensible logic for AG, one has to combine LAr

�

and IMr in a prioritized way (Section 8.7.3). We will briefly discuss the proof
theory of the resulting system (Section 8.7.4), and finally show how it handles
the prototypical examples (Section 8.7.5).

8.7.2 Adaptive Induction

Adaptive logics of inductive generalization are a well-studied branch of adaptive
logics – see [17, 29, 24, 13] and [25, Chapter 3]. In fact, a wide range of such
logics has been developed; we will only present a variation on one of the existing
systems. As all other ALs for induction, this logic models qualitative inductive
generalization – what this means will be specified below.

IMr is an adaptive logic in standard format, characterized by the triple
〈T,ΩIMr , r〉, where26

ΩIMr =df {∃Aα ∧ ∃¬Aα | A ∈ F◦}

To lighten notation, these abnormalities will be abbreviated as follows: !A =
∃A ∧ ∃¬A.27

To see how IMr allows us to obtain universal generalizations from singular
facts, note that ∃αAα `CL ∀αAα∨ (∃αAα∧∃α¬Aα). Hence whenever Γ entails
an instance of the (possibly complex) formula A, we can derive the hypothesis
∀xAx in an IMr-proof from Γ, on the condition {!A}.

Consider the following proof from Γi = {Pa, Pa ⊃ Qa,¬Pb,¬Qb∧Rc,¬Qc}:

1 Pa PREM ∅
2 Pa ⊃ Qa PREM ∅
3 ¬Pb PREM ∅
4 ¬Qb ∧Rc PREM ∅
5 ¬Qc PREM ∅

From Pa ⊃ Qa, we may can IMr-derive the inductive hypothesis that all P
are Q as follows:

26For the motivation of the requirement that A ∈ F◦, see [17, p. 11-12].
27IMr is a variant of the logic ILr from [29], which has the same set of abnormalities but CL

as its lower limit logic. Hence IMr is a conservative extension of ILr to the modal framework,
in that for non-modal premise sets Γ, CnILr(Γ) = CnIMr(Γ).
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...
...

...
...

6 ∃x(Px ⊃ Qx) 2;RU ∅
7 ∀x(Px ⊃ Qx) ∨̌ !(P ⊃ Q) 6;RU ∅
8 ∀x(Px ⊃ Qx) 7;RC {!(P ⊃ Q)}

One might think that, since Γi does not entail a counterinstance of ∀x(Px ⊃
Qx), this generalization will be finally derivable. However, we can derive a Dab-
formula from this premise set that blocks the above derivation:

...
...

...
...

8 ∀x(Px ⊃ Qx) 7;RC {!(P ⊃ Q)} X
11

9 ¬Pc ∨̌Pc -;RU ∅
10 (¬Pc ∧Rc) ∨̌(Pc ∧ ¬Qc) 4,5,9;RU ∅
11 !(P ∨ ¬R) ∨̌ !(P ⊃ Q) 1,2;10;RU ∅

As indicated, line 8 is marked at stage 11. Since the formula on line 11 is a
minimal Dab-consequence of Γi, line 8 will remain marked in every extension of
the proof.

This points to a very basic aspect of all adaptive logics of induction: all these
yield a set of generalizations that are mutually compatible with the premise set.
As the above example suggests, and as explained in much more detail in [24],
this results in a rather small set of finally derivable generalizations.

At the beginning of this section, we said that IMr models qualitative inductive
generalization. This can most easily be understood in view of a concrete example.
Consider Γ′

i = Γi ∪ {Pd,Qd}, Γ′′
i = Γi ∪ {Pd,Qd, Pe,Qe}, . . .. IMr yields the

same generalizations for all these premise sets as those that are finally derivable
from Γi. Hence, IMr does not take into account the number of instances of a
specific formula A ∈ F◦ – all that matters is which combinations of predicates
occur together in the CL-consequence set of the premises.

This has a rather important consequence for the application to AG: unlike
what is suggested by Schurz’ quote from the preceding section, one successful
singular fact abduction suffices to conditionally derive, by IMr, the generalization
that explains the observed regularity. So we may restrict ourselves to a singular
fact abduction about one “prototypical” piece of chocolate, and immediately
generalize the result of this abduction to everything that is made of chocolate.

8.7.3 The Need to Prioritize

As explained in Part I of this thesis, there are several ways to combine adaptive
logics in standard format. In the current section, we will only consider two of
them: (i) the combination of two ALs that results in a new flat AL, and (ii) the
superposition of two ALs. More specifically, we will explain why (i) does not
lead to an adequate logic for AG, and next show that (ii) provides an interesting
account of AG. Notice that both (i) and (ii) require that the ALs to be combined
share the same lower limit logic and strategy. This immediately explains why we
extended the logic ILr to the modal framework, obtaining IMr, which has the
same lower limit logic as LAr

�.
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The idea behind a flat combination of two logics AL1 = 〈LLL,Ω1, r〉 and
AL2 = 〈LLL,Ω2, r〉 was already mentioned in Chapter 2: simply define the
combination as a flat adaptive logic AL = 〈LLL,Ω1 ∪ Ω2, r〉. The resulting
system is an AL in standard format, whence all the generic definitions, proof
theoretic rules and metatheory can be transferred to AL.

Let us apply this technique to LAr
�

and IMr. We then get a logic which
we dub ILAr

�, and which takes as its set of abnormalities Ω∪ = ΩLAr
�
∪ ΩIMr .

Thus, whenever we derive A ∨Dab(∆) in an ILAr
�

-proof from Γ, for a ∆ ⊆ Ω∪,
then we may push ∆ to the condition on the next line of this proof. Similarly,
Dab(Θ) is a Dab-formula in a proof iff Θ ⊆ Ω∪.

However, such an approach does not allow us to model (interesting cases of)
AG, as we will now show. Let Γp = {∀x(Px ⊃ Qx),�∀x(Rx ⊃ Qx), Pa,¬Qb,
¬Pc ∧ Rc}. In line with the preceding, we can interpret this premise set as
follows:

• “All chocolate tastes sweet”
• “Whatever contains sugar, tastes sweet”
• “a is a piece of chocolate”
• “b does not taste sweet”
• “c is not a piece of chocolate, but c contains sugar”

This premise set seems to correspond to a realistic situation. The knowledge
that at least some things do not taste sweet seems a prerequisite to even start
wondering why chocolate tastes sweet. Also, the fact that there other things
than chocolate which contain sugar merely underlines the idea that R is not just
an accidental property, and that it allows us to explain the behavior of certain
(classes of) objects.

Note that each of the following are T-consequences of Γp: Qa,¬Pb,¬Rb,Qc.
This means that for all objects and predicates mentioned in Γp, only the value of
Ra remains undecided: Γp 0T Ra and Γp 0T ¬Ra. But this means that we can
derive a minimal Dab-consequence from this premise set, as follows:

1 ∀x(Px ⊃ Qx) PREM ∅
2 �∀x(Rx ⊃ Qx) PREM ∅
3 Pa PREM ∅
4 ¬Qb PREM ∅
5 ¬Pc ∧ Rc PREM ∅
6 Ra ∨̌ ¬Ra -;RU ∅
7 (Ra ∧ Pa) ∨̌(Qa ∧ ¬Ra) 3,6;RU ∅
8 ((Rc ⊃ ¬Pc) ∧ ¬(Ra ⊃ ¬Pa)) ∨̌(�∀x(Rx ⊃ Qx) ∧ Qa ∧ ¬Ra) 2,5,7;RU ∅
9 !(R ⊃ ¬P ) ∨̌(R ⊃ Q)a 8;RU ∅

In a similar vein, we can derive the following minimal disjunction of IMr-
abnormalities from Γp:

!(R ⊃ ¬P ) ∨̌!(P ⊃ R) (8.2)

In view of the formula on line 9 of the above proof, we cannot make the sin-
gular fact abduction that leads to Ra. But even if there was a way to circumvent
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this problem, then we would still not be able to generalize Pa ∧ Ra and hence
finally derive ∀x(Px ⊃ Rx), in view of (8.2).

The same problem remains when we replace IMr by another logic from the
class discussed in [24]. For reasons of space, we cannot present a complete argu-
ment for this claim here, but let us briefly point out why this is the case. From
the viewpoint of a logic for inductive generalization, Γp does not give us any more
reasons to believe that Ra is the case, than to believe that ¬Ra is the case. That
is, if Ra is the case, then this contradicts the hypothesis ∀x(Rx ⊃ ¬Px) – note
that this hypothesis is not contradicted by the premise set, and that there is a
positive instance for it. However, if we believe that ¬Ra is the case, then we have
the LAr

�-abnormality (R ⊃ Q)a. So at the end of the day, since abduction and
induction are put on a par, the logic does not allow us to choose between either.

One might argue that this is mainly due to the incompleteness of the premise
set Γp. That is, in real life, we know of at least some object d that is made of
chocolate and contains sugar. Indeed, if we add e.g. Pd,Rd to Γp, then the prob-
lem will disappear, since then !(R ⊃ ¬P ) becomes derivable in itself. However,
this addition begs the question whether abduction should play a role at all in
the whole process, since then we get the information ∃x(Px ⊃ Rx) for free. In
other words, if we want to model AG as a process in which both abduction and
induction play an active role, we should be able to handle cases such as Γp.

A solution for this predicament is obtained by giving abduction priority over
induction, in the reconstruction of AG. This is done by superposing IMr on
LAr

�, whence the resulting consequence relation can be defined as follows:

CnSILAr(Γ) =df CnIMr(CnLAr
�

(Γ))

Some readers might wonder why we use a superposition of logics, and not e.g.
a hierarchic combination (see Chapter 4) or a lexicographic AL (see Chapter 5).
Our motivation is twofold. On the one hand, using a hierarchic AL, we would be
able to derive the hypothesis Pa from Γp, but we would not be able to generalize
it, since !(R ⊃ ¬P ) would be in the set of unreliable formulas U?(Γ) (in view of
the minimal Dab-consequence 8.2). Put differently, the format HALr is still too
weak to model AG in cases like Γp. On the other hand, it is likely that a logic
in the formats SALr

(I) and ALr
@ would yield the expected consequences for this

example. We chose the format SALr for the sake of simplicity, since this way,
the logic can be immediately defined from LAr

� and IMr.
In the remainder of this section, we will show that SILAr gives the intended

outcome in the case of Γp, and that it is also well-behaved in each of the proto-
typical examples Γc1 − Γc6.

8.7.4 A Proof Theory for SILAr

To model reasoning with SILAr, we will use the second proof theory for super-
positions of adaptive logics, which was proposed in Chapter 3, Section 3.5. Note
that ΩLAr

�
∩ ΩIMr = ∅, whence we need not use sequences for conditions, but

can simply use sets of abnormalities ∆ ⊂ ΩLAr
�
∪ΩIMr . As explained in Chapter

3, this means that SILAr-proofs have the same outlook as ILAr
�

-proofs. The
generic rules are such that conditions in a proof can consist of both abductive and
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inductive abnormalities, and that we can apply both singular fact abduction and
inductive generalization at any point in the proof. The only difference consists
in the marking of lines at every stage of the proof.

We first use this proof theory to illustrate that SILAr gives the intended
outcome in the case of Γp = {∀x(Px ⊃ Qx),�∀x(Rx ⊃ Qx), Pa,¬Qb,¬Pc∧Rc}.
The following SILAr-proof illustrates how we can derive the hypothesis ∀x(Px ⊃
Rx) from these premises:

1 ∀x(Px ⊃ Qx) PREM ∅
2 �∀x(Rx ⊃ Qx) PREM ∅
3 Pa PREM ∅
4 Qa 1,3;RU ∅
5 Ra 4,2;RC {(R ⊃ Q)a}
6 ∃x(Px ⊃ Rx) 5;RU {(R ⊃ Q)a}
7 ∀x(Px ⊃ Rx) 6;RC {(R ⊃ Q)a, !(P ⊃ R)}

The priorities come into play where the marking is concerned. In line with the
definitions from Chapter 3, we define Dab1-formulas at stage s as disjunctions
of the members of ΩLAr

�
, derived on the empty condition. Dab(∆) is a minimal

Dab1-formula at stage s iff there is no ∆′ ⊂ ∆ such that Dab(∆′) is a Dab1-
formula at stage s. Where Dab(∆1), Dab(∆2), . . . are the minimal Dab1-formulas
at stage s, let U1

s =df ∆1 ∪ ∆2 ∪ . . .. The first step in the marking procedure is
given by the following definition:

Definition 8.1 A line with condition ∆ is 1-marked at stage s iff ∆∩U1
s (Γ) 6= ∅.

We say that Dab(∆) is a Dab2-formula at stage s iff Dab(∆) is derived on
the condition Θ ⊂ ΩLAr

�
, on a line that is not 1-marked at stage s. We define

the minimal Dab2-formulas at stage s and U2
s (Γ) accordingly. Next, we have:

Definition 8.2 A line with condition ∆ is 2-marked at stage s iff ∆∩U2
s (Γ) 6= ∅.

We say that a line is marked at stage s iff it is either 1- or 2-marked at this
stage. Derivability at a stage and final derivability are defined as in the standard
format – see Definitions 3.8 and 3.9.

Let us continue the preceding proof to illustrate how the prioritized marking
ensures that we can finally derive ∀x(Px ⊃ Rx) from Γp. First of all, we can
derive two disjunctions of abnormalities, in view of the preceding subsection:

1 ∀x(Px ⊃ Qx) PREM ∅
2 �∀x(Rx ⊃ Qx) PREM ∅
3 Pa PREM ∅
4 Qa 1,3;RU ∅
5 Ra 4,2;RC {(R ⊃ Q)a}
6 ∃x(Px ⊃ Rx) 5;RU {(R ⊃ Q)a}
7 ∀x(Px ⊃ Rx) 6;RC {(R ⊃ Q)a, !(P ⊃ R)}X11

2

8 Ra ∨ ¬Ra -;RU ∅
9 ¬Pc ∧Rc PREM ∅
10 !(R ⊃ ¬P ) ∨̌(R ⊃ Q)a 2,3,8,9;RU ∅
11 !(R ⊃ ¬P ) ∨̌!(P ⊃ R) 3,8,9;RU ∅
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Note however that only the formula on line 11 is a Dab2-formula; the for-
mula on line 10 contains both kinds of abnormalities. This means that, on the
one hand, U1

11(Γp) = ∅, whence line 6 remains unmarked. On the other hand,
U2

11(Γp) = {!(R ⊃ ¬P ), !(P ⊃ R)}. As a result, line 7 is 2-marked at stage 11.
This problem is overcome by showing that the first member of the Dab-formula
on line 11 can be derived in itself, using the abnormalities from ΩLAr

�
:

...
...

...
...

7 ∀x(Px ⊃ Rx) 6;RC {(R ⊃ Q)a, !(P ⊃ R)}
8 Ra ∨ ¬Ra -;RU ∅
9 ¬Pc ∧Rc PREM ∅
10 !(R ⊃ ¬P ) ∨̌(R ⊃ Q)a 2,3,8,9;RU ∅
11 !(R ⊃ ¬P ) ∨̌!(P ⊃ R) 3,8,9;RU ∅
12 !(R ⊃ ¬P ) 10;RC {(R ⊃ Q)a

Note that the formula on line 12 is a Dab2-formula at stage 12 (it is a dis-
junction of members of ΩLAr

�
, and it is derived on a line that is not 1-marked).

Hence the formula on line 11 is not a minimal Dab2–formula at stage 12. As
a result, the abnormality !(P ⊃ R) is reliable at stage 12, whence line 7 is not
2-marked at this stage.

8.7.5 The Prototypical Examples

The standard case Recall the first prototypical premise set Γc1 = {∀x(Px ⊃
Qx),�∀x(Rx ⊃ Qx), Pa,¬Qb}. As could be expected, Γc1 `SILAr ∀x(Px ⊃ Rx).
The following proof illustrates how SILAr models the reduction of AG to a
combination of singular fact abduction and inductive generalization, as proposed
by Flach & Kakas:

1 ∀x(Px ⊃ Qx) PREM ∅
2 �∀x(Rx ⊃ Qx) PREM ∅
3 Pa PREM ∅
4 ¬Qb PREM ∅
5 Qa 1,3;RU ∅
6 Ra 2,5:RC {(R ⊃ Q)a}
7 ∀x(Px ⊃ Rx) 3,6;RC {(R ⊃ Q)a, !(P ⊃ R)}

At stage 7 of the above proof, ∀x(Px ⊃ Rx) is finally derived from Γc1, which
is as expected.

Extensions of Γc1 Let us now consider the cases modeled by Γc2 = Γc1 ∪
{Qc,¬Rc}. We can continue the above proof as follows:

7 ∀x(Px ⊃ Rx) 3,6;RC {(R ⊃ Q)a, !(P ⊃ R)}
8 Qc PREM ∅
9 ¬Rc PREM ∅
10 ∃x(Px ⊃ Rx) 3,7;RU ∅
11 ∃x((¬Px ∧ Qx) ⊃ Rx) 6;RU {(R ⊃ Q)a}
12 ¬∀x(Px ⊃ Rx) ∨̌ ¬∀x((¬Px ∧ Qx) ⊃ Rx) 8,9;RU ∅
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13 !(P ⊃ R) ∨̌!((¬P ∧ Q) ⊃ R) 10,11,12;RU {(R ⊃ Q)a}

At stage 13 of the above proof, line 7 becomes marked in view of the Dab2-
formula on line 13. Moreover, there is no way to render line 7 unmarked in an
extension of the proof, and hence ∀x(Px ⊃ Rx) cannot be finally SILAr-derived
from Γc2.28 How should we interpret this result?

From the viewpoint of the inductive logic, there is no more support for the
generalization ∀x(Px ⊃ Rx) than for ∀x((¬Px ∧ Qx) ⊃ Rx). If the former is
true, than ¬Pc holds, whence we can obtain a counterinstance to the latter. If
the latter is true, then Pc holds, which means that we have a negative instance
of the former.

Nevertheless, if we add the premise ¬Pc to Γc2, we can finally derive ∀x(Px ⊃
Rx). The reason is that in this case the second disjunct of the Dab-formula on
line 13 is derivable in itself. Hence, Γc3 `SILAr ∀x(Px ⊃ Rx). So another way
to interpret the difference between LAr

∀ and SILAr with respect to Γc2, is that
the latter system directs our search for additional data: it tells us to find out
whether or not c has property P . If it turns out that Pc is the case, then the
hypothesis ∀x(Px ⊃ Rx) is falsified. If, however, ¬Pc is the case, then we can
again derive ∀x(Px ⊃ Rx).

Another point to note is the fact that, even where AG fails, SILAr still allows
us to draw singular fact abductions. So for instance in the case of Γc4, we can
still uphold the hypothesis Ra, even though the general hypothesis ∀x(Px ⊃ Rx)
has to be retracted:

...
...

...
...

6 Ra 2,5:RC {(R ⊃ Q)a}
7 ∀x(Px ⊃ Rx) 3,6;RC {(R ⊃ Q)a, !(P ⊃ R)}X17

...
...

...
...

14 Pd PREM ∅
15 ¬Rd PREM ∅
16 ∃x¬(Px ⊃ Rx) 14,15;RU ∅
17 !(P ⊃ R) 10;RU ∅

Multiple Explanatory Hypotheses The pitfalls of abduction (as spelled out
in Section 8.4) are avoided by SILAr in exactly the same way as by LAr

�
(see

Section 8.4), since the abductive step in SILAr is modeled by the same set of
abnormalities. For reasons of space, we will only illustrate this for the case of
multiple explanatory hypotheses – the other cases are completely analogous.

Consider Γc5 = {∀x(Px ⊃ Qx),�∀x(Rx ⊃ Qx),�∀x(Sx ⊃ Qx), Pa,¬Qb}.
In the following SILAr-proof from Γc5, we first derive the explanatory hypothesis

28One way to save the hypothesis ∀x(Px ⊃ Rx) in the case of Γc2 is by replacing IM
r

with a more refined logic of induction, i.e. one that prioritizes stronger generalizations over
weaker ones. As explained in [24], these logics first minimize abnormalities !A where A only
contains one predicate; next they minimize abnormalities !B with two predicates, and so on.
As a result, the generalization ∀x(Px ⊃ Rx) would be finally derivable, and the generalization
∀x((¬Px∧Qx) ⊃ Rx) would be defeated. However, even though this seems to solve the problem
with the current case, this would be merely an ad hoc solution with no real justification.
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Ra, and generalize it to ∀x(Px ⊃ Rx) (see lines 6, resp. 7). After that, a Dab-
formula is derived that blocks these derivations (line 11). Finally, the weaker
hypothesis Ra ∨ Sa is derived (line 13), which allows us to finally derive the
generalization ∀x(Px ⊃ (Rx ∨ Sx)) (line 14).

1 ∀x(Px ⊃ Qx) PREM ∅
2 �∀x(Rx ⊃ Qx) PREM ∅
3 �∀x(Sx ⊃ Qx) PREM ∅
4 Pa PREM ∅
5 ¬Qb PREM ∅
5 Qa 1,4;RU ∅
6 Ra 2,5;RC {(R ⊃ Q)a} X

11−
1

7 ∀x(Px ⊃ Rx) 4,6;RC {(R ⊃ Q)a, !(P ⊃ R)} X
11−
1

8 ¬Ra ∨̌ ¬(Sa ∧ ¬Ra) -;RU ∅
9 (Qa ∧ ¬Ra) ∨̌(Qa ∧ ¬(Sa ∧ ¬Ra)) 5,8;RU ∅
10 �∀x((Sx ∧ ¬Rx) ⊃ Qx) 3;RU ∅
11 (R ⊃ Q)a ∨̌((S ∧ ¬R) ⊃ Q)a 2,9,10;RU ∅
12 �∀x((Rx ∨ Sx) ⊃ Qx) 2,3;RU ∅
13 Ra ∨ Sa 5,12;RC {((R ∨ S) ⊃ Q)a}
14 ∀x(Px ⊃ (Rx ∨ Sx)) 4,13;RC {((R ∨ S) ⊃ Q)a, !(P ⊃ (R ∨ S))}

As we can see in the above proof, the derivation of the stronger hypothesis
∀x(Px ⊃ Rx) is blocked because it relies on the hypothesis Ra – note that lines
6 and 7 are 1-marked from stage 11 on. By a similar reasoning, the hypothe-
ses Sa and ∀x(Px ⊃ Sx) are not finally SILAr-derivable from Γc5. In other
words, already on the level of abduction, the logic enforces that, whenever two
explanations are available, we can only finally derive their disjunction.

8.8 Induction And AG In One Context?

Recall that in our definition of AG, we assumed that the generalization “all A are
B” in the pattern of AG is given beforehand. Under this assumption, it turned
out that LAr

∀ and SILAr yield very similar (though not identical) consequences
– we refer to our discussion of the examples Γc1 − Γc5 to illustrate this fact.

There is however one specific feature of SILAr which heretofore remained
largely unnoticed, precisely because of the assumption that underlies our defini-
tion of AG. Consider the following premise set:

Γd = {Pa1, Qa1, . . . , Pa9, Qa9,�∀x(Rx ⊃ Qx)}

SILAr allows us to derive Ra1, . . . , Ra9 and ∀x(Px ⊃ Rx) from Γd. That is,
by LAr

�
, we can finally derive Rai for all i ∈ {1, . . . , 9}. From Pa1, Ra1 we can

finally derive ∀x(Px ⊃ Rx) by IMr. Hence, thanks to the inductive behavior of
SILAr, it allows us to derive the explanatory hypothesis of an AG in cases like
Γd.

At this point, one may ask: is this behavior of SILAr justified? In the
remainder, we will argue that the answer depends i.a. on (i) the alleged variability
of the kind of objects we are reasoning about, and (ii) pragmatic factors, such as
the effort that is needed to find out whether a plausible generalization is indeed
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true or highly likely, and the risk involved in getting it wrong. We will not spell
out a whole theory of these factors – doing so would require yet another thesis
–, but merely illustrate them to show that in some cases, the inductive power of
SILAr can be justified.

Claim (i) is but a specific instance of a more general theory propagated by
Thagard and Nisbett [146]. They argue on the basis of psychological evidence,
examples from the history of science and thought experiments that background
knowledge concerning the variability in kinds is crucial to understand and justify
any sort of inductive generalization.29 We give a brief description of the notion of
variability from [146] below. However, let us first give two more realistic examples
that illustrate the distinction between what we call variable and invariable kinds
or classes of objects, in the context of AG.

Example 8.1 Professor Schmitt is teaching a course for the students of psy-
chology and biology. Before he starts his classes, Schmitt checks the list with
names of students who subscribed to this course. There are about 20 students
from biology, and about 30 from psychology on the list. When Schmitt has gone
through half of his list, he notes that all 13 students from the psychology group
which he proclaimed so far are absent. There are also 2 absent biology students,
but at least 7 of them are there. At that point, Schmitt remembers that one of
the psychology student’s father has died two days ago, and that his funeral takes
place today. Two students in psychology, Nick and Jess, have notified him that
they would be attending the funeral, but probably more of them actually attended
it. Also, some students may be absent for more usual reasons, such as illness.

Example 8.2 When walking in New York’s Central Park, Winston notes that
some oaks in the park have holes in some of their leaves. These holes are not
very easy to spot, but every oak that he has inspected carefully, turns out to have
them. This makes Winston – an amateur biologist – curious. After consulting the
internet, he finds out that there are two possible explanations for such holes: ei-
ther the oaks are inhabited by a parasitic plant that affects their immunity against
sour rain, or they are infected by a species of caterpillars that eat bits of their
leaves.

In the first example, it seems more plausible that Schmitt first goes through
the whole list, before he raises the hypothesis that each of his psychology students
(from this group) is either ill, or went to the funeral. In the second example, it
is much more likely that Winston concludes right away that all oaks in the park
have holes in their leaves, and that each oak in the park is either inhabited by
a parasitic plant, or infected by caterpillars.30 In Schmitt’s case, it is clear that
a very variable class of objects, viz. students, is considered. Especially with
regards to their social behavior, students do all kinds of things, and it would be
very surprising that they are all absent. On the other hand, if a number of oaks

29The more general idea that background knowledge is crucial to understand the applicability
of certain inductive methods, can be traced back to Mill [112]. More recently, it has also been
advocated i.a. by Goodman [65], Davies [45] and Norton [116].

30In fact, it seems plausible that Winston draws an even stronger conclusion, viz. that either
all oaks in the part are inhabited by a parasitic plant, or that they are all infected by caterpillars
– I return to this point in the concluding section.
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from a park have holes in its leaves, then it seems highly unlikely that this is so
by accident, and that other oaks in the same park do not share this deformity.
The bottom line is that, whether or not we are allowed to reason inductively,
depends in part on our background knowledge concerning the variability of the
kinds or classes we reason about.

Some qualifications are needed here, since the concept of variability is open for
many interpretations. First of all, it needs to be relativized to a target property
or a group of target properties of the reasoning process. For instance, if we are
considering their chemical behavior, then the class of all objects that are solely
made of iron is a very homogeneous class. If we are considering the way these
objects are used, then there are very few relevant features that are shared by
these objects. Likewise, the biological properties of psychology students provides
a much more stable basis for inductive inferences than their social lives.

Second, even if we relativize it to the reasoning process at hand, the distinction
between variable and invariable kinds is not absolute. To some extent, even the
social behavior of students is homogeneous – if only for the fact that they interact,
follow certain trends in fashion, and follow the same courses. Nevertheless, in a
significant number of contexts – cf. Schmitt’s reasoning versus that of Winston – it
is clear on which side of the distinction we are. We refer to [146] for more examples
and an elaborate discussion of the role of variability in inductive methods.

We also claimed that induction can be justified in terms of pragmatic factors.
When it is very difficult to find out whether indeed, all members of a specific class
share a certain property, one might simply take this for granted and continue
reasoning until and unless problems arise. Also, if there is much risk involved,
the reasoner may be less eager to raise a hypothesis that is crucial for his further
actions.

These two factors can again be illustrated by means of the above two exam-
ples. In the case of Schmitt, it is plausible that he will first go over the entire
list of students, since this was after all what he planned to do – it does not take
any additional effort. In principle, Winston could also check whether all trees of
the park have the same problem. However, since he is merely interested in these
trees for the sake of curiosity, Winston will not bother doing this. If Winston
were a biologist working for the New York Community, he would have needed
strong evidence that indeed, all or most of the trees in the park have holes in
their leaves, before he could act on the alleged cause of this problem.

Much more can be said about the question whether, and in which contexts,
a given inductive method is justified – see [165] for a gentle introduction to the
literature on this subject. However, we merely wanted to illustrate the fact that
the distinctions from that literature can be applied in the context of AG as well,
and that from this perspective, one can justify the behavior of SILAr in cases
like Γd.

8.9 Summary and Outlook

As argued in this chapter, abduction of generalizations (AG) is ubiquitous in
everyday and scientific reasoning. We provided a first general analysis of this
pattern, and argued that the notion of an explanatory framework should be
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embodied in any formal model for AG. This idea was implemented in two adaptive
logics. The following points summarize our main results:

• Given a few preliminary adjustments (cf. the restrictions on the set of ab-
normalities of LAr

∀), we can obtain a very sensible and powerful logic for
AG, by letting this inference pattern figure as a kind of default rule in the
logic LAr

∀.

• The Flach & Kakas reconstruction of AG in terms of a combination of sin-
gular fact abduction and inductive generalization can only be implemented
in an adaptive logic if we prioritize abduction over induction. The result-
ing logic, SILAr, leads to overall very similar consequences as LAr

∀, when
applied to prototypical examples of AG.

• Due to its inductive power, SILAr allows us to derive the explanatory
hypothesis of an AG in the absence of any mere generalization. Whether
this is justified, depends on background knowledge about the variability of
kinds we reason about, and pragmatic factors such as the effort it takes to
check an inductive hypothesis, and the risk involved in getting it wrong.

One interesting question, which we left untouched so far, is whether the Min-
imal Abnormality-variants of LAr

∀ and SILAr would display interesting differ-
ences with the two logics considered here. For instance, it seems that in the
Winston example from the previous section, the flat adaptive logic LAm

∀ , de-
fined by the triple 〈T,ΩLAr

∀
,m〉 allows us to finally derive the conclusion that

“either all oaks in the park are inhabited by a parasitic plant, or they are all
infected by caterpillars.” Note that this conclusion is stronger than what LAr

∀

allows us to derive, viz. “each oak in the park is either inhabited by a para-
sitic plant, or infected by caterpillars.” More generally, consider the following
situation:

(P1) ∀(A ⊃ B) (all A are B, a mere generalization)
(P21) �∀(C1 ⊃ B) (that something is C1, explains why it is B)

...
(P2n) �∀(Cn ⊃ B) (that something is Cn, explains why it is B)

In this case, there seem to be two options: either we infer ∀(A ⊃ (C1∨ . . .∨Cn)),
or we infer the stronger hypothesis ∀(A ⊃ C1)∨ . . .∨∀(A ⊃ Cn). The Reliability-
variants take the first option, whereas the Minimal Abnormality-variants seem to
take the second. More work is needed however, to see whether this is indeed the
case, and to find out which of the two strategies is preferable in a given context.

There are various other topics for further research as well. Several enrich-
ments of our formal model can be studied, in order to deal with e.g. probabilistic
information (see Section 8.2.1), causal arguments (see Section 8.3.1), and abduc-
tive anomalies.31

31In Aliseda’s terminology [4], an anomaly is a fact, the negation of which follows from our
background theory.
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Case studies of some of the historical examples mentioned in Section 8.2 may
shed new light on the relation between AG, unification and other patterns of
abduction. Such case studies may help us to get more grip on the difference
between the abductive methods characterized by (variations on) the logics LAr

∀

and SILAr.
Finally, we may look at other patterns of abduction as put forward by Schurz,

such as common cause abduction and second-order existential abduction [131]. If
we are able to characterize each of these methods by means of (flat or prioritized)
adaptive logics, this further substantiates the claim that ALs provide a unifying
framework for the study of defeasible reasoning in general, and abduction in
particular.



Chapter 9

Logics for Relevant Belief
Revision

This chapter is based on the papers “‘The Dynamics of Relevance: Adaptive Belief
Revision” (Synthese, conditionally accepted), co-authored by Peter Verdée, and
“Prime Implicates and Relevant Belief Revision” (Journal of Logic and Compu-
tation 2011; doi: 10.1093/logcom/exr040). We thank two anonymous referees
for their comments on the first of these two papers. I thank Audun Stolpe, David
Makinson, Meghyn Bienvenu, Giuseppe Primiero, two anonymous referees and
the anonymous handling editor for their fruitful comments on the second paper.

9.1 Introduction

Belief revision has been a subject of intensive research since the middle of the
1980s. The starting point of what is often called “the logic of belief revision” [74]
is the following question: given a set of initial beliefs Υ formulated in a proposi-
tional language, and some piece of new information A that possibly contradicts
Υ, how are we to revise Υ such that A can be incorporated? This is typically
done by defining a revision operation ⊕, which is a function that maps every
couple 〈Υ, A〉 to a set of formulas Υ⊕A, called the revision set of Υ by A.

An important distinction in this domain is that between theories, i.e. CL-
closed sets of formulas (also called belief sets) and belief bases. A belief base Υ can
be any set of propositional formulas. Hence, theories are a border case of belief
bases. Similarly, one distinguishes between theory-based revision operations, and
revisions of a belief base. We will consider belief revision from the more general
perspective of belief bases, although we will treat different belief bases that are
CL-equivalent in the same way – this will be explained below.

In the standard approach, initiated by Alchourron, Gärdenfors and Makinson,
belief revision is reformulated as a combination of belief contraction and belief
expansion, via the so-called Levi identity (after Isaac Levi). To contract Υ by B
means to select a Υ′ ⊆ Υ (or a Υ′ ⊆ CnCL(Υ)) which maximally approximates
Υ, but such that Υ′ 0CL B. To expand Υ by C simply means to add C to Υ —
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for theory-based expansion, the resulting set is closed under CL. The revision of
Υ by A is then reformulated as follows: we first contract Υ by ¬A – this gives
us the contraction set Υ 	 ¬A — and next we expand the latter set by A.

In the current and next chapter, we will focus on revision as an independent
operation. In Chapter F of the appendix, the operation of contraction is also
considered.

One way to understand the logic of belief revision, is as a two-sided endeavor:
on the one hand, one formulates postulates (also called axioms) that any op-
eration ⊕ should obey and, on the other hand, one gives generic definitions of
revision operations. An example of a postulate is the Success postulate, which
requires that for all sets of beliefs Υ and all formulas A, A ∈ Υ ⊕ A. An exam-
ple of a “generically defined” revision operation is partial meet contraction – see
below. The formal challenge for the logic of belief revision is then to prove repre-
sentation theorems, which link these two characterizations of revision operations
to each other. In addition, several scholars study the relations between various
ways to define revision operations – e.g. revision operations based on entrench-
ment levels [57], those based on kernel contraction [72], partial meet revisions [3],
model-based revision operations [67], etc.

The current chapter concerns a specific axiom that was formulated by Rohit
Parikh, viz. the Axiom of Relevance, spelled out in terms of the so-called “finest
splitting” of a set of beliefs. We will give the definition of the finest splitting and
the axiom of relevance in Section 9.2. Intuitively, this axiom states that whenever
a proposition is in the set of initial beliefs, and the new information you receive
is not related to this proposition, then you should hold on to this proposition –
even if some of your other beliefs have to be revised. That two propositions are
related is specified in terms of a relation between the schematic letters that occur
in them and the set of initial beliefs.

Suppose you initially believe p∧ q. Now if you learn that actually p is not the
case, then the relevance axiom states that this should not alter your belief in q.
So although you have to abandon the belief in p and hence also in p∧ q, you will
stick to q. As we will see below, there are much more subtle and complex cases,
all of which can be decently handled by the relevance axiom.

Since the publication of [117], Parikh’s definition of the finest splitting of a
set of beliefs and the related axiom of relevance have received quite some atten-
tion in the literature on belief revision. In their [87], Kourousias and Makinson
extended Parikh’s splitting result to the infinite case and showed how the AGM
partial meet revision operations can be adapted in such a way that the relevance
axiom is obeyed. Stolpe applied this result to overcome a triviality problem in
input-output logic [135]. Makinson discussed the relation of propositional rele-
vance modulo the finest splitting to propositional relevance modulo a canonical
form, and proved the two notions are equivalent [94]. Investigations into the
computational aspects of finest splittings took a start with [167].

Although the relevance axiom has by far not the same status as the AGM
postulates for belief revision, many authors find it useful to prove that the revision
operations they define obey this additional axiom – see e.g. [38, 120, 43, 168].
The current chapter takes a step further in this direction: it presents a series of
logics for belief revision that not only warrant relevance, but also provide a more
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dynamic account of the concept of relevance itself.

A key feature of these logics is that their proof theory models revision as a
process in which beliefs are analyzed only as soon as they turn out to be relevant
to the new information. It will be argued that this gives relevant belief revision a
natural flavor. Moreover, it will be shown that relevance-obeying belief revision
can take on several distinct forms, each of which are nicely captured within the
unifying framework of adaptive logics.

The logics we will present each characterize a revision operation in a direct
way, i.e. without the usual detour via a contraction. They are formulated in a
modal framework, which makes it possible to draw a distinction between initial
beliefs and the revision set in the object language: initial beliefs are preceded
by a �, whereas the revision set consists of all the non-modal formulas that are
derivable from the premise set by the logic under consideration. It is possible
to define similar systems that characterize relevant contraction and to define
revision operations from it, using a bi-modal language, but this would complicate
the formal framework without adding much in return – in the end, revision is
what matters for the logic of belief revision.

The revision operations can be applied to both belief bases and theories, but
they always result in a CL-closed revision set. When applied to theories, they
behave exactly like the revision operations in the sense of the AGM framework.
Furthermore, they will be shown to satisfy all Gärdenfors’ postulates for belief
revision, as stated in [56].

The remainder of this chapter is structured as follows. We will recapitulate
the most salient results in the context of relevant belief revision in Section 9.2.
Then we will introduce two conceptual distinctions: one between global and local
analysis of a set of beliefs, and one between the external and internal dynamics
of belief revision (Section 9.3). These distinctions will help us to clarify the main
goal of this chapter, i.e. to present the eight adaptive logics for belief revision.
These logics model relevant belief revision by local analysis, and capture the
internal dynamics of (relevant) belief revision.

In Section 9.4, the logics ARr
1 and ARm

1 are presented. We will present some
examples in Section 9.5 to illustrate the basic features of the ARr

1-proof theory,
and highlight its relation to the concepts we introduced in Section 9.3. After that,
we will show how small variations in the definition of ARr

1, resp. ARm
1 lead to

three other distinct couples of logics, which each determine their own distinct
revision operations (Section 9.6). We will illustrate the differences between these
logics with the aid of examples. Section 9.8 lists the most important meta-
theoretic properties of the logics we discussed. We make some concluding remarks
in Section 9.9.

9.2 Relevant Belief Revision

9.2.1 The Axiom of Relevance

Recall that Wc refers to the set of well-formed formulas of propositional classical
logic, S to the set of sentential letters, and that W l

c = S ∪ {¬A | A ∈ S}. In
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the remainder, we use A,B,C, . . . as metavariables for sets of sets of formulas.1

Where A ∈ Wc, resp. ∆ ⊆ Wc, let E(A), E(∆) denote the set of sentential letters
that occur in A, resp. ∆. We use

∨

∆ (
∧

∆) to denote the classical disjunction
(resp. conjunction) of the members of ∆, where in this notation, ∆ is always
assumed to be finite (if ∆ = ∅, then

∨

∆ and
∧

∆ denote the empty string;
if ∆ = {A}, then

∨

∆ =
∧

∆ = A). We use
∨

i∈I Ai (
∧

i∈I Ai) to abbreviate
∨

{Ai | i ∈ I} (resp.
∧

{Ai | i ∈ I}). Finally, let ∆¬ =df {¬A | A ∈ ∆}.
In the remainder, we will generalize the notion of revision in such a way that

the new information is also conceived of as a set, denoted by (notational variants
of) Ψ.2 Hence revision becomes an operation ℘(Wc) × ℘(Wc) → ℘(Wc). This
generalization will be very useful in Chapter 10, where we consider a specific kind
of iterated revisions. The classical revision operations in the AGM sense – and
those which we are mostly concerned with in the current chapter – are thus of the
form Υ⊕{A}. However, to simplify the reading, we will slightly abuse notation
and denote them by Υ⊕A when we consider concrete examples.

The Rationality Postulates. In his [55] and [56], Gärdenfors formulates pos-
tulates that every operation for belief revision should fulfill. These postulates can
be stated as follows:3

G1 Closure: Υ⊕Ψ = CnCL(Υ⊕Ψ)
G2 Success: Ψ ⊆ Υ⊕Ψ
G3 Inclusion: Υ⊕Ψ ⊆ CnCL(Υ ∪ Ψ)
G4 Vacuity: If Υ ∪ Ψ is consistent, then Υ⊕Ψ = CnCL(Υ ∪ Ψ)
G5 Consistency: If Ψ is consistent, then Υ⊕Ψ is consistent
G6 Extensionality: If Ψ a`CL Ψ′ , then Υ⊕Ψ = Υ⊕Ψ′

There are two supplementary postulates, i.e. Superexpansion and Subexpan-
sion, which are often cited in the belief revision literature. Following the sugges-
tion of a referee, these are spelled out in Appendix E, where their relation to the
logics presented in this chapter is discussed. However, for our present purposes,
it suffices to focus on the above six postulates, often called the basic rationality
postulates.

As Parikh remarks in [117], the basic rationality postulates are still too weak,
in that they allow for the “trivial update” (henceforth ⊕T). This operation is
defined as follows: if Υ∪Ψ is consistent, then Υ⊕TΨ =df CnCL(Υ∪Ψ); otherwise,
Υ⊕TΨ =df CnCL(Ψ) . As Parikh notes, “this is unsatisfactory, because we would
like to keep as much of the old information as possible [even when it contradicts
the new information]. Hence the above list [= the list of postulates] needs to be
supplemented to rule out the trivial update” [117, p. 3].

As Kourousias and Makinson explain in [87], this problem can easily be gen-
eralized to revisions of all kinds of belief bases. For example, when revising the

1For some specific sets, such as e.g. Φ(Γ), this convention is violated in order to stay in line
with the notational conventions from the Ghent group of logicians.

2Fuhrmann and Hansson consider contraction and revision operations in view of sets of
propositions in their [53]. As they show, many results from the traditional account – in which
the new information is a single formula – can be generalized to this setting.

3This list is based on the one from [74], but generalized to be applicable to revisions by sets.
Also, the Vacuity postulate is generalized in order to include the case where Υ 6= CnCL(Υ).
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base Υ1 = {p ∧ q} by ¬p, there are “rational” (in the sense of [73]) belief op-
erations that yield {¬p} as the only resulting belief, hence removing both the
implicit beliefs p and q.

The Axiom of Relevance. Parikh’s positive contribution consists in the for-
mulation of an additional postulate, i.e. the axiom of relevance P. To spell out
this axiom, he defines the finest splitting of a set of formulas. This requires some
notational preparation. A partition A = {Λi}i∈I of a set ∆ is a set of non-empty,
pairwise disjoint sets such that

⋃

i∈I{Λi} = ∆. In this notation, the sets Λi are
called the cells of A.

Definition 9.1 ([94]: Def. 3.1) Let E = {Λi}i∈I be a partition of S. We say
that E is a splitting of Γ iff there is a ∆ =

⋃

i∈I ∆i such that each E(∆i) ⊆ Λi
and ∆ a`CL Γ.4

Remark that a splitting of Υ is not a partition of Υ itself, but of the letter set
S. Intuitively, a splitting tells us how we may cut S into distinct subsets Λi, in
such a way that we can express Γ by distinct sets of formulae ∆i, each expressed
by means of letters that only belong to one set Λi.

Example 9.1 Let Υ2 = {(p ∨ q) ∧ r,¬r ∨ s, q ∨ t, r ∨ u}. Note that this set is
CL-equivalent to Υ′

2 = {p ∨ q, q ∨ t, r, s}. From the latter, we may generate the
following splittings of Υ2:

E1(Υ2) = {S}
E2(Υ2) = {{p, q, t}, {r, s}} ∪ {{A} | A ∈ S − {p, q, r, s, t}}
E3(Υ2) = {{p, q, t}, {r}, {s}}∪ {{A} | A ∈ S − {p, q, r, s, t}}

E is at least as fine as E′ iff every cell of E′ is the union of cells of E; E is
finer than E iff it E is at least as fine as E′ but the converse fails. Note that if
E is a splitting of Γ, and E is finer than the partition E′ of S, it immediately
follows that E′ is also a splitting of Γ (see [117, pp. 4-5]). We say that E is a
finest splitting of Γ iff there is no splitting E′ of Γ that is finer than E.

Example 9.2 Take Υ2 from Example 9.1. Note that E2(Υ2) is finer then E1(Υ2),
and E3(Υ2) is finer then E2(Υ2). Provably, E3(Υ2) is a finest splitting of Υ2.

Note that if Υ a`CL Υ′, and A ∈ S−E(Υ′), then {A} is a cell of a splitting of
Υ – see Example 9.1: {u} is a cell in E3(Υ2). To avoid clutter, we will henceforth
only mention the letters that are non-redundant in Υ when we represent splittings
of Υ. E.g. E3(Υ2) will be represented as {{p, q, t}, {r}, {s}}.

As we will explain below, the following technical result is crucial for Parikh’s
notion of relevance:

Theorem 9.1 ([117] for the finite case; [87] for the general case) Every
Γ ⊆ Wc has a unique finest splitting.

4The idea of a splitting originates in [117]. I use Makinson’s definition because it includes
the case where Γ is infinite.
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Parikh uses the finest splitting to define his notion of relevance in the context
of belief revision. However, in Parikh’s initial formulation, relevance still depends
heavily on the exact way we formulate the new information Ψ. For instance,
according to Parikh, q is not relevant to the revision of {p ∧ q} by ¬p, although
it is relevant to the revision of {p ∧ q} by ¬p ∧ (q ∨ ¬q), which is equivalent
to ¬p. This small inconvenience is overcome by the notion of a least letter-set
representation from [93, 94]:

Definition 9.2 Ψ∗ is a least letter-set representation of Ψ iff (i) Ψ∗ a`CL Ψ
and (ii) for every ∆ such that ∆ a`CL Ψ, E(∆) ⊆ E(Ψ∗).

As shown in [93], every set Ψ has a least letter-set representation Ψ∗. Let
E∗(Ψ) = E(Ψ∗), where Ψ∗ is an arbitrary least letter-set representation of Ψ.5

We call E∗(Ψ) the least-letter set of Ψ. Given the uniqueness of E∗(Ψ), and the
uniqueness of the finest splitting of Υ, we can define relevance to Υ⊕Ψ (Υ	Ψ)
as follows:6

Definition 9.3 Let E be the finest splitting of Υ. We say that a formula B
is irrelevant to the revision (contraction) of Υ by Ψ iff for every cell Λi ∈ E:
Λi ∩ E∗(Ψ) = ∅ or Λi ∩ E(B) = ∅.

Note that relevance to the revision of Υ by A is equivalent to relevance to
the contraction of Υ by A. Also, note that where Υ a`CL Υ′ and Ψ a`CL Ψ′,
relevance to the revision (contraction) of Υ by Ψ is equivalent to relevance to
the revision (contraction) of Υ′ by Ψ′. Hence relevance is a syntax-independent
notion, i.e. it is independent of the way we represent the information embodied
by Υ and Ψ.

The preceding definitions finally allow us to state Parikh’s axiom of relevance.
His original formulation of this axiom is the following:

P Relevance: If B ∈ Υ is irrelevant to the revision (contraction) of Υ by Ψ,
then B ∈ Υ⊕Ψ (B ∈ Υ 	 Ψ)

However, Parikh only intends to apply this axiom to CL-theories – for bases,
it would not solve the above problem. Consider again the example Υ1: the
formula p ∧ q ∈ Υ is relevant to the revision of Υ by ¬p. Hence if we take P
literally, there is no problem in dropping p ∧ q, which is the only belief in Υ.
In order to deal with both belief bases and CL-theories, we may generalize the
axiom as follows:7

Pg (Generalized) Relevance: If B ∈ CnCL(Υ) is irrelevant to the revision (con-
traction) of Υ by Ψ, then B ∈ CnCL(Υ⊕Ψ) (B ∈ CnCL(Υ 	 Ψ))

Example 9.3 Consider the contraction of Υ2 by r. If Pg is obeyed, then this
implies that p ∨ q, p ∨ t and s are in the contraction set of Υ2 by r.

5Every formula A, resp. set of formulas Γ has infinitely many least letter-set representations.
E.g. p, p ∧ p, p ∧ p ∧ p, . . . are all least letter-set representations of p.

6In [94], Makinson also uses the least letter-set representation of Ψ to define relevance.
7Whenever Υ, Υ⊕Ψ and Υ	Ψ are closed under CL, as in the traditional AGM-approach,

this formulation reduces to Parikh’s original axiom.
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Henceforth, I will take this more general relevance-axiom as the point of refer-
ence. As explained in Appendix F, axiom Pg only makes sense if we assume that
Υ is consistent; otherwise it yields a revision set that is arguably nonsensical. To
solve this problem, and hence to apply the relevance axiom to inconsistent theo-
ries in a sensible way, a notion of subclassical relevance is developed in Chapter
F.

Normalized Partial Meet Revision. The best-known syntax-based class
of revision functions are partial meet revisions, as defined in [3]. Where the
new information is expressed by a single formula A, every partial meet revision
operation can be defined as follows:

Definition 9.4 (i) let Υ ⊥̇A be the set of all maximal subsets ∆ of Υ that do
not imply A.

(ii) let γ be a selection function, such that for every Υ, A: if Υ ⊥̇A 6= ∅, then
γ(Υ ⊥̇A) is a non-empty subset of Υ ⊥̇A; otherwise, γ(Υ ⊥̇A) = {Υ}.

(iii) let Υ ⊕γ A = CnCL(
⋂

γ{Υ ⊥̇¬A} ∪ {A}).

It was shown in [3] that partial meet revision obeys all the postulates G1 up
to G6 when applied to CL-closed sets. Also, whenever a revision operation on
a CL-closed set obeys G1-G6, then it is equivalent to a partial meet contraction
– this result is the most famous representation theorem of the AGM framework.
However, Parikh established the following fact:

Fact 9.1 There are partial meet revisions that do not obey P.

We refer to [117, 87, 86] for examples and discussions of this fact. In their
[87], Kourousias and Makinson argue in favor of a contextual approach to this
fact: sometimes, so they claim, P seems too strong in the sense that it neglects
the specific formulation of the initial beliefs; however, in other cases, one might
want to ensure that P is guaranteed. In the latter case, it is possible to tweak
partial meet revision in such a way that relevance is obeyed. This requires that
we first define the set of canonical forms of Υ:

Definition 9.5 Where E = {Λi}i∈I is the finest splitting of Υ: CΥ = {∆ =
⋃

i∈I{∆i} | ∆ a`CL Υ and for every i ∈ I : E(∆i) ⊆ Λi}

In the literature, CK has also been called the set of “canonical forms” or
“normal forms” of Υ – in the remainder, I use the two terms as synonyms. In the
next section, it is pointed out that CΥ need not be, and often is not a singleton –
we refer to that section for examples. There we will also show that the so-called
set of prime implicates of Υ – see below – is a canonical form of Υ, and can be
used to determine the finest splitting of Υ.

The following is proven in [87]:

Theorem 9.2 ([87], Th. 4.1) For every consistent Υ: partial meet revision
(contraction) with respect to a ∆ ∈ CΥ obeys the relevance axiom.
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Two small warnings are in place here. First of all, Kourousias and Makinson
only consider the revision (contraction) of belief bases in view of single formulas,
not in view of sets of formulas as we do it here. Second, they do not refer to
the least letter-set representation of the new information Ψ in their definition of
relevance.8 In Section F.5.4 from Appendix F, it is shown how their result can
be rephrased in the current framework.

However, if we abstract from the minor technical differences, a crucial fact
remains. In view of Theorem 9.2, it is possible to obey P if we first massage Υ into
one of its canonical forms and only afterwards apply a partial meet revision to this
set. In the remainder, we call such revision operations “normalized revisions”.

9.2.2 Prime Implicates and Canonical Forms

This Section summarizes some results published in “Prime Implicates and Rele-
vant Belief Revision”, Journal of Logic and Computation 2011; doi: 10.1093/log-
com/exr040. I thank Peter Verdée for spotting several shortcomings in the next
to last version of this section.

Not One but Many Canonical Forms. As indicated in the previous section,
there is often not just one normal form of Υ, and hence “normalized revision
(contraction) of Υ in view of Ψ” is usually not a unique operation. Many
scholars write “the finest splitting of Υ” to refer to sets of formulas in normal
form – see e.g. [87, 94, 135, 167]. A simple example shows that the definite article
is not in place here.

Take Υ3 = {p∨ q, q ∨ r, r ∨ s}. The finest splitting of Υ3 is E = {{p, q, r, s}}.
Hence both Θ = Υ3 and Θ′ = {(p ∨ q) ∧ (q ∨ r) ∧ (r ∨ s)} are normal forms
of Υ3. This underdetermination of “the” normal form of Υ obviously carries
over to the normalized contraction (and hence also revision) operations. To see
why, consider a full meet contraction of the normal forms of Υ3 by p ∨ q. This
operation is defined as follows (cf. [3]):

Definition 9.6 Let γ0 be a selection function, such that for every Υ, A: if
Υ ⊥̇A 6= ∅, then γ0(Υ ⊥̇A) =df Υ ⊥̇A; otherwise, γ0(Υ ⊥̇A) =df {Υ}. Then
Υ 	γ0 A =df

⋂

γ0(Υ ⊥̇A).

Note that Θ ⊥̇p ∨ q = {{q ∨ r, r ∨ s}}. Hence, the full meet contraction of Θ
by p∨ q gives us the set {q ∨ r, r∨ s}. However, Θ′ ⊥̇ p∨ q = {∅}, whence the full
meet contraction of Θ′ gives us ∅.

To summarize, although every Υ has a unique finest splitting, it may have
several different normal forms, and the differences between them has a great
impact on the contraction and revision sets obtained from them. So if we want
to implement the result of Kourousias and Makinson (as stated by Theorem 9.2),
we have to further specify which normalized contraction or revision operation we
are using.9 The question then becomes: which Θ ∈ CΥ should we use to define a

8In contrast, in his [94], Makinson does refer to the least letter-set representation of A when
he defines relevance to the revision of Υ by A.

9Stolpe e.g. uses Theorem 9.2 when applying input-output logic to codes of laws, see [135].
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normalized contraction or revision operation? In the remainder, I will show that
one well-known set can be used for this purpose.

Prime Implicates. The set Π(Γ) of prime implicates of a set of formulas Γ
can be defined as follows:

Definition 9.7 Where Γ ⊆ Wc, Π(Γ) =df {
∨

Θ | (i) Θ ⊂ W l
c, (ii) 0CL

∨

Θ,
(iii) Γ `CL

∨

Θ and (iv) for no Θ′ ⊂ Θ : Γ `CL

∨

Θ′}.

Note that by clause (ii), there are no tautologies in Π(Γ). The underlying
idea behind the definition of Π(Γ) can be stated as follows: Π(Γ) is the set that
“breaks down” the information in Π(Γ) as much as possible, i.e. into minimal
disjunctions of literals. The following lemma will be helpful in the remainder:

Lemma 9.1 For all Γ ⊆ Wc: Π(Γ) a`CL Γ.

Proof. The right-left direction is immediate in view of Definition 9.7. For the left-
right direction, suppose A ∈ Γ. Let

∧

i∈I

∨

Θi be a conjunctive normal form of
A. Note that for all i ∈ I, Γ `CL

∨

Θi. For every i ∈ I, define Θ′
i as follows:

if `CL Θi, then Θ′
i = ∅

otherwise, let Θ′
i ⊆ Θi be minimal such that Γ `CL Θ′

i

Note that in view of this construction, (†)
∧

i∈I

∨

Θ′
i `CL

∧

i∈I

∨

Θi, and hence
∧

i∈I

∨

Θ′
i `CL A.10 Note also that for every i ∈ I, if Θ′

i 6= ∅, then
∨

Θ′
i fulfills

all the clauses (i)-(iv) in Definition 9.7. Hence for all i ∈ I such that Θ′
i 6= ∅,

∨

Θ′
i ∈ Π(Γ). It follows that Π(Γ) `CL

∧

i∈I

∨

Θ′
i, and hence by (†) and the

transitivity of CL, Π(Γ) `CL A.

In the remainder, I will prove the following theorem:

Theorem 9.3 For every belief base Υ: Π(Υ) ∈ CΥ.

A proof of essentially this result was offered in [167]. However, it contains a
flaw, which I analyze after giving my own. The crucial motor behind the proof
I will present, is the relation ∼∆ of path-relevance modulo a set ∆, which is
borrowed from [94] and is also applied in Chapter F. This relation is defined as
follows:

Definition 9.8 Let ∆ ⊆ Wc and A,B ∈ Wc. A is path-relevant to B modulo ∆
(A ∼∆ B) iff there are C1, . . . , Cn ∈ ∆ such that E(A) ∩ E(C1) 6= ∅, E(C1) ∩
E(C2) 6= ∅, E(C2) ∩ E(C3) 6= ∅, . . ., and E(Cn) ∩ E(B) 6= ∅.

As shown below, ∼Π(Υ) constitutes an equivalence relation on Π(Υ), whence it
can be used to obtain a partition of Π(Υ) into ∼Π(Υ)-connected subsets Υ1,Υ2, . . ..
From this, we can obtain a partition of S: EΠ(Υ) = {E(Υ1), E(Υ2), . . .}. Finally,
it is proven that EΠ(Υ) is the finest splitting of Υ. This implies that Π(Υ) can
be used to determine the finest splitting of Υ.

10Recall the convention that, where ∆ = ∅,
∨

∆ and
∧

∆ denote the empty string.
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The set Π(Υ) as defined above is used for a specific kind of model-based revi-
sion in [97] – the authors link their paper to Parikh’s and Makinson’s work on the
notion of relevant belief change, but do not explicitly discuss the relation between
Π(Υ) and CΥ. In [120], the same authors propose a solution to the problem of
relevance in belief revision in terms of preferences over prime implicants, minimal
conjunctions of literals that entail Υ. The idea of defining revision of Υ in view
of its prime implicate set was put forward in [38], where it is conjectured that
this revision obeys relevance. However, so far no one seems to have made the
distinction between Π(Υ) and other sets in CΥ.

Proof of Theorem 9.3. Note that A ∼∆ B does not necessarily imply that
A and B are members of ∆, only that there is a path from A to B through ∆.
It will however also be convenient to rely on the following properties specific to
∼∆ defined only over the members of ∆:

Fact 9.2 ∼∆ is a transitive, reflexive and symmetric on ∆, whence ∼∆ is an
equivalence relation on ∆.

Fact 9.3 If A ∼∆ B, then A ∼∆∪∆′ B for every ∆′.

I now define a multiset MΠ(Υ) from Π(Υ) and the equivalence relation ∼Π(Υ),
and a partition of S on the basis of this multiset:

Definition 9.9 MΠ(Υ) is the quotient set of Π(Υ) by ∼Π(Υ).
11 Where MΠ(Υ) =

{∆i}i∈I , EΠ(Υ) = {E(∆i)}i∈I ∪ {{A} | A ∈ S −E(Π(Υ))}.

Since ∼Π(Υ) is an equivalence relation on Π(Υ), MΠ(Υ) is a partition of Π(Υ).
Also, note that for no ∆i ∈ MΠ(Υ) : ∆i = ∅, whence also for no Ei ∈ EΠ(Υ):
Ei = ∅. In the remainder, I prove that EΠ(Υ) is the finest splitting of Υ.

Let me first show that EΠ(Υ) is a partition of S. This follows immediately
from (1) the fact that every Ei is non-empty, (2) the fact that

⋃

EΠ(Υ) = S, and
the following lemma:

Lemma 9.2 For every Ei, Ej ∈ EΠ(Υ): Ei 6= Ej iff Ei ∩ Ej = ∅.

Proof. Let Ei, Ej ∈ EΠ(Υ). The right-left direction is obvious since no Ei ∈
EΠ(Υ) is empty. For the left-right direction, suppose that for Ei, Ej ∈ EΠ(Υ),
Ei ∩ Ej 6= ∅. I only consider the case where Ei = E(∆i) and Ej = E(∆j) for
∆i,∆j ∈ MΠ(Υ) – in the other case, it follows immediately that Ei ∩ Ej = ∅.
Suppose that E(∆i) ∩ E(∆j) 6= ∅. This implies that there are A ∈ ∆i, B ∈ ∆j :
E(A) ∩ E(B) 6= ∅, whence A ∼Π(Υ) B. It follows that A and B are in the same
equivalence class. As a result, ∆i = ∆j , whence Ei = Ej .

To see why EΠ(Υ) is a splitting of Υ, note that each of the following holds:

(i)
⋃

MΠ(Υ) = Π(Υ), and hence by Lemma 9.1,
⋃

MΠ(Υ) a`CL Υ.

11This is the set of all equivalence classes of Π(Υ), given the equivalence relation ∼Π(Υ) on
Π(Υ).
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(ii) For every ∆i ∈
⋃

MΠ(Υ), there is a cell Ej ∈ EΠ(Υ) such that E(∆i) ⊆ Ej ,
viz. the cell Ei.

In view of (i), (ii) and Definition 9.1, EΠ(Υ) is a splitting of Υ. To prove that
EΠ(Υ) is also the finest splitting of Υ, I need two lemmas:

Lemma 9.3 ([87], Theorem 1.1.) Let ∆ =
⋃

i∈I{∆i} where the letter sets
E(∆i) are pairwise disjoint, and suppose ∆ `CL A. Then there are formulas
Bi such that (1) each E(Bi) ⊆ E(∆i) ∩ E(A), (2) each ∆i `CL Bi, and (3)
⋃

i∈I{Bi} `CL A. (Parallel Interpolation)

Lemma 9.4 If (1) {A,B} `CL C ∨ D, (2) E(A) ⊆ E(C), (3) E(B) ⊆ E(D),
and (4) E(C) ∩ E(D) = ∅, then {A} `CL C or {B} `CL D.

Proof. Suppose (1)-(4) holds, but {A} 0 C and {B} 0 D. In that case, A ∧ ¬C
and B ∧ ¬D are both CL-satisfiable. In view of (2), (3) and (4), E(A ∧ ¬C) ∩
E(B ∧ ¬D) = ∅, whence (A ∧ ¬C) ∧ (B ∧ ¬D) is CL-satisfiable.12 This implies
that {A,B} 0 C ∨D, which contradicts (1).

Theorem 9.4 EΠ(Υ) is the finest splitting of Υ.

Proof. Assume that there is a splitting E = {Ei}i∈I of Υ, such that E is finer
than EΠ(Υ). Hence for an E ∈ EΠ(Υ), there is an i ∈ I: ∅ ⊂ Ei ⊂ E. This
means that E cannot be a singleton, whence we can derive that E = E(Π(Υj))
for an Υj ∈ MΠ(Υ). So we have:

(†) For an Υj ∈ MΠ(Υ), there is an i ∈ I: ∅ ⊂ Ei ⊂ E(Υj)

Let A ∈ Υj be such that E(A) 6⊆ Ei and let BΥj be such that E(B)∩Ei 6= ∅.
It can easily be verified that A and B exist.13 Since A,B ∈ Υj, A ∼Π(Υ) B.
Hence there are C1, . . . , Cn ∈ Π(Υ) such that E(A)∩E(C1) 6= ∅, E(C1)∩E(C2) 6=
∅, E(C2) ∩ E(C3) 6= ∅, . . ., and E(Cn) ∩E(B) 6= ∅. Let A = C0 and B = Cn+1.

Assume now that (‡) for every k with 0 ≤ k ≤ n+ 1, either E(Ck) ∩ Ei = ∅
or E(Ck) ⊆ Ei. Then it can be shown by mathematical induction that

(?) for every k with 0 ≤ k ≤ n+ 1, E(Ck) ∩ Ei = ∅.

The base case (k = 0) is immediate, in view of (‡) and the fact that E(A) 6⊆ Ei.
For the induction step, suppose that E(Ck)∩Ei = ∅. Since E(Ck)∩E(Ck+1) 6= ∅,
it follows that E(Ck+1) 6⊆ Ei. But then, in view of (‡), E(Ck+1) ∩ Ei = ∅.

From (?) and the fact that B = Cn+1, we can derive that E(B)∩Ei = ∅ — a
contradiction. So assumption (‡) must be false: there is a k with 0 ≤ k ≤ n+ 1,
such that E(Ck) ∩ Ei 6= ∅ and E(Ck) 6⊆ Ei. Let l be such that E(Cl) ∩ Ei 6= ∅
and E(Cl) 6⊆ Ei, and let D = Cl. Note that since D ∈ Π(Υ), D is a disjunction
of literals.

12I rely on the fact that if A and B are CL-satisfiable and share no elementary letters, then
A ∧ B is CL-satisfiable.

13To see why A exists, assume that for every A′ ∈ Υj , E(A′) ⊆ Ei. In that case, E(Υj) ⊆ Ei,
which contradicts (†). To see why B exists, assume that for every B ∈ Υj , E(B) ∩ Ei = ∅. In
that case, E(Υj) ∩ Ei = ∅, which again contradicts (†).
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Since E is a splitting of Υ, E′ = {Ei,
⋃

E − Ei} is also a splitting of Υ.
Since Υ `CL D, by Lemma 9.3, there are two formulae Fi and F such that (1)
E(Fi) ⊆ Ei∩E(D) and (2) E(F ) ⊆ (

⋃

E−Ei)∩E(D), Υ `CL Fi, Υ `CL F and
{Fi, F} `CL D.

Let D = Gi ∨ G, where Gi and G are disjunctions of literals such that ∅ ⊂
E(Gi) ⊆ Ei, ∅ ⊂ E(G) ⊆ (

⋃

E − Ei), hence also E(G) ∩ E(Gi) = ∅. By (1) and
(2), we obtain: (1’) E(Fi) ⊆ E(Gi) and (2’) E(F ) ⊆ E(G). By Lemma 9.4, this
implies that either {Fi} `CL Gi or {F} `CL G. Since Υ `CL Fi and Υ `CL F ,
also Υ `CL Gi or Υ `CL G by the transitivity of CL. This however implies that
D is not a minimal disjunction of literals that is CL-derivable from Υ, whence
D 6∈ Π(Υ) — a contradiction.

Further Comments on the Proof. Note that every set Υ is associated with
a unique set Π(Υ), and from this Π(Υ), we can uniquely obtain the set EΠ(Υ).
Hence Theorem 9.4 implies that every set Υ has a unique finest splitting. Just
as in [87], I needed the Parallel Interpolation theorem to arrive at this result.

In [167], Wu and Zhang also attempted to prove that the finest splitting of
Υ can be obtained from Π(Υ) – their set C(K) \K# is almost identical to what
I defined as Π(Υ).14 The way they obtain the finest splitting from Π(Υ) is also
highly similar to the way I did it here: they define an equivalence relation R? on
Π(Υ), which is equivalent to my ∼Π(Υ), and obtain a set of R?-connected subsets
Υ1,Υ2, . . . of Π(Υ). Finally, they claim that the set E = {E(Υ1), E(Υ2), . . .} is
the finest splitting of Υ.

However, Wu and Zhang’s actual proof for this claim is mistaken. To see
why, let me recapitulate their notion of indivisibility:

Definition 9.10 ∆ is indivisible iff for every partition E = {E1, E2} of E(∆),
there is an A ∈ ∆ such that: E(A) ∩ E1 6= ∅ and E(A) ∩E2 6= ∅

Wu and Zhang seem to assume that the following holds, for every multiset D ∈
℘(Wc):

(†) Where
⋃

D a`CL Υ:
⋃

D is a canonical form of Υ iff every cell of D is
indivisible.

The authors prove that every ∼Π(Υ)-connected subset of Π(Υ) is indivisible. By
the left-right direction of (†), they infer that Π(Υ) is “the finest splitting set of
Υ [my emphasis]”. In view of the preceding, this claim is slightly confusing. So
I take it that they actually mean that Π(Υ) is one of the normal forms of Υ,
and that EΠ(Υ) = {E(Υ1), E(Υ2), . . .} is the finest splitting of Υ. The crucial
problem concerns the left-right direction of (†).

Let Υ4 = {p, q}. Note that every cell of D = {{p, q, p ⊃ q}} is indivisible. The
finest splitting of Υ4 is obviously E = {{p}, {q}}. Hence E∆ = {{p, q}} is not
the finest splitting of Υ4. More generally, it can be proven that for any Υ ⊆ Wc,
{Cn(Υ)} is indivisible, whereas Cn(Υ) is obviously not a canonical form of Υ.
As a result, the left-right direction of (†) fails. Put differently, the property of

14The only difference is that tautologies are allowed for in C(K) \ K#, whereas I omitted
them. This restriction does not make a difference with respect to the argument here or the
proof in the preceding section.
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indivisibility has little bearing on the question whether a set of formulas ∆ is a
canonical form of Υ.

9.3 Two Crucial Distinctions

9.3.1 Global versus Local Analysis

It seems that if one wants to obey the axiom of relevance using a syntax-based
revision, one first has to translate Υ into one of its canonical forms. This trans-
lation can be seen as a kind of analysis: we cut Υ into as many small pieces of
knowledge as possible, before we revise it. Analytic steps can consist in the sim-
plification of single formulas (e.g. infer A from A∧B), but may also rely on several
formulas taken together (e.g. infer B from A,¬A ∨ B). In most realistic cases,
many analytic steps have to be combined in order to obtain a canonical form of
Υ. Also, to obtain the canonical form of Υ, one has to perform what we shall
call a global analysis: the whole of Υ has to undergo the analytic procedure.15

Let us clarify this a bit further. In Section 9.2.2, it was proven that the set
of prime implicates or prime clauses of Υ is a canonical form of Υ. As far as we
know, this is the only concrete circumscription of a canonical form of Υ. Note
however that the computation of Π(Υ) is exponential in Υ.16

So although it eventually leads to the right outcome, the strategy of global
analysis seems quite unnatural: most often, intelligent agents only analyze some
of their initial beliefs to some extent, i.e. when this turns out useful. It requires
a great effort to perform a global analysis, and agents usually prefer to rely on
the analytic steps they have taken so far, until and unless they have sufficient
reasons to take the analysis to the next level. Even if it is in principle possible
to obtain absolute certainty, agents often lack the means to perform an extensive
search, and hence are forced to act on their present best insights.

Let us clarify this by a simple example. Suppose your initial belief base is
Υ5 = {p∧q, q ⊃ (r∨s),¬t∧u}, and you learn that ¬p is the case. Since Υ5 `CL p,
you have to revise the set Υ5 somehow. According to Parikh’s definition, the
belief ¬t ∧ u is not relevant to the revision of Υ5 by ¬p, whence we may simply
keep it as it is. Nevertheless, if we would compute a canonical form of Υ5, we
would cut ¬t ∧ u into ¬t and u. This means we perform an analysis that is,
strictly speaking, not necessary for the revision operation under consideration.

Note however that a relevant revision of Υ5 by ¬p can only be ensured if we
do analyze p ∧ q into p and q, such that the latter belief can be retained. This
analysis is also necessary to get r ∨ s in the revision set. More generally, which
logical steps are to be taken in order to guarantee relevance when revising Υ by

15In [43], Chopra and Parikh propose that we view Υ not as a single set of formulas, but
as a “structured” base, i.e. a set of sub-theories Υ1,Υ2, . . ., where each sub-theory deals with
its own subject matter. If we take this as our starting point, it is much easier to warrant (a
certain degree of) relevance for a revision in view of A: we only revise those sets Υi for which
E(Υi)∩E(A) 6= ∅ and leave the other sets unchanged. Although the overall framework Chopra
and Parikh present is worthy of pursuit, it seems equally interesting to see whether a logic can
sieve out which beliefs are relevant to the new information, instead of just presupposing that
our beliefs are structured in such a way that relevance can easily be obeyed.

16See [83] for a comparative study of three procedures to compute Π(Υ) from Υ.
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Ψ, depends on the specific Υ and Ψ we are dealing with. In the end, it seems
that we still need a global analysis in order to receive absolute certainty about
the necessity of any analytic step.

We will model a process in which an agent first reasons about his or her initial
and upheld beliefs in order to find out which analytic steps (s)he should take.
This results in a tentative process: unless (s)he turns to a global analysis, the
agent will never be entirely sure that his or her current conclusions are warranted.
In more formal terms: in order to prove that a derived formula really follows by
the logic, we have to make a reasoning at the meta-level. Nevertheless, the more
inferences we draw, the more insights we gain with respect to which beliefs are
relevant to the revision. Moreover, the fact that conclusions are defeasible seems
to be perfectly in line with the general idea behind the study of belief change,
i.e. that our knowledge is always open for revision. Finally, once we take first
order predicate logic as the frame of reference, decidability is no longer in general
attainable even in principle. In that case, the most we can get is a reasonable
estimate of which beliefs can be upheld.

9.3.2 Internal versus External Dynamics

It will be useful to introduce yet another distinction in order to get a better
picture of the logics we will present below. This distinction is the one between
internal and external dynamics of a reasoning process.17 Although it is fairly
well-known in the field of adaptive logics (see e.g. [14, 16, 21]), and was already
illustrated and discussed in Chapter 1, it seems worthwhile to explain its meaning
in the context of belief revision.

In a sense, all belief revision operations are “dynamic”: they all try to deal
with the fact that we receive new information and update our beliefs accordingly.
Doing so requires that we not only add the new information and derive what
follows from the initial beliefs together with this new information, but also that
we retract some initial beliefs and/or some of their consequences. In other words,
gaining information from the outside leads to a dynamic process in which we
revise our initial beliefs. In the literature on defeasible reasoning, this feature is
referred to as the external dynamics of a reasoning method.

There is, however, also a dynamics which is internal to revision as a process,
not as a relation between input (initial beliefs plus new information) and output
(revision set). Sven Ove Hansson seems to refer to such processes when he writes
that “[a]ctual subjects change their minds as a result of deliberations that are
not induced by new inputs.” [73, p. 8] These deliberations contribute to what is
often called the internal dynamics of a reasoning method. It is the dynamics of
drawing inferences from a body of knowledge (resp. a set of premises), relying on
a certain standard of normality or condition. Whenever it turns out – in view of
the same and/or other inferences – that in some particular case, the standard of
normality or condition cannot be relied upon, we retract some of these inferences.
Although we may eventually arrive at a stable outcome, we only do so by passing
through a number of different epistemic stages. At every such stage, we use the

17Pollock dubs the external dynamics the synchronic defeasibility, and the internal dynamics
the diachronic defeasibility of inferences – see [121].
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previous inferences and rely on them while the reasoning continues.

From the viewpoint of the internal dynamics, partial meet revision, and many
other revision operations (including model-based revisions in terms of distances,
see e.g. [97]) are fairly static. Put differently, the internal dynamics is thought
of as a problem for computing: (how) can we produce the right output given our
definition of the revision operation. Little effort is made to capture formally how
a rational agent could reason from his or her initial beliefs, retract some of his or
her previous conclusions, and finally arrive at a stable revision set.18

Consider for example Υ6 = {p ∨ q,¬r ∧ ¬q, (t ∨ s) ⊃ r} and the revision of
this set by ¬p ∨ s. Just to see that the new information contradicts the initial
beliefs, one already has to make a number inferences of the following kind:

(1) ¬r ∧ ¬q / ¬q
(2) ¬q, p ∨ q / p
(3) ¬r ∧ ¬q / ¬r
(4) ¬r, (t ∨ s) ⊃ r / ¬(t ∨ s)
(5) ¬(t ∨ s) / ¬s
(6) p,¬s,¬p ∨ s / ⊥

Once we are at this point, we might even need some more inferences in order to
see whether e.g. the belief t can be upheld. It seems worthwhile to try to model
these processes themselves, and not solely their outcome, at the object-level.

The distinction between internal and external dynamics may equally well be
applied to the concept of relevance. On the one hand, there is a clear and fixed
criterion that determines whether or not a formula is relevant to a given revision
operation, as spelled out by Definition 9.3. On the other hand, finding out which
formulas are so, is a matter of actual reasoning (or actual computing), whence it
may well be the case that we change our mind about the relevance of a particular
formula throughout the reasoning process.19 Moreover, the internal dynamics of
revision and relevance are strongly interrelated: only when we learn that some
old beliefs have to be revised, we can infer that those beliefs were relevant to the
revision operation.

9.4 The Adaptive Logics ARr
1 and ARm

1

In this section, we present the logics ARr
1 and ARm

1 . These systems not only
define a revision set for every set of initial beliefs Υ in view of a piece of new
information A. They also provide a proof theory that shows how you can derive
the former from the latter. The revision operations based on them are obtained
through a translation of the set of initial beliefs in a modal language.20

18See e.g. [73, p. 8]: “The idealized belief states of belief dynamics only change as a direct
result of new inputs.”

19We are indebted to Dunja Šešelja for pointing this out to us in a discussion.
20Adaptive logics have already been successfully applied to (prioritized) belief bases in the

past – see e.g. [164, 163, 32]. Nevertheless, this is the first application of that framework to
the problem of relevant belief revision.
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The Modal Language for Belief Revision. The language Lr is obtained
by adding � to Lc. The associated set of formulas, is the smallest set Wr such
that

(i) Wc ⊂ Wr

(ii) Where A ∈ Wc, �A ∈ Wr

(iii) Where A,B ∈ Wr, ¬A,A ∧B,A ∨B,A ⊃ B,A ≡ B ∈ Wr

The language Lr will be used to express the different components of a revision
operation. Where Υ is the set of initial beliefs, let Υ� = {�A | A ∈ Υ}. Where
Ψ is the new information, Υ� ∪ Ψ is the premise set we feed into the adaptive
logic. For example, where Υ = {p ∧ q} and the new information is {¬p}, the
premise set will be {�(p ∧ q),¬p}.

The adaptive logic ARr
1, which is defined below, yields a revision set for every

Υ,Ψ in the following way:

Definition 9.11 Υ⊕ARr
1

Ψ = {B ∈ Wc | Υ� ∪ Ψ `ARr
1
B}.

In words, the revision set of Υ by Ψ is the set of all non-modal formulas that
can be derived from Υ� ∪ Ψ by the logic ARr

1. Note that, although the notion
of adaptive revision relates to a certain kind of “translation”, this translation
differs substantially from the translation into a normal form that was criticized
in Section 9.3.1. More specifically, the translation needed for adaptive revision is
very straightforward: simply put a � in front of each initial belief.

For the remainder of this chapter, it is important to keep in mind that where
ARr

1 is a function that maps sets of formulas in Lr to other sets of formulas
in the same language, ⊕ARr

1
maps a couple to a set, or more formally, ⊕ARr

1
:

℘(Wc) × ℘(Wc) → ℘(Wc).

The lower limit logic. The first adaptive logic for belief revision we will
present, ARr

1, is based on the very simple modal logic Kts, which stands for “Ks

with only two possible worlds”. A Kts-model M is a quadruple 〈W,R, v, w0〉,
where W = {w0, wK} is a set of possible worlds, R an accessibility relation on
W , v : S ×W → {0, 1} an assignment function and w0 the actual world. The
valuation vM : Wr → {0, 1} defined by the model M is characterized by:

C1 where A ∈ S, vM (A,w) = v(A,w)
C2 vM (¬A,w) = 1 iff vM (A,w) = 0
C3 vM (A ∨B,w) = 1 iff vM (A,w) = 1 or vM (B,w) = 1
C4 vM (A ∧B,w) = 1 iff vM (A,w) = 1 and vM (B,w) = 1
C5 vM (A ⊃ B,w) = 1 iff vM (A,w) = 0 or vM (B,w) = 1
C6 vM (�A,w) = 1 iff, vM (A,w′) = 1 for all w′ such that Rww′

We define M  A iff vM (A,w0) = 1. Where M ∈ MKts , we say that M is a
Kts-model of Γ iff M  A for all A ∈ Γ. Finally, Γ |=Kts A iff A is true in all
Kts-models of Γ.

The following is obvious in view of the definition of the semantics:

Lemma 9.5 {�(A1 ∨ . . . ∨An)} |=Kts (�A1 ∨ . . . ∨ �An)
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A syntax for Kts is obtained as follows. We extend an axiomatization of CL
with the following axioms (where A,B ∈ Wc):

A1 �(A ⊃ B) ⊃ (�A ⊃ �B)
A2 �A ∨ �¬A

and close it under modus ponens (MP) and the following rule (where A,B ∈ Wc):

RN if ` A, then ` �A

Where `Kts indicates membership in the set of Kts-axioms, we define Γ `Kts

A iff there are B1, . . . , Bn ∈ Γ such that `Kts (B1 ∧ . . . ∧ Bn) ⊃ A. Note that
according to these definitions, Kts is a compact Tarski-logic. The proof of the
following is safely left to the reader:

Theorem 9.5 Γ `Kts A iff Γ |=Kts A.

As usual, we need to enrich the language, syntax and semantics of Kts in
order to deal with the checked connectives. Again, this can be done in a very
straightforward way, since Kts is a supraclassical logic – see Chapter 2, Section
2.4 where K was obtained from Ks in the same way. We use Ľr to refer to
the extended language, W̌r to the associated set of formulas, and Kt for the
logic obtained by extending Kts with the appropriate axioms for the checked
connectives.

The set of abnormalities. The general idea behind adaptive revision is the
following: where B ∈ CnCL(Υ), and B is not relevant to Υ⊕A, we want to be
able to infer that B is in the revision set. So we have to be able to express that
B is relevant to Υ⊕A in the object language. Once that is done, we may assume
that a belief is not relevant to Υ⊕A, and hence can be upheld, until and unless
proven otherwise.

The most straightforward idea for a set of abnormalities is to treat any formula
of the form �B∧¬B, where B ∈ Wc, as an abnormality. That is, the assumption
that formulas of the form �B∧¬B are false boils down to the assumption that ifB
is an initial belief, then it can be upheld. We will henceforth abbreviate �B∧¬B
by !B. In this context, we may say that “the formula B behaves abnormally”
if B is an initial belief, but it is contradicted by the new information. However,
where does relevance come in?

In view of Definition 9.3, relevance is not a function of the logical form of a
formula, but only of the elementary letters that occur in it. So the crucial shift
we have to make, in order to model relevance as a kind of abnormality, is to go
from the abnormality of formulas to the abnormality of letters. One way this can
be done is the following. Where B ∈ S, define the abnormality of the letter B:
ρ(B) =!B∨!¬B. In words, the letter B behaves abnormally if and only if either
the formula B or the formula ¬B behaves abnormally. This gives us the set of
abnormalities, which we dub Ωr

1 in the current chapter:

Ωr
1 =df {ρ(B) | B ∈ S}
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One may also read ρ(B) as follows: “every formula that contains the letter
B, is relevant to the new information”. As a matter of fact, it holds that if
Υ� ∪ Ψ `Kt ρ(B), then B is relevant to Υ⊕Ψ – this is a corollary of Theorem
9.2 from Section 9.8.3.21

The logic ARr
1 is an adaptive logic in standard format, defined by the triple

〈Kt,Ωr
1, r〉. In the remainder, we will recapitulate some definitions from Chapter

2 for this specific logic, and highlight some important features of it.

The Semantics of ARr
1. To define the ARr

1-semantics, we first need to intro-
duce a few technical concepts from the standard format. In the remainder of this
chapter, let a Dab1-formula Dab1(∆) be the disjunction of the members of a finite
∆ ⊆ Ωr

1. We define the set of unreliable formulas in view of Γ, U1(Γ), in the stan-
dard way: where Dab1(∆1), Dab1(∆2), . . . are the minimal Dab1-consequences of
Γ, U1(Γ) =df ∆1 ∪ ∆2 ∪ . . .. Let Ab1(M) = {A ∈ Ωr

1 | M  A}. Then we can
define the set of reliable models in view of Γ, for the logic ARr

1, as follows:

Definition 9.12 M ∈ MARr
1
(Γ) iff M ∈ MKt(Γ) and Ab1(M) ⊆ U1(Γ).

Definition 9.13 Γ |=ARr
1
A iff for every M ∈ MARr

1
(Γ), M  A.

To see how the adaptive logic works, consider the following theorem:22

Theorem 9.6 If Υ |=CL B, then Υ� |=Kt B ∨̌
∨

{ρ(C) | C ∈ E(B)}.

Proof. Suppose Υ |=CL B. Hence Υ� |=Kt �B. Let D =
∧

i∈I

∨

j∈Ji
Dj be

a conjunctive normal form of B, such that E(D) ⊆ E(B). Note that Υ� |=Kt

B ∨̌(�B ∧ ¬B), whence also:

Υ� |=Kt B ∨̌(�
∧

i∈I

∨

j∈Ji

Dj ∧ ¬
∧

i∈I

∨

j∈Ji

Dj) (9.1)

Since �(A1 ∧ . . . ∧An) `Kt �A1 ∧ . . . ∧ �An and by CL-properties:

Υ� |=Kt B ∨̌
∨

i∈I

(�
∨

j∈Ji

Dj ∧ ¬
∨

j∈Ji

Dj) (9.2)

By Lemma 9.5 and CL-properties:

Υ� |=Kt B ∨̌
∨

i∈I

(
∨

j∈Ji

(�Dj ∧ ¬Dj)) (9.3)

Or shorter, Υ� |=Kt B ∨̌
∨

i∈I

∨

j∈Ji
!Dj . Note that !Dj |=Kt ρ(E(Dj)). Hence

we may derive:

Υ� |=Kt B ∨̌
∨

i∈I

∨

j∈Ji

ρ(E(Dj)) (9.4)

21In Section 9.6, we will show that there are yet other ways to express relevance in terms of
the abnormality of formulas.

22This theorem is analogous to Lemma 7.3.1 in Chapter.
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Since each E(Dj) ∈ E(B), we have:

Υ� |=Kt B ∨̌
∨

{ρ(C) | C ∈ E(B)} (9.5)

Theorem 9.6 implies that if B ∈ CnCL(Υ), then we may infer that B can be
upheld, unless one of the elementary letters in B behaves abnormally. Moreover,
as shown in Section 9.8.3, if B is not relevant to Υ⊕Ψ, then none of the elemen-
tary letters in B will behave abnormally. Altogether, this explains why ⊕ARr

1

obeys the axiom P.

The Proof Theory of ARr
1. Note that in view of Theorem 9.6 and the sound-

ness and completeness of Kt, the rule RC allows us to derive A from �A in an
ARr

1-proof from Γ. This means we may apply the derived rule RD1:

RD1 �A ∆
A ∆ ∪ {ρ(B) | B ∈ E(A)}

So we obtain a very simple way to turn an initial belief into a revised belief.
Moreover, a straightforward way to derive Dab-formulas is by the application of
the rule RD (see page 22), which can be reformulated as follows in the presence
of ⊥:

RD2 If A1, . . . , An `Kt ⊥: A1 ∆1

...
...

An ∆n

Dab1(∆1 ∪ . . . ∪ ∆n) ∅

When applied to ARr
1, the marking definition of ALr reflects the internal

dynamics of revision: we may take some belief to be in the revision set at some
point, but only later on learn that this belief contradicts the new information.
At that point, we have to retract some of our earlier conclusions. In Section 9.5,
we will further clarify this mechanism by an example of an ARr

1-proof.

The Minimal Abnormality-variant. Like every adaptive logic that is de-
fined in the standard format, ARr

1 also has a Minimal-Abnormality-variant, i.e.
ARm

1 , characterized by the triple 〈Kt,Ωr
1,m〉. In accordance with the notation

of the current chapter, we have:

Definition 9.14 M ∈ MARm
1

(Γ) iff M ∈ MKt(Γ) and there is no M ′ ∈
MKt(Γ) such that Ab1(M ′) ⊂ Ab1(M).

Definition 9.15 Γ |=ARm
1
A iff for every M ∈ MARm

1
(Γ), M  A.

As expected, the logic ARm
1 is slightly stronger than ARr

1 – we will present
an example in Section 9.6. Hence for every Υ,Ψ, it holds that Υ⊕ARr

1
Ψ ⊆

Υ⊕ARm
1

Ψ, where in some cases this set inclusion is proper.
All previous observations about the proof theory of ARr

1 of course apply to
ARm

1 as well: we can easily derive A from �A on the condition {ρ(B) | B ∈
E(A)}, and we can apply the rule RD2 in order to derive Dab-formulas.
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9.5 Example of an ARr
1-proof

In this section, we will illustrate what is meant by (i) the internal dynamics of
belief revision in general, and relevance in particular and (ii) the fact that ARr

1

models local analysis of the initial beliefs in order to obey relevance. We will use
one example of a revision operation and explain how the proof theory deals with
it.

Let Υ7 = {p ∧ q, p ⊃ (s ∧ ¬r), q ≡ t} and consider the revision of Υ7 by
A1 = ¬(p ∧ ¬r). Note that each of the following holds:

(1) Υ7 `CL p, q, s,¬r, t.
(2) Hence the finest splitting23 of Υ7 is E7 = {{p}, {q}, {r}, {s}, {t}}.
(3) Hence q, s, t are not relevant to Υ7 ⊕A1.
(4) Hence if a revision operation ⊕X obeys P, then q, s, t ∈ Υ7 ⊕XA1.

We start an ARr
1-proof from Υ�

7 ∪ {A1} as follows:

1 �(p ∧ q) PREM ∅
2 �(p ⊃ (s ∧ ¬r)) PREM ∅
3 �(q ≡ t) PREM ∅
4 ¬(p ∧ ¬r) PREM ∅

Since the new information A1 does not contradict the initial belief p ∧ q, we
might want to derive p ∧ q from �(p ∧ q), using the rule RD1:

5 p ∧ q 1; RD1 {ρ(p), ρ(q)}

Likewise, we may derive that the second initial belief can be upheld:

6 p ⊃ (s ∧ ¬r) 2; RD1 {ρ(p), ρ(s), ρ(r)}

Note that the application of RD1 is extremely easy in both cases: just skip the �

and put the abnormality of the elementary letters of the formula in the condition.
We may now continue our proof by relying on the previous inferences, and derive
more facts about the revision set. For example, we can derive that if the formulas
on line 5 and line 6 can be upheld, then we may also infer that s and ¬r are in
the revision set:

7 p 5; RU {ρ(p), ρ(q)}
8 s ∧ ¬r 6,7; RU {ρ(p), ρ(s), ρ(r), ρ(q)}
9 s 8; RU {ρ(p), ρ(s), ρ(r), ρ(q)}
10 ¬r 8; RU {ρ(p), ρ(s), ρ(r), ρ(q)}

Note that, as prescribed by the unconditional rule RU, the formulas on lines 9
and 10 take over the condition of line 8, which is itself the union of the conditions
of line 6 and 7.

At this point, we face a problem: the formulas on line 4, line 7 and line 10 lead
to a contradiction: ¬(p ∧ ¬r), p,¬r `CL ⊥, whence also ¬(p ∧ ¬r), p,¬r `K ⊥.
This means we can derive a disjunction of abnormalities, through the application
of the second derived rule:

23As in previous examples, we skip all letters that do not occur in Υ.
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11 ρ(p) ∨̌ ρ(s) ∨̌ ρ(r) ∨̌ ρ(q) 4,7,10; RD2 ∅

At stage 11, the set of unreliable abnormalities is

U1
11(Υ1 ∪ {A1}) = {ρ(p), ρ(s), ρ(r), ρ(q)}

As a result, all lines with a condition that contains any of these abnormalities
are marked at stage 11:

...
...

...
...

5 p ∧ q 1; RD1 {ρ(p), ρ(q)}X
6 p ⊃ (s ∧ ¬r) 2; RD1 {ρ(p), ρ(s), ρ(r)}X
7 p 5; RU {ρ(p), ρ(q)}X
8 s ∧ ¬r 6,7; RU {ρ(p), ρ(s), ρ(r), ρ(q)}X
9 s 8; RU {ρ(p), ρ(s), ρ(r), ρ(q)}X
10 ¬r 8; RU {ρ(p), ρ(s), ρ(r), ρ(q)}X
11 ρ(p) ∨̌ ρ(s) ∨̌ ρ(r) ∨̌ ρ(q) 4,7,10; RD2 ∅

Hence, if we want to retain at least some parts of the first two initial beliefs,
we will have to take some more analytic action. Roughly speaking, there are two
ways in which analysis may help us to rescue a belief: it may show us that the
belief can be derived on a different condition, and it may show us that a certain
Dab1-formula is not a minimal Dab1-consequence of the premises. In the current
case, both aspects of the adaptive logic will be necessary to rescue q and s, as
the following continuation of the proof shows:

12 �q 1; RU ∅
13 q 12; RD1 {ρ(q)}
14 �p 1; RU ∅
15 �(s ∧ ¬r) 14,2; RU ∅
16 �s 15; RU ∅
17 s 16; RD1 {ρ(s)}
18 �¬r 15;RU ∅
19 ρ(p) ∨̌ ρ(r) 4,14,18;RU ∅

Lines 11-17 show us that both q and s can be derived on a condition that is
a proper subset of the conditions on lines 5 and 9. Hence we need only rely on
the normal behavior of ρ(q) and ρ(s) in order to derive q, resp. s. Line 19 shows
that the formula on line 11 is not a minimal Dab1-consequence of Υ�

7 ∪ {A1},
and that the real problematic letters are p and r. Hence at the current stage of
the proof, lines 13 and 17 are unmarked.

As it turns out, q and s are finally derived in this ARr
1-proof. That is,

there is no minimal Dab1-consequence Dab1(∆) of Υ�
7 ∪ {A1} such that either

ρ(q) ∈ ∆ or ρ(s) ∈ ∆.24 Hence even if we would extend the proof and derive a
Dab-consequence Dab1(Θ) such that e.g. ρ(q) ∈ Θ, then we can further extend
it such that Dab1(Θ′) is derived with Θ′ ⊆ Θ − {ρ(q)}.

24This follows immediately in view of Theorem 9.1 from Section 9.8.3 below, and the fact
that q and s are not relevant to Υ7 ⊕A1.
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So how about the third initial belief? Note that since the initial beliefs entail
q, q ≡ t could be analyzed further into t. However, this is not necessary. We
may equally well derive q ≡ t without any analysis, and only afterwards apply
disjunctive syllogism to derive t:

3 �(q ≡ t) PREM ∅
...

...
...

...
20 q ≡ t 3; RD1 {ρ(q), ρ(t)}
21 t 13,18; RU {ρ(q), ρ(t)}

9.6 Six Alternatives

In this section we introduce a number of alternative adaptive logics for belief
revision. Each of these logics defines a unique revision operation, i.e. a function
that maps every couple 〈Υ,Ψ〉 to a revision set Υ ⊕ Ψ. The differences between
each of these shed new light on the many ways one might achieve a belief revision
that obeys postulate P. After providing their definition, we will first present an
overview of all the differences between the eight resulting consequence relations,
resp. revision operations (Section 9.6.1). In Section 9.7, we prove that some of
the revision operations from this chapter are conservative extensions of others.

9.6.1 The Alternative Systems and Some Examples

The Logics. Recall that every adaptive logic in standard format is defined by
a triple: a lower limit logic, a set of abnormalities and a strategy. As we will
show, varying each of these elements leads to six new logics for belief revision.

The variation on the lower limit logic is very straightforward: instead of Kt,
we can also use K – the latter system was defined on in Section 2.4.2 of Chapter
2. However, this requires that the set of abnormalities is adjusted, as we will
do below. For some definitions and metaproofs, it will be convenient to use the
names LLL1, . . ., LLL4 for the lower limit logics of our adaptive logics for belief
revision. We have:

LLL1 =df LLL2 =df Kt
LLL3 =df LLL4 =df K

In order to define the sets of abnormalities of the alternative adaptive logics
we need a few preliminary definitions. Where Θ ⊂ W l

c, let σ(Θ) =
∨

{!
∨

Θ′ |
∅ 6= Θ′ ⊆ Θ} and where Θ ⊂ S, let τ(Θ) = σ(Θ∪Θ¬). Whenever these notations
are used, it is assumed that Θ is non-empty and finite. To get some more grip
on the abbreviations, consider the following examples:

• !p = �p ∧ ¬p; !(p ∨ ¬q) = �(p ∨ ¬q) ∧ ¬(p ∨ ¬q)
• σ({p,¬q}) =!p∨!¬q∨!(p ∨ ¬q)
• τ({p, q}) =!p∨!q∨!¬p∨!¬q∨!(p ∨ q)∨!(p ∨ ¬q)∨!(¬p ∨ q)∨!(¬p ∨ ¬q)

The sets of abnormalities we will use in the remainder are:

Ωr
2 =df {!D | D ∈ W l

c}
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Ωr
3 =df {τ(Ψ) | ∅ 6= Ψ ⊂ S}

Ωr
4 =df {σ(Θ) | ∅ 6= Θ ⊂ W l

c}

strategy\LLL,Ωr
i Kt,Ωr

1, Kt,Ωr
2 K,Ωr

3 K,Ωr
4

Reliability ARr
1 ARr

2 ARr
3 ARr

4

Minimal Abnormality ARm
1 ARm

2 ARm
3 ARm

4

Table 9.1: An overview of the eight logics for belief revision.

Finally, where i ∈ {1, 2, 3, 4} and x ∈ {r,m}, ARx
i is the flat adaptive logic

defined by the triple 〈LLLi,Ω
r
i,x〉. This gives us eight flat adaptive logics, as

spelled out in Table 9.1.
In the current and next section, it is always assumed that i ∈ {1, 2, 3, 4}. We

use Dabi(∆) to denote the disjunction of the members of a finite ∆ ⊂ Ωr
i. Also,

Abi(M) = {A ∈ Ωr
i | M  A}. We will sometimes use AR as a metavariable for

any of the logics in the table, ARi as a metavariable for both logics of the same
column, and ARr

i and ARm
i as metavariables for the logics in the first row, resp.

the second row.

The Revision Operations. The revision operations that correspond to the
logics from Table 9.1 are defined as follows:

Definition 9.16 Υ⊕ARx
i

Ψ = {B ∈ Wc | Υ� ∪ Ψ `ARx
i
B}.

In order to understand how the revision operations work, it may be useful to
know that the following holds:

Theorem 9.7 If Υ |=CL B, then each of the following holds:

1. Υ� |=Kt B ∨̌
∨

{!C ∨ !¬C | C ∈ E(B)}.
2. Υ� |=K B ∨̌

∨

{σ(Θ) | Θ ⊂ W l
c, E(Θ) = E(B)}.

3. Υ� |=LLLi
B ∨̌Dabi(∆) for a ∆ ⊂ Ωr

i.

Proof. Ad 1. Immediate in view of Theorem 9.6.
Ad 2. Suppose Υ |=CL B. Hence Υ� |=K �B. Let C =

∧

i∈I Ci be a

conjunctive normal form of B such that E(C) ⊆ E(B). Note that Υ� |=K

B ∨̌(�B ∧ ¬B), whence also Υ� |=K B ∨̌
∨

i∈I(�Ci ∧ ¬Ci) or shorter, Υ� |=K

B ∨̌
∨

i∈I !Ci. Since for each i ∈ I, E(Ci) ⊆ E(C) ⊆ E(B), the theorem follows
immediately.

Ad 3. Immediate in view of Theorem 9.6, items 1 and 2, and the fact that ∨
and ∨̌ are equivalent in Kt and K.

Note that by Theorem 9.7, whenever B is a CL-consequence of Υ, we may
conditionally infer that B is in the revision set. Whether or not a condition can
be safely relied upon, depends on which logic guides our revisions. However, if
B is not relevant to Υ⊕ Ψ, then its condition will always be reliable, as shown
in Section 9.8.3.
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⊕ARr
1

versus ⊕ARr
2
. Now let us discuss in what respect the 8 revision op-

erations differ, starting with the two most basic operations: ⊕ARr
1

and ⊕ARr
2
.

Consider the following example: Υ8 = {p ≡ q, r, s} and A2 = ¬r ∨ (p ∧ ¬q).
Obviously s is in the revision set Υ8 ⊕ARr

i
A2 for both i = 1 and i = 2,

because belief s does not conflict with the new information A2 in any sense of
the word; it is irrelevant to the revision.25 Whether r and p ≡ q are in the
revision set is less obvious. p, q and r are all relevant to the revision. Moreover
r and p ≡ q definitely cannot be both in the revision set. There seems to be
no good reason to choose between one of the two, as the following is a minimal
Dab1-consequence of Υ�

8 ∪A2:

ρ(p) ∨̌ ρ(q) ∨̌ ρ(r) (9.6)

So, at first glance, it seems rational to drop both entirely. This is exactly what
ARr

1 does: Υ8 ⊕ARr
1
A2 = CnCL({A2, s}).

However, if one looks a bit closer, one observes that there is no argument in
the new information that falsifies the right to left direction of the equivalence
p ≡ q. It is quite intuitive not to give up on this belief: it is not because the left
to right direction of the equivalence p ≡ q is falsified (in combination with the
falsification of r), that one would therefore immediately possess good reasons to
stop believing the right to left direction.

This intuition is formalized by ARr
2. The following is the only minimal Dab2-

consequence of Υ8 ∪A2:
!¬p ∨̌ !q ∨̌ !r (9.7)

Hence the literals p and ¬q are not considered unreliable by ARr
2, in view of

Υ8 ∪A2. Consequently, ¬q ∨ p ∈ Υ8 ⊕ARr
2
A2.

In order to explain the difference between ARr
1 and ARr

2 in a more general
way, let us introduce the notions positive and negative part. Where B is the
complement of A iff B = ¬A or A = ¬B, let A be a cosubformula of C if a
complement of A is a subformula of C. Let a (co-)subformula B of a formula
A be a positive part of A iff there is a set Γ of (co-)subformulas of A such that
Γ 0CL A, Γ 0CL ¬B and Γ ∪ {B} `CL A. A negative part of A is a complement
of a positive part of A.26

While ARr
1 localizes conflicts merely with respect to the bare letters, no

matter whether they are positive or negative parts of the conflicts, ARr
2 makes a

distinction between positive or negative use of letters. Intuitively, ARr
1 pinpoints

the conflicts between the new information and the belief base by means of the
letters that cause the conflict. Any of these conflicting letters are considered
harmful/unreliable, no matter whether they are negative or positive parts of
beliefs. This may be considered a rather cautious attitude compared to the
more detailed attitude formalized by ARr

2. One might therefore conclude that it
depends on the level of prudence which one of ⊕ARr

1
and ⊕ARr

2
is the adequate

operation.

25To see why, note that the finest splitting of Υ is E = {{p, q}, {r}, {s}}.
26This definition of the notions positive and negative part is slightly different from the

more usual definition in the literature (e.g. in [18]). More particularly, using our definition
CL−contradictions have no positive or negative parts and a formula can never be both a
positive and a negative part of a formula.
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However, it is not the case that for all Υ,Ψ ⊆ Wr, Υ⊕ARr
1

Ψ ⊆ Υ⊕ARr
2

Ψ.
Consider the following example: A3 = ((p ∧ ¬q) ∨ (q ∧ ¬p)) ∧ ((p ∧ ¬q) ∨ ¬r).
In this case r ∈ Υ8 ⊕ARr

1
A3 but r /∈ Υ8 ⊕ARr

2
A3. To see why, compare the

minimal Dab2-consequences of Υ8 ∪ {A3}:

!¬p ∨̌ !q ∨̌ !p ∨̌ !¬q (9.8)

!¬p ∨̌ !q ∨̌ !r (9.9)

to the (only) minimal Dab1-consequence of the same premise set:

ρ(p) ∨̌ ρ(q) (9.10)

In view of the latter Dab-consequence, ARr
1 localizes the conflict in p and q

– there is no need to also consider r as problematic. However, if one analyzes the
situation in a more detailed way, distinguishing positive and negative formulas,
one sees that considering p, ¬q, and r as abnormal is not more justified than
pinpointing p, q, ¬p, and ¬q as abnormal literals (as a matter of fact, these choices
are incomparable). So there is no reason to assume that r is unproblematic, if
one localizes conflicts according to the intuitions behind ARr

2.

⊕ARr
1

versus ⊕ARr
3
. Consider the belief base Υ9 = {p ⊃ q, p ⊃ r} and new

information A4 = p ∧ ¬q. We clearly need to drop the belief p ⊃ q because it
is falsified by the new information. But does this also require us to give up on
p ⊃ r, just because it contains p? If it comes to ARr

1, the answer to this question
is yes and indeed p ⊃ r /∈ Υ9 ⊕ARr

1
A4. But obviously this is not necessary. That

one particular relation between two phenomena is falsified by new information
does obviously not entail that one should give up every belief about any of the
related phenomena. ARr

3 solves this problem: it treats individual implications
(to be more precise: disjunctions of literals) individually and therefore it manages
to maintain as many implications as possible, even if some other implication
involving the same letter is falsified. For this reason, p ⊃ r ∈ Υ9 ⊕ARr

3
A4

Again, one might think that ⊕ARr
3

is always an extension of ⊕ARr
1
. For

similar reasons as the ones regarding the difference between ⊕ARr
1

and ⊕ARr
2
,

this is not the case. For example, let Υ10 = {p ∨ q, p ∨ r, q ∨ r, s} and A5 =
((¬p ∧ ¬q) ∨ (¬q ∧ ¬r) ∨ ¬s) ∧ ((¬p ∧ ¬q) ∨ (¬p ∧ ¬r))}. A little thought shows
that s ∈ Υ10 ⊕ARr

1
A5 while s /∈ Υ10 ⊕ARr

3
A5. This illustrates once again that

localizing conflicts in a more detailed way does not always allow one to uphold
more of the old beliefs—see however below where we return to this point. For
the same reasons, the operations ⊕ARr

2
and ⊕ARr

3
are incommensurable.

While there are good arguments for the way ARr
3 treats beliefs about im-

plications, the reader needs to be aware that this has counterintuitive effects.
Suppose Υ11 = {p ⊃ q, q ⊃ r} and A6 = p ∧ ¬q. This example is similar to
the one concerning the revision of Υ9 by A4, but it is somehow less convincing.
One would intuitively not expect that the new belief r is a result of revising Υ11

by A6. It is perfectly natural that the first original belief (p ⊃ q) is retracted,
since it is falsified by the new information. There is no problem with the other
original belief q ⊃ r, for it is a CL-consequence of the revision formula A6. So
one might expect the revision set to comprise nothing but the CL-consequences
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of A6. Although intuitively, the revision does not present new arguments in favor
of r, this formula is in the ARr

3 revision set because p ⊃ r is a CL-consequence
of the original beliefs, and there is no reason to retract p ⊃ r. Combined with
the new information, retaining p ⊃ r entails believing that r.

Solving this counterintuitive behavior of ARr
3 would require making a formal

distinction between the precise ways in which a belief base can be phrased. More
particularly, it would require that some CL-equivalent belief bases are revised
differently even when they are revised with the same new information. This type
of belief revision, although possibly very sensible, is beyond the scope of this
chapter.27

Revision by ⊕ARr
4
. Finally, ARr

4 combines the ideas behind ARr
2 and ARr

3.
It treats implications individually and it makes a distinction between positive and
negative literals. Consequently, the mentioned differences between the operations
naturally extend to the operation ⊕ARr

4
. The reader can easily check that each

of the following holds:

• s ∈ Υ8 ⊕ARr
4
A2,

• q ⊃ p ∈ Υ8 ⊕ARr
4
A2,

• r /∈ Υ8 ⊕ARr
4
A3,

• p ⊃ r ∈ Υ9 ⊕ARr
4
A4,

• s /∈ Υ10 ⊕ARr
4
A5, and

• r ∈ Υ11 ⊕ARr
4
A6.

Minimal Abnormality versus Reliability. Next to the already explained
operations, there are also the stronger Minimal Abnormality variants of the op-
erations. Comparing ARm

1 and ARr
1 by means of one example should explain

the difference for every particular logic. Consider Υ12 = {p, q} and A7 = ¬p∨¬q.
We now wonder whether p ∨ q ∈ Υ12 ⊕ARr

1
A7. The answer is no. Both p and

q are considered unreliable, because one of both causes a conflict. Nevertheless,
each Kt-model that (set theoretically) contains the least abnormalities, verifies
either p or q. The Minimal Abnormality operations formalize this consideration
and so p ∨ q ∈ Υ12 ⊕ARm

1
A7 holds.

The next theorem shows that the Minimal Abnormality operations always
yield revision sets that are supersets of the revision sets that are obtained by the
corresponding Reliability operations.

Theorem 9.8 If Γ |=ARr
i
A, then Γ |=ARm

i
A. Consequently, Υ⊕ARr

i
Ψ ⊆

Υ⊕ARm
i

Ψ.

The following theorems show that, unlike the Reliability operations, there
are revision operations among the four Minimal Abnormality operations that are
straightforward extensions of each other. We prove them in Section 9.7 below.

Theorem 9.9 If Γ |=ARm
2
A, then Γ |=ARm

1
A. Consequently, Υ⊕ARm

2
Ψ ⊆

Υ⊕ARm
1

Ψ

27For one thing, it is not clear whether we can make such distinctions, yet still ensure that
Parikh’s postulate P is obeyed.
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Theorem 9.10 If Γ |=ARm
4
A, then Γ |=ARm

3
A. Consequently, Υ⊕ARm

4
Ψ ⊆

Υ⊕ARm
3

Ψ

This is a rather unexpected result, so let us explain it for the case of ARm
2

and ARm
1 . Recall the minimal Dab-consequence in equation (9.6). Since this

disjunction is minimal, there are models of this premise set that verify only one
of the three disjuncts. Hence the models M ∈ MARm

1
(Υ�

8 ∪ {A2}) are such that
one of the following holds:

Ab1(M) = {ρ(p)}
Ab1(M) = {ρ(q)}
Ab1(M) = {ρ(r)}

Since all models M in the third class of models falsify the abnormality of the
letters p and q, it obviously holds that M  p ≡ q, whence also M  q ⊃
p. By a similar reasoning, all models M in the first and second class falsify
the abnormality of the letter r, whence they verify r. But in view of the new
information A2 = ¬r∨(p∧¬q), this means that these models verify p∧¬q, which
implies q ⊃ p. In other words, if we minimize the sets of abnormalities verified
by each selected model, we overcome the fact that positive and negative parts
cannot be treated separately by the logics.

Tables 9.2 and 9.3 summarize the results of applying the 8 belief operations
to the examples we presented in this section. The CL-consequences of the sets in
the table are the actual resulting revision sets (to simplify notation, we skip set
brackets in the tables). In order to prove that each of the 8 operations is unique,
observe the examples in these tables.

Υ,A ⊕ARr
1

⊕ARr
2

⊕ARr
3

⊕ARr
4

Υ8, A2 s, A2 s, q ⊃ p, A2 s, A2 s, q ⊃ p,A2

Υ8, A3 s, r,A3 s, A3 s, r, A3 s, A3

Υ9, A4 A4 A4 p ⊃ r, A4 p ⊃ r, A4

Υ10, A5 s, A5 s, A5 A5 A5

Υ11, A6 A6 A6 r, A6 r, A6

Υ12, A7 A7 A7 A7 A7

Table 9.2: An overview of the Reliability revision sets for the examples.

Υ,A ⊕AR
m
1

⊕AR
m
2

⊕AR
m
3

⊕AR
m
4

Υ8, A2 s, r ∨ (p ≡ q), A2 s, r ∨ (p ≡ q), A2 s, r ∨ (p ≡ q), A2 s, r ∨ (p ≡ q),A2

Υ8, A3 s, r, A3 s, q ⊃ p,A3 s, r,A3 s, q ⊃ p, A3

Υ9, A4 A4 A4 p ⊃ r, A4 p ⊃ r,A4

Υ10, A5 s, p ∨ q ∨ r, A5 s, p ∨ q ∨ r, A5 p ∨ q ∨ r,A5 p ∨ q ∨ r, A5

Υ11, A6 A6 A6 r,A6 r, A6

Υ12, A7 p ∨ q, A7 p ∨ q, A7 p ∨ q, A7 p ∨ q, A7

Table 9.3: An overview of the Minimal Abnormality revision sets for the examples
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9.7 Proofs of Theorems 9.9 and 9.10

Theorems 9.9 and 9.10 are an immediate consequence of the following two lem-
mas:

Lemma 9.6 MARm
1

(Γ) ⊆ MARm
2

(Γ)

Proof. Suppose M ∈ MARm
1

(Γ)−MARm
2

(Γ). Note that since MARm
1

(Γ) ⊆
MKt(Γ), M ∈ MKt(Γ). Hence by the Strong Reassurance of ARm

2 , there is an
M ′ ∈ MKt(Γ) such that (†) Ab2(M ′) ⊂ Ab2(M).

Suppose M ′  ρ(A) for an A ∈ S. Then M ′ !A or M ′ !¬A. By (†), M !A
or M !¬A. Hence M  ρ(A).

So we obtain that

Ab1(M ′) ⊆ Ab1(M) (9.11)

By (†), there is a B ∈ W l
c: M !B and M ′ 6!B.

Case 1. B ∈ S. Then M  ρ(B). Note that M  ¬B, whence M 6!¬B. By
(†), M ′ 6!¬B. Since also M ′ 6!B, M ′ 6 ρ(B).

Case 2. B = ¬C for a C ∈ S. Then M  ρ(C). Note that M  C, whence
M 6!C. By (†), M ′ 6!C. Since also M ′ 6!¬C, M ′ 6 ρ(C). So we obtain that

Ab1(M ′) 6= Ab1(M) (9.12)

By (9.11) and (9.12), Ab1(M ′) ⊂ Ab1(M), whence M 6∈ MARm
1

(Γ). But this
contradicts the supposition.

Lemma 9.7 MARm
3

(Γ) ⊆ MARm
4

(Γ).

Proof. Suppose M ∈ MARm
3

(Γ)−MARm
4

(Γ). Note that since MARm
3

(Γ) ⊆
MK(Γ), M ∈ MK(Γ). Hence by the Strong Reassurance of ARm

4 , there is an
M ′ ∈ MK(Γ) such that (†) Ab4(M ′) ⊂ Ab4(M).

Suppose M ′  τ(Π) for a Π ⊂ S. Hence M ′  σ(Θ), for a Θ ⊆ Π ∪ Π¬. By
(†), M  σ(Θ), whence also M  τ(Π). So we obtain that

Ab3(M ′) ⊆ Ab3(M) (9.13)

Note that by (†), there is a Θ ⊂ W l
c such that M  σ(Θ), M ′ 6 σ(Θ). Let

Θ′ ⊆ Θ be minimal such that M  σ(Θ′). This implies that (a) M  ¬
∨

Θ′,
whence M  ¬B for every B ∈ Θ′. Hence (?) there is no A ∈ S such that
A,¬A ∈ Θ′. Finally, note that

M  τ(E(Θ′)) (9.14)

Suppose that (‡) M ′  τ(E(Θ′)). Hence there is a Ξ ⊆ Θ′ ∪ Θ′¬ such that
M ′  σ(Ξ). Let Ξ′ ⊆ Ξ be minimal such that M ′  σ(Ξ′). Hence M ′  ¬

∨

Ξ′,
whence M ′  ¬B for every B ∈ Ξ′. Hence (??) there is no A ∈ S : A,¬A ∈ Ξ′.

By (†), M  σ(Ξ′). Let Ξ′′ ⊆ Ξ′ be minimal such that M  σ(Ξ′′). Note
that M !

∨

Ξ′′, whence (b) M  ¬
∨

Ξ′′.
Since M ′ 6 σ(Θ′), (c) Ξ′ 6⊆ Θ′. Since E(Ξ′) ⊆ E(Ξ) ⊆ E(Θ′) and by (c), (?)

and (??), we can derive that (d) Θ′ 6⊆ Ξ′.
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Case 1. Ξ′′ ⊆ (Θ′ ∩ Ξ′). By (d), Ξ′′ ⊂ Θ′. This contradicts the fact that Θ′

is a minimal subset of Θ such that M  σ(Θ′).
Case 2. Ξ′′ 6⊆ (Θ′ ∩ Ξ′). But then, since Ξ′′ ⊆ Ξ′, there is a B ∈ Ξ′′ − Θ′.
Case 2.1. B ∈ S. By (b), M  ¬B. But since E(Ξ′′) ⊆ E(Θ′), it follows

that ¬B ∈ Θ′, whence by (a), M  ¬¬B — a contradiction.
Case 2.2. B = ¬C for a C ∈ S. By (b), M  ¬¬C. But since E(Ξ′′) ⊆ E(Θ′),

it follows that C ∈ Θ′, whence by (a), M  ¬C — a contradiction.
As a result, (‡) fails: M ′ 6 τ(E(Θ′)). By (9.14), we obtain that

Ab3(M ′) 6= Ab3(M) (9.15)

By (9.13) and (9.15), Ab3(M ′) ⊂ Ab3(M), whence M 6∈ MARm
3

(Γ). But this
contradicts the supposition.

9.8 Some Meta-theoretic Properties

9.8.1 The Properties

In this section, we list the most central meta-theoretic virtues of the eight adap-
tive logics we defined before. Since the logics are formulated in the standard
format of adaptive logics, they inherit all the properties that were proven gener-
ically for this format – we restate some of them here for the ease of reference:

Theorem 9.11 ([21]: Th. 11.2) Γ ⊆ CnARx
i
(Γ). (Reflexivity)

Theorem 9.12 CnLLLi
(CnARx

i
(Γ)) = CnARx

i
(Γ). (LLL-Closure)

Note that Theorem 9.11 entails that Ψ ⊆ Υ⊕AR Ψ, as required by the Success
postulate (G2). Theorem 9.12 is crucial for the proof that ⊕AR obeys the
Closure postulate (G1).

The next property on the list is Reassurance. This is crucial to prove that
⊕AR obeys the Success postulate (G5).

Theorem 9.13 ([21]: Cr. 2) If Γ has LLLi-models, then Γ has ARi-models.
(Reassurance)

A final important result for the current application is a specific case of the
equivalence criteria for flat ALs (see Theorem 2.20, condition C2):

Theorem 9.14 If Γ and Γ′ are LLLi-equivalent, then they are ARi-equivalent.
(Equivalent premise sets)

Theorem 9.14 renders the proof of the postulate of Extensionality (G6) ex-
tremely short – we refer to Section 9.8.2 for the details.

Up to this point, we only considered properties of the logics AR : ℘(Wr) →
℘(Wr). As indicated, some of these properties are useful to establish the well-
behavedness of ⊕AR : ℘(Wc) × ℘(Wc) → ℘(Wc). More particularly, the revision
function ⊕AR obeys all the 6 basic Gärdenfors postulates and the additional
axiom of relevance. The proofs of the following two theorems are presented in
Sections 9.8.2 and 9.8.3 respectively:
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Theorem 9.15 ⊕AR obeys G1-G6.

Theorem 9.16 ⊕AR obeys P for every consistent Υ.

9.8.2 Proving the Rationality Postulates

We first state some observations, each of which follow immediately from the
definition of Kt and K – recall that we use LLLi as a metavariable for both.

Fact 9.4 Each of the following holds:

1. If Ψ is CL-satisfiable, then Υ� ∪ Ψ is LLLi-satisfiable
2. If Ψ a`CL Ψ′, then Υ� ∪ Ψ a`LLLi

Υ′� ∪ Ψ′

3. Every Kt-model is a K-model
4. CnCL(CnLLLi

(Γ) ∩Wc) = CnLLLi
(Γ) ∩Wc

The following is an instance of [21], Theorem 7:

Theorem 9.17 If Γ |=LLLi
B ∨̌Dabi(∆) and ∆ ∩ U i(Γ) = ∅, then Γ |=ARr

i
B.

With these tools, the proof of the following is rather straightforward.

Theorem 9.18 ⊕AR obeys postulates G1 and G2.

Proof. G1. Immediate in view of the fact that ARi is closed under LLLi (see
Theorem 9.12), Fact 9.4.4, and Definition 9.16.

G2. Immediate in view of Theorem 9.11 and Definition 9.16.

Definition 9.17 An LLLi-model M of Γ is ARi-normal iff Abi(M) = ∅.

Lemma 9.8 If Υ ∪ Ψ is consistent, then Υ� ∪ Ψ has ARi-normal models.

Proof. Suppose Υ ∪ Ψ is consistent. Let ∆ be a maximal consistent extension
(with respect to CL) of Υ ∪ Ψ. Let the model M = 〈W,R, v, w0〉 be defined as
follows: (1) W = {w0}, (2) R = {(w0, w0)}, and (3) for all B ∈ S, v(B,w0) = 1
iff B ∈ ∆. Note that M is a Kt-model of Υ� ∪ Ψ. By Fact 9.4.3, M is also a
K-model of Υ� ∪ Ψ. We safely leave it to the reader to prove that Ab1(M) =
Ab2(M) = Ab3(M) = Ab4(M) = ∅.

Note that where M is an ARi-normal model of Γ, M 6 Dabi(∆) for every
∆ ⊂ Ωr

i. Hence we have:

Fact 9.5 If Γ has ARi-normal models, then U i(Γ) = ∅.

Theorem 9.19 ⊕AR obeys postulate G4.

Proof. Suppose Υ ∪ Ψ is consistent. Let i ∈ {1, 2, 3, 4}. By Lemma 9.8, Υ� ∪ Ψ
has ARi-normal models. Hence by Fact 9.5, (†) U i(Γ) = ∅.

Note that for every B ∈ Υ, by Theorem 9.7.3: Υ� ∪ Ψ `LLLi
B ∨̌Dabi(∆)

for a ∆ ⊂ Ωi. Hence by (†) and Theorem 9.17, Υ� ∪ Ψ `ARr
i
B. By Theorem

9.8, Υ� ∪ Ψ `ARm
i
B. So we obtain:

for every B ∈ Υ, B ∈ Υ⊕AR Ψ (9.16)
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By postulate G2, also Ψ ⊆ Υ⊕AR Ψ. By postulate G1 and (9.16), we obtain
that for every C ∈ CnCL(Υ ∪ Ψ) : C ∈ Υ⊕AR Ψ.

Suppose now that C 6∈ CnCL(Υ ∪ Ψ). Hence there is a maximal consistent
extension ∆C of Υ ∪ Ψ such that C 6∈ ∆C . Let the model MC be defined just as
the model M from Lemma 9.8, but replacing ∆ with ∆C . It follows that (i) MC

is an ARi-normal model of Υ� ∪ Ψ, and (ii) MC 6 C. Hence Υ� ∪ Ψ 6|=ARi
C.

By the soundness of ARi and Definition 9.16, C 6∈ Υ ⊕ARi
Ψ.

Theorem 9.20 ⊕AR obeys postulates G3, G5 and G6.

Proof.
G3. Case 1: Υ ∪ Ψ is inconsistent. Then CnCL(Υ ∪ Ψ) = Wc, whence the

property follows immediately. Case 2: Υ ∪ Ψ is consistent. Then by the Vacuity
Postulate (G4), it immediately follows that Υ⊕AR Ψ = CnCL(Υ ∪ Ψ).

G5. Suppose Ψ is consistent. By Fact 9.4.1, Υ� ∪ Ψ has LLLi-models.
By Theorem 9.13, Υ� ∪ Ψ has ARi-models. Hence CnARi

(Υ� ∪ Ψ) is LLLi-
satisfiable. This implies that CnARi

(Υ� ∪ Ψ)∩Wc is CL-satisfiable, whence by
Definition 9.16, Υ⊕ARi

Ψ is CL-satisfiable.
G6. Suppose Ψ a`CL Ψ′. By Fact 9.4.2, Υ� ∪ Ψ and Υ� ∪ Ψ′ are LLLi-

equivalent. By Theorem 9.14, Υ� ∪ Ψ and Υ� ∪ Ψ′ are ARi-equivalent. Hence
Υ⊕ARi

Ψ = Υ⊕ARi
Ψ′.

9.8.3 Proving the Relevance Axiom

In this section, it is assumed that Υ and Ψ are consistent – note that if Ψ is
inconsistent, then Υ� ∪ Ψ is LLLi-trivial, whence it is also ARi-trivial. This
implies that Υ⊕AR Ψ = W̌r, whence the theorem follows immediately.

In the remainder, we prove for each of the operations ⊕ARr
2
, ⊕ARr

1
, ⊕ARr

4
and

⊕ARr
3

subsequently, that they obey P. In view of Theorem 9.8, it immediately
follows that also ⊕ARm

2
, ⊕ARm

1
, ⊕ARm

4
and ⊕ARm

3
obey P. Before we start, we

first need two lemmas that are used in each of the four subsections. The first one
is an immediate consequence of properties of the standard format – see page 21:

Lemma 9.9 Where Γ is LLLi-satisfiable: A ∈ U i(Γ) iff there is an M ∈
MARm

i
(Γ) such that M  A.

Lemma 9.10 If M = 〈W,R, v, w0〉, E(Ψ) ⊂ S, and there is no w ∈ W such
that (w0, w) ∈ R, then each of the following holds:

1. M 6∈ MARm
2

(Υ� ∪ Ψ)

2. M 6∈ MARm
4

(Υ� ∪ Ψ)

Proof. Suppose the antecedent holds. If M 6∈ MK(Υ� ∪ Ψ), the lemma follows
immediately, so suppose M ∈ MK(Υ� ∪ Ψ). Note that

for every A ∈ Wc,M  �A (9.17)

Let ∆ be a maximal consistent extension (with respect to CL) of Υ. Let the
model M ′ = 〈W ′, R′, v′, w0〉 be defined as follows:
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(i) W ′ = {w0, w∆}
(ii) R′ = {(w0, w∆)}
(iii) For every B ∈ S: v′(B,w∆) = 1 iff B ∈ ∆
(iv) For every B ∈ S −E(Ψ): v′(B,w0) = v(B,w∆)
(v) For every B ∈ E(Ψ): v′(B,w0) = v(B,w0)

Note that M ′ is a Kt-model of Υ� ∪ Ψ, whence by Fact 9.4.3, M ′ is also a
K-model of Υ� ∪ Ψ. Note also that since M ′ is a Kt-model,

for every Θ ⊂ W l
c: if M ′  σ(Θ), then M ′ !B for a B ∈ Θ (9.18)

Ad 1. Suppose M ′ !B for a B ∈ W l
c. In view of the construction, B ∈

S ∩ E(A). But then by (v), M  ¬B, whence by (9.17), M !B. Hence (†)
Ab2(M ′) ⊆ Ab2(M).

Let C ∈ S −E(Ψ). Note that, on the one hand, M ′ 6!C and M ′ 6!¬C. On
the other hand, M  C or M ` ¬C, whence by 9.17, M !C or M !¬C. As a
result, (‡) Ab2(M ′) 6= Ab2(M).

By (†) and ‡), Ab2(M ′) ⊂ Ab2(M). But then since M ′ is a Kt-model of
Υ� ∪ Ψ, M 6∈ MARm

2
(Υ� ∪ Ψ) by Definition 2.2.

Ad 2. Suppose M ′  σ(Θ) for a Θ ⊂ W l
c. Hence by (9.18), M ′ !B for a

B ∈ Θ. By (†), it follows immediately that M !B, whence also M  σ(Θ). As
a result, (†′) Ab4(M ′) ⊆ Ab4(M).

Let C ∈ S − E(Ψ) and let Θ = {C}. By (‡), M ′ 6 σ(Θ),M ′ 6 σ(Θ¬),
whereas M  σ(Θ) or M  σ(Θ¬). As a result, (‡′) Ab4(M ′) 6= Ab4(M).

By (†′) and ‡′), Ab4(M ′) ⊂ Ab4(M). But then since M ′ is a K-model of
Υ� ∪ Ψ, M 6∈ MARm

4
(Υ� ∪ {A}) by Definition 2.2.

⊕ARr
2

obeys P.

Lemma 9.11 For every B ∈ W l
c: If M !B and B is not relevant to the revision

of Υ by Ψ, then M is not an ARm
2 -model of Υ� ∪ Ψ.

Proof. Suppose the antecedent holds and M = 〈{w0, wK}, R, v, w0〉 is a Kt-
model of Υ� ∪ {A}. Let Ψ∗ be an arbitrary least letter-set representation of Ψ.
We prove that M 6∈ MARm

2
(Υ� ∪ Ψ∗), whence by the equivalence of Ψ and Ψ∗,

also M 6∈ MARm
2

(Υ� ∪ Ψ)
In view of the supposition, E(Ψ∗) ⊂ S. If (w0, wK) 6∈ R, then by Lemma

9.10, M 6∈ MARm
2

(Υ� ∪ Ψ∗). So suppose moreover that (w0, wK) ∈ R.
Let E = {Λi}i∈I be the finest splitting of Υ. Let F = {Λi ∈ E | Λi ∩E(Ψ∗) 6=

∅}. Let M ′ = 〈{w0, wK}, R, v′, w0〉, where v′ is defined as follows:

(i) where C ∈ S ∩
⋃

F: v′(C,w0) = v(C,w0) and v′(C,wK ) = v(C,wK)
(ii) where C ∈ S −

⋃

F: v′(C,w0) = v′(C,wK ) = v(C,wK)

Each of the following holds:

(1) M ′ is a Kt-model of Υ ∪ Ψ∗. To see why, let first A ∈ Ψ∗. Note that since
E(Ψ∗) ⊆

⋃

F and by (i), vM ′ (A,w0) = v(A,w0), whence vM ′(A,w0) = 1 in
view of the supposition. Second, note also that for all C ∈ Wc, vM ′ (C,wK) =
vM (C,wK) in view of (i) and (ii). Hence also M ′  Υ� in view of the
supposition.
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(2) Ab2(M ′) ⊆ Ab2(M). Suppose M ′ !D for a D ∈ W l
c. Hence vM ′(D,wK) 6=

vM ′ (D,w0), whenceE(D) ∈
⋃

F in view of (ii). This implies that vM ′ (D,w0)
= vM (D,w0) and vM ′(D,wK) = vM (D,wK). As a result, also M !D.

(3) Ab2(M ′) 6= Ab2(M). Note that M ′ 6!B, since B 6∈
⋃

F and in view of (ii).

By (2) and (3), Ab2(M ′) ⊂ Ab2(M). By (1), M is not an ARm
2 -model of Υ∪Ψ∗.

By Lemma 9.11 and Lemma 9.9, we obtain:

Corollary 9.1 If B ∈ W l
c is not relevant to the revision of Υ by Ψ, then !B 6∈

U2(Υ� ∪ Ψ).

Theorem 9.21 If B ∈ CnCL(Υ) and B is not relevant to Υ⊕Ψ, then B ∈
Υ⊕ARr

2
Ψ.

Proof. Suppose the antecedent holds. By Theorem 9.7.1,

Υ� |=Kt B ∨
∨

{!C∨!¬C | C ∈ E(B)}

By the supposition and Definition 9.3, for every C ∈ E(B): C and ¬C are
not relevant to Υ⊕Ψ. Hence by Corollary 9.1, for every D ∈ E(B): !D, !¬D 6∈
U2(Υ� ∪ Ψ). By Theorem 9.17, Υ� ∪ Ψ |=ARr

2
B.

⊕ARr
1

obeys P.

Lemma 9.12 For every B ∈ S: If M  ρ(B) and B is not relevant to the
revision of Υ by Ψ, then M is not an ARm

1 -model of Υ� ∪ Ψ.

Proof. Suppose the antecedent holds. Note that M !B or M !¬B, and that
B and ¬B are irrelevant to Υ⊕Ψ. By Lemma 9.11, M is not a ARm

2 -model of
Υ� ∪ Ψ. But then by Lemma 9.6, M is not an ARm

1 -model of Υ� ∪ Ψ.

By Lemma 9.12 and Lemma 9.9, we obtain:

Corollary 9.2 If B ∈ S is not relevant to the revision of Υ by Ψ, then ρ(B) 6∈
U1(Υ� ∪ Ψ).

Theorem 9.22 If B ∈ CnCL(Υ) and B is not relevant to Υ⊕Ψ, then B ∈
Υ⊕ARr

1
Ψ.

Proof. Suppose the antecedent holds. By Theorem 9.6, Υ� |=Kt B ∨
∨

{ρ(C) |
C ∈ E(B)}. By the supposition and Definition 9.3, for every C ∈ E(B): C is
not relevant to Υ⊕Ψ. Hence by Corollary 9.2, for every C ∈ E(B): ρ(C) 6∈
U1(Υ� ∪ Ψ). By Theorem 9.17, Υ� ∪ Ψ |=ARr

1
B.
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⊕ARr
4

obeys P. To prepare for the subsequent proofs, we first extend the
definition of relevance to sets of formulae, as follows:

Definition 9.18 Let E be the finest splitting of Υ and let Ψ∗ be a least letter-set
representation of Υ. We say that a set of formulae Θ is irrelevant to the revision
of Υ by Ψ iff for every cell Λi ∈ E: Λi ∩ E(Ψ∗) = ∅ or Λi ∩ E(Θ) = ∅.

Lemma 9.13 If M  σ(Θ), where Θ is not relevant to Υ⊕Ψ, then M is not
an ARm

4 -model of Υ� ∪ {A}.

Proof. Suppose the antecedent holds and M = 〈W,R, v, w0〉 is a K-model of
Υ� ∪ Ψ. Let Ψ∗ be an arbitrary least letter-set representation of Ψ. We prove
that M 6∈ MARm

4
(Υ� ∪ Ψ∗), whence by the equivalence of Ψ and Ψ∗, also M 6∈

MARm
4

(Υ� ∪ Ψ)
In view of the supposition, E(Ψ∗) ⊂ S. If there is no w ∈ W such that

(w0, w) ∈ R, the theorem follows immediately in view of Lemma 9.10. So suppose
moreover that for a w ∈ W , (w0, w) ∈ R. Let E = {Λi}i∈I be the finest splitting
of Υ and let F = {Λi ∈ E | Λi ∩E(Ψ∗) 6= ∅}.

Let ∆ ∈ CΥ.28 Let Π = {C ∈ ∆ | E(C) ⊆ S −
⋃

F} and let Π′ = {C ∈
∆ | E(C) ⊆

⋃

F}. Since ∆ ∈ CΥ and E is the finest splitting of Υ, there are no
C ∈ ∆ such that E(C) ∩

⋃

F 6= ∅ and E(C) 6⊆
⋃

F. Thus the following holds:

∆ = Π ∪ Π′ (9.19)

Note that since Υ is assumed to be consistent, ∆ is consistent and hence also
Π,Π′ are consistent. By the supposition, M  �C for every C ∈ CnCL(Υ),
whence also M  �C for every C ∈ ∆. More particularly,

M  �C for every C ∈ Π′ (9.20)

Let Π+ be a maximal consistent extension (with respect to CL) of Π. Let
the K-model M ′ be defined by 〈W,R, v′, w0〉, where v′ is defined as follows:

(i) where C ∈
⋃

F: v′(C,w) = v(C,w) for every w ∈W
(ii) where C ∈ S −

⋃

F: v′(C,w) = 1 iff C ∈ Π+, for every w ∈ W

For all C ∈ Π+ ∩ (S −
⋃

F), M ′  �C in view of (ii). Hence for all C ∈ Π,
M ′  �C. Also, for all C ∈ Π′, M ′  �C in view of (i) and (9.20). By (9.19), for
all C ∈ ∆, M ′  �C. Since ∆ a`CL Υ, M ′  �C for every C ∈ Υ. Furthermore,
in view of (i) and the fact that E(Ψ∗) ⊆

⋃

F, M ′  Ψ∗. Hence we obtain:

M ′ is a K-model of Υ� ∪ Ψ∗ (9.21)

In view of (ii), the following holds:

for every Ξ with E(Ξ) ⊆ S −
⋃

F, M ′ 6 σ(Ξ) (9.22)

Suppose M ′  σ(Ξ) for some Ξ ⊂ W l
c. Let Ξ′ be a minimal subset of Ξ for

which M ′  σ(Ξ). There are three cases to consider:

28Recall that CΥ is the set of canonical forms of Υ – see page 227 for the exact definition of
this set.
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Case 1. E(Ξ′) ⊆
⋃

F. Then in view of (i), also M  σ(Ξ).
Case 2. E(Ξ′) ⊆ S −

⋃

F. This possibility is ruled out by (9.22).
Case 3. E(Ξ′) contains both members of

⋃

F and of S−
⋃

F. Note that for every
disjunct C of Ξ′, with E(C) ∈ S −

⋃

F, either M ′  �C or M ′  �¬C.
In both cases, we can derive that Ξ′ is not a minimal subset of Ξ for
which M ′  σ(Ξ).

It follows that (†) Ab4(M ′) ⊆ Ab4(M).
By the supposition and Definition 9.3, E(Θ) ⊆ S −

⋃

F. By (9.22), M ′ 1

σ(Θ). Hence (‡) Ab4(M ′) 6= Ab4(M). By (†) and (‡), Ab4(M ′) ⊂ Ab4(M). By
(9.21), M 6∈ MARm

4
(Υ ∪ Ψ∗).

By Lemma 9.9, we obtain:

Corollary 9.3 If Θ is not relevant to Υ⊕Ψ, then σ(Θ) 6∈ U4(Υ� ∪ Ψ).

Theorem 9.23 If B ∈ CnCL(Υ) and B is not relevant to Υ⊕Ψ, then B ∈
Υ⊕ARr

4
Ψ.

Proof. Suppose the antecedent holds. By Theorem 9.7.2, Υ� |=K B ∨
∨

{σ(Θ) |
E(Θ) = E(B)}. By the supposition and Definition 9.18, for every Θ ⊂ W l

c such
that E(Θ) = E(B): Θ is not relevant to Υ⊕Ψ. Hence by Corollary 9.3, for every
such Θ: σ(Θ) 6∈ U4(Υ� ∪ Ψ). By Theorem 9.17, Υ� ∪ Ψ |=ARr

4
B.

⊕ARr
3

obeys P.

Lemma 9.14 Let Ψ ⊂ S. If M  τ(Ψ) and Ψ is not relevant to Υ⊕Ψ, then M
is not an ARm

3 -model of Υ� ∪ Ψ.

Proof. Suppose the antecedent holds. Then M  σ(Θ) for a Θ ⊆ Ψ ∪ Ψ¬. Note
that Θ is not relevant to Υ⊕Ψ. By Lemma 9.13, M 6∈ MARm

3
(Υ� ∪ Ψ). But

then by Lemma 9.7, M 6∈ MARm
4

(Υ� ∪ Ψ).

Corollary 9.4 If Ψ ⊂ S is not relevant to Υ⊕Ψ, then τ(Ψ) 6∈ U3(Υ� ∪ Ψ).

Theorem 9.24 If B ∈ CnCL(Υ) and B is not relevant to Υ⊕Ψ, then B ∈
Υ⊕ARr

3
Ψ.

Proof. Suppose the antecedent holds. By Theorem 9.7.2, Υ� |=K B ∨
∨

{σ(Θ) |
E(Θ) = E(B)}, whence also Υ� |=K B ∨

∨

τ(E(B)). By the supposition and
Definition 9.18, E(B) is not relevant to Υ⊕Ψ. Hence by Corollary 9.4, τ(Ψ) 6∈
U3(Υ� ∪ Ψ). This implies by Theorem 9.17: Υ� ∪ Ψ |=ARr

3
B.

9.9 Concluding Remarks

Let us briefly summarize the main results of this chapter. We have argued that
a realistic model of relevant belief revision should capture how people perform
local analysis in view of new information, and that it should display an internal
dynamics. We have shown how to model the dynamics of relevant belief revision
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with the aid of the dynamic proof theory of ARr
1. We have presented 8 operations

for belief revision, each of them defined in terms of an adaptive logic and a
straightforward translation function. An overview has been given of the relations
between these operations in terms of their relative strength. Finally, we have
shown that they obey all Gärdenfors’ postulates for rational belief revision and
Parikh’s additional axiom of relevance.

Further research should focus on the application of the ideas from the current
chapter to related problems, e.g. the revision of inconsistent beliefs and the revi-
sion of prioritized belief bases – these issues are considered in Appendix F, resp.
Chapter 10. Another line of research could focus more on the heuristics behind
dynamic belief revision, as modeled by an adaptive logic.29 As already noted in
Section 9.5, several strategies can be described which allow one to render a line
in a proof (un)marked. That humans reason dynamically towards the revision
set, does not mean that they do not use certain rules of thumb, which warrant
success at least to some extent. A systematic study of such rules could provide
further insight into the rationale behind dynamic belief revision.

29In [160, 18], algorithms and heuristics are presented that help determining whether a for-
mula is an adaptive logic consequence of a premise set.



Chapter 10

Prioritized Belief Revision

This chapter contains only unpublished results and ideas. I thank Giuseppe Prim-
iero and Peter Verdée for their useful comments on and suggestions for improve-
ments of this chapter.

10.1 Introduction

In the preceding chapter, we saw how the adaptive logic approach captures the
dynamics of (relevant) belief revision, and how varying several parameters in the
definition of ALs for belief revision allows us to distinguish between various ways
in which a revision operation can obey relevance. In this chapter, I turn to the
topic of prioritized belief revision, i.e. the revision of a set of beliefs in view of new
data, where the beliefs are ordered according to their plausibility. I will assume
this order to be modular, whence we may consider a set of prioritized beliefs
as a tuple 〈Υi〉i∈I , where intuitively, beliefs in Υi are more plausible (reliable,
trustworthy, ...) than those in Υi+1.

The current chapter differs from the preceding ones in that I will not only
present a number of results, but also devote some space to a few hypotheses that
I think deserve to be studied in further research. These concern the application
of concepts from the study of (prioritized) adaptive logics to the context of belief
revision, and of the relevance axiom to prioritized belief bases.

The outline of this chapter is as follows. I will first present a specific approach
to prioritized belief revision in terms of what I call “superposing belief revision”
(Section 10.2). I will illustrate this idea with the aid of a simple example and show
that it has a number of attractive features. In Section 10.3, I define prioritized
extensions of the eight adaptive logics from the previous chapter. I illustrate
the way these logics capture prioritized revision by means of a simple example.
Finally, I return to the topic of relevance in Section 10.4, and propose two ways
to extend Parikh’s axiom to the prioritized case.

Preliminaries I will use Υ (note the bold font) as a metavariable for sequences
of sets of beliefs, i.e. Υ = 〈Υi〉i∈I where I is an initial subsequence of N =
{1, 2, . . .} and each Υi ⊆ Wc. As before, it is not assumed that the sets Υi are

257
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closed under CL. I will use
⋃

Υ as a shortcut for
⋃

i∈I Υi. Also, in line with the
previous chapter, revision operations are conceived as functions that map every
pair 〈Υ,Ψ〉 to a revision set Υ ⊕ Ψ. Prioritized revision operations are denoted
in bold, by ⊕. These are conceived as functions that map every pair 〈Υ,Ψ〉 to a
revision set Υ ⊕ Ψ.

10.2 Superposing Revision Operations

10.2.1 The General Idea

Numerous proposals have been made to deal with prioritized sets of beliefs in non-
monotonic logic and belief revision.1 It is not the aim of this section to give an
overview of these here. Rather, I will present a new way to deal with prioritized
belief bases, which is inspired by the idea of superposing adaptive logics. I will
show that the resulting operations are well-behaved (Section 10.2.2). After that, a
particular such operation will be compared to a more familiar prioritized revision
operation by means of concrete examples (Section 10.2.3).

The approach I will present is very generic: from every flat revision operation
⊕, we can obtain a prioritized revision operation ⊕s. Also, “hybrid” prioritized
revision operations ⊕s can be obtained from the sequential combination of dif-
ferent flat operations ⊕1,⊕2, . . .. All that is required is that the operation ⊕,
resp. the operations ⊕1,⊕2, . . . satisfy the Success postulate G2: Ψ ⊆ Υ⊕Ψ (see
also Chapter 9). As will be shown, several other properties of the flat revision
operations can be immediately transferred to the prioritized operations obtained
from them. But first, let me explain the idea behind ⊕s.

Suppose we want to revise Υ = 〈Υ1, . . . ,Υn〉 by Ψ. Then, starting from a
flat revision operation ⊕, we may obtain an operation ⊕s as follows. First, we
revise Υ1 by Ψ. This gives us the set Υ1 ⊕Ψ. Everything that is in this revision
set can be considered as reliable, since it was obtained by the revision of the
most plausible beliefs by the new information Ψ. Next, we revise the set Υ2 by
Υ1 ⊕ Ψ, obtaining Υ2 ⊕ (Υ1 ⊕ Ψ). Repeating this procedure n times, we obtain
the following set:

Υ ⊕s Ψ =df Υn ⊕ (. . . (Υ3 ⊕ (Υ2 ⊕ (Υ1 ⊕ Ψ))) . . .)

where the right . . . denotes a sequence of right brackets. Note that, for ⊕s to
be well-defined, ⊕ has to be an operation that maps a couple of sets of formulas

1An overview of consequence relations for prioritized belief bases can be found in [36].
Within the logic of belief revision, Gärdenfors defined so-called entrenchment-based contraction
of theories, i.e. CL-closed sets of beliefs. As shown in [57], every partial meet contraction of
a theory corresponds to an entrenchment-based contraction of the same theory, where the
entrenchment order is modular. Williams adapted Gärdenfors’ approach to the case of belief
base contraction, using the notion of “ensconsement relation” [166]. It is also possible to
apply other formalisms such as safe contraction and partial meet contraction as operations to
prioritized belief revision – see [1], resp. [114]. (As explained in the previous chapter, contraction
operations yield revision operations in view of the Levi identity.) In [37], revision of prioritized
belief bases is studied in the framework of possibility theory and Spohn’s ordinal conditional
functions.



10.2. SUPERPOSING REVISION OPERATIONS 259

〈Γ,Γ′〉 to another set of formulas Γ′′.2 Note also that if ⊕ satisfies the Success
postulate, then the following holds:

Ψ ⊆ (Υ1 ⊕ Ψ) ⊆ (Υ2 ⊕ (Υ1 ⊕ Ψ)) ⊆ . . . ⊆ Υ ⊕s Ψ

The above construction might strike some as far-fetched or even counterintu-
itive. To explain why it is not, let us briefly consider the relation between belief
revision and default logic, as discussed by Makinson and Gärdenfors in [95]. Ac-
cording to their interpretation, the operation Υ⊕ Ψ can also be interpreted as a
kind of non-monotonic operation on Ψ. That is, we take Ψ as a set of facts, and
consider Υ as our set of defaults. Hence we try to add elements of Υ to Ψ in a
way we consider “rational”, and derive CL-consequences from the resulting set.3

If we transfer this idea to the prioritized context, the result is: first add
members of Υ1 to Ψ, according to a specific rationality criterion. Next, add as
members of Υ2 to Υ1 ⊕Ψ, in accordance with the same criterion. Etc. So in the
end, we obtain a rational extension of the set Ψ, again, on the assumption that
⊕ satisfies the Success postulate.

Now, just as we can construct a default logic from every revision operation,
we can also construct a prioritized revision operation from every (flat) revision
operation, provided that the latter is defined over the appropriate variables (i.e.
as a function from a couple of sets to a third set).

Some readers may think that the above procedure is a kind of iterated belief
revision (IBR). This is the process in which we stepwise revise our beliefs in view
of a sequence of sets that contain ever more recent information. However, in the
case of IBR, it is the new information and not the set of old beliefs that has
a sequential (and possibly prioritized) character. More formally, IBR looks as
follows:

(. . . (((Υ ⊕ Ψ1) ⊕ Ψ2) ⊕ Ψ2) ⊕ . . .) ⊕ Ψn

It is hence perhaps better to say that prioritized belief revision can be seen
as a kind of inverse iterated belief revision – I will however stick to the term
superposed revision in the remainder of this chapter.

Example 10.1 Define the flat revision operation ⊕R as follows:4

Definition 10.1 M(Υ,Ψ) is the set of all Θ ⊆ Υ, such that (i) Θ ∪ Ψ is con-
sistent, and (ii) there is no Θ′ ⊆ Υ such that Θ ⊂ Θ′ and Θ′ ∪ Ψ is consistent.

Definition 10.2 (Reliable Revision) Υ ⊕R Ψ =df CnCL(
⋂

M(Υ,Ψ) ∪ Ψ).

2Technically speaking, the construction would also work if ⊕ maps each 〈Γ, A〉 to a formula
B, but I will not consider this non-standard option here.

3The paper by Makinson and Gärdenfors presents much more subtle and technical results,
but what matters to us here is the idea that we can consider Υ ⊕ Ψ as an operation on Ψ in
view of Υ.

4As is clear from Definitions 10.1 and 10.2, the operation ⊕R is very similar to the operation
of full meet revision from [3]. However, ⊕R is defined in such a way that the new information
is a set of formulae, and without making the detour via a contraction operation.
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So for instance, M({p,¬q, r}, {p ⊃ q}) = {{p, r}, {¬q, r}}. Hence r is the
only element in

⋂

M({p,¬q, r}, {p ⊃ q}) and therefore, {p,¬q, r} ⊕R {p ⊃ q} =
CnCL({r} ∪ {p ⊃ q}). It can easily be verified that ⊕R obeys Gärdenfors’ six
postulates G1-G6 – see Chapter 9.

The prioritized revision operation ⊕s
R is obtained from the sequential super-

position of revision operations by ⊕R. Hence, where Υ = 〈Υi〉i≤n is a sequence
of sets of beliefs, and Ψ is a set that represents new information, we have:

Υ ⊕s
R Ψ =df Υn ⊕R (. . . (Υ3 ⊕R (Υ2 ⊕R (Υ1 ⊕R Ψ))) . . .)

For every i ≤ n, let Λi denote the set Υi⊕R (. . . (Υ3⊕R (Υ2⊕R (Υ1⊕R Ψ))) . . .).
Note that Λn = Υ ⊕s

R Ψ.
To see how ⊕s

R works, consider the revision of Υa = 〈{p ⊃ q,¬r}, {¬q,¬r ∨
s}, {¬s}〉 by Ψa = {p ∧ r}. This revision operation consists in three steps:

(i) Revise Υa
1 = {p ⊃ q,¬r} by Ψa. Note that M(Υa

1 ,Ψ
a) = {{p ⊃ q}}. Hence

we obtain the set Λa1 = CnCL({p ⊃ q, p ∧ r}). Note that q ∈ Λa1.
(ii) Revise Υa

2 = {¬q,¬r∨s} by Λa1. Note that M(Υa
2 ,Λ

a
1) = {{¬r∨¬s}}. This

gives us the set Λa2 = CnCL({¬r ∨ s} ∪ Λa1) = CnCL(p, q, r, s).
(iii) Revise Υa

3 = {¬s} by Λa2. This gives us the set Λa3 = Λa2.

The set Λa3 is the end result of the procedure, and equals Υa ⊕s
R Ψa.

As I will argue below, it may also be useful to combine different flat revision
operations in order to obtain a prioritized one and to superpose an infinite number
of such revision operations. Both generalizations are captured by the following
definition:

Definition 10.3 Let Υ = 〈Υi〉i∈I and let s = 〈⊕i〉i∈I be a sequence of revision
operations, where each ⊕i (i ∈ I) satisfies the Success postulate. Then:

(i) Ξ0
s (Υ,Ψ) =df Ψ.

(ii) for all i ∈ I, Ξis(Υ,Ψ) =df Υi ⊕i Ξi−1
s (Υ,Ψ).

(iii) Υ ⊕s Ψ =df lim sup
i→~I

Ξis(Υ,Ψ) =
⋃

i∈I Ξis(Υ,Ψ).5

We call ⊕s the prioritized revision operation, obtained from the superposition
of the revision operations 〈⊕i〉i∈I .6

Where for all i, j ∈ I, ⊕i = ⊕j = ⊕X, I will use ⊕s
X to denote the associated

prioritized revision operation.
Before closing this section, let me briefly argue why it is sometimes sensible

to combine different flat revision operations along the lines of Definition 10.3.
In many contexts, we reason on the basis of information from various sources.
Apart from the fact that we attach different degrees of plausibility to each of
these sources, we also sometimes treat them differently.

5Note that Ξi
s(Υ, Ψ) converges to its limes superior, in view of the fact that each

Ξi−1
s (Υ, Ψ) ⊆ Ξi

s(Υ, Ψ) – see also Lemma 10.1 below.
6Recall that for finite I, ~I denotes the last element of I; for infinite I, ~I = ω.
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For instance, when trying to learn more about the current British Prime
Minister, I may rely on three sources: someone’s blog on the internet, the BBC
news and a professor in politics at the university of Cambridge. If the blog turns
out to contradict the other two sources, I will most likely forget whatever else
this blog tells me about the Prime Minister. However, if the BBC news turns
out to be mistaken about a specific fact, in view of what the professor says, then
I might still consider some other information provided by the same BBC news as
reliable.

10.2.2 Rationality Postulates for Prioritized Revision

In this section, I prove some generic results concerning superpositions of revision
operations. As the reader will note, most of the proofs are fairly straightforward.
The upshot of this section is that superposing revision operations leads to intu-
itive results, whenever the flat operations in the superposition obey Gärdenfors
six postulates for rational belief revision – see page 224.

The rationality postulates from Chapter 9 can be generalized to the prioritized
case as follows:

PG1 Closure: Υ ⊕ Ψ = CnCL(Υ ⊕ Ψ)
PG2 Success: Ψ ⊆ Υ ⊕ Ψ
PG3 Inclusion: Υ ⊕ Ψ ⊆ CnCL(

⋃

Υ ∪ Ψ)
PG4 Vacuity: If

⋃

Υ ∪ Ψ is consistent, then Υ ⊕ Ψ = CnCL(
⋃

Υ ∪ Ψ)
PG5 Consistency: If Ψ is consistent, then Υ ⊕ Ψ is consistent
PG6 Extensionality: If Ψ a`CL Ψ′ , then Υ ⊕ Ψ = Υ ⊕ Ψ′

To prove that ⊕s satisfies these postulates, I will rely on a lemma which follows
immediately from the supposition that all operations ⊕i in the superposition
satisfy the flat Success postulate (G2). Recall that this postulate stipulates that
the new information is a subset of the revision set: Ψ ⊆ Υ ⊕ Ψ.

Lemma 10.1 Let Υ = 〈Υi〉i∈I and let s = 〈⊕i〉i∈I be a sequence of revision
operations, where each ⊕i (i ∈ I) satisfies the Success postulate. Then for all
i ∈ I: Ψ ⊆ Ξi−1

s (Υ,Ψ) ⊆ Ξis(Υ,Ψ) ⊆ Υ ⊕s Ψ.

Proof. Suppose the antecedent holds. By Definition 10.3.(i),

Ψ = Ξ0
s (Υ,Ψ)

Since for all i ∈ I, ⊕i obeys G2, and by Definition 10.3.(ii),

Ξi−1
s (Υ,Ψ) ⊆ Ξis(Υ,Ψ)

Finally, by Definition 10.3.(iii), Υ ⊕s Ψ =
⋃

j∈I Ξjs (Υ,Ψ), and hence

Ξis(Υ,Ψ) ⊆ Υ ⊕s Ψ

The following theorem is the central result of this section. It links the ratio-
nality of the flat operations 〈⊕i〉i∈I to the rationality of the superposed operation
⊕s, obtained from the superposition of these flat operations.
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Theorem 10.1 Let Υ = 〈Υi〉i∈I and let s = 〈⊕i〉i∈I be a sequence of revision
operations, where each ⊕i (i ∈ I) satisfies the Success postulate. Then each of
the following holds:

1. if each operation ⊕i (i ∈ I) obeys G1, then ⊕s obeys PG1.
2. ⊕s obeys PG2.
3. if each operation ⊕i (i ∈ I) obeys G4, then ⊕s obeys PG4.
4. if each operation ⊕i (i ∈ I) obeys G3 and G4, then ⊕s obeys PG3.
5. if each operation ⊕i (i ∈ I) obeys G5, then ⊕s obeys PG5.
6. if each operation ⊕i (i ∈ I) obeys G6, then ⊕s obeys PG6.

Proof. Ad 1. Suppose the antecedent holds. That Υ ⊕s Ψ ⊆ CnCL(Υ ⊕s Ψ)
is immediate in view of the reflexivity of CL. For the other direction, suppose
A ∈ CnCL(Υ⊕s Ψ). By the compactness of CL, there are B1, . . . , Bn ∈ Υ ⊕s Ψ
such that {B1, . . . , Bn} `CL A. By Definition 10.3.(ii)-(iii), there is an m ∈ I:
{B1, . . . , Bn} ⊆ Ξms (Υ,Ψ) = Υm ⊕m (Υm−1 ⊕m−1 (. . . ⊕ (Υ1 ⊕ Ψ) . . .)). Since
⊕m obeys G1, Ξms (Υ,Ψ) = CnCL(Ξms (Υ,Ψ)). It follows that A ∈ Ξms (Υ,Ψ).
Hence, by Definition 10.3.(iii), A ∈ Υ ⊕s Ψ.

Ad 2. Immediate in view of Lemma 10.1.
Ad 3. Suppose the antecedent holds, and that

⋃

Υ ∪ Ψ is consistent. I first
prove that

(†) for every i ∈ I, Ξis(Υ,Ψ) = CnCL(
⋃

j≤i Υj ∪ Ψ)

(i = 1) By the supposition and the monotonicity of CL, Υ1 ∪Ψ is consistent.
Hence, since ⊕1 obeys G4, Ξ1

s (Υ,Ψ) = Υ1 ⊕1 Ψ = CnCL(Υ1 ∪ Ψ).
(i ⇒ i + 1) By the supposition and the monotonicity of CL,

⋃

j≤i+1 Υj ∪ Ψ
is consistent. By CL-properties, Υi+1 ∪ CnCL(

⋃

j≤i Υj ∪ Ψ) is consistent. By

the induction hypothesis, Υi+1 ∪ Ξis(Υ,Ψ) is consistent. Since ⊕i+1 obeys G4,
it follows that Ξi+1

s (Υ,Ψ) = Υi+1 ⊕i+1 Ξis(Υ,Ψ) = CnCL(Υi+1 ∪ Ξis(Υ,Ψ)) =
CnCL(

⋃

j≤i+1 Υj ∪ Ψ).

By Definition 10.3.(iii), (†) and CL-properties, Υ ⊕s Ψ =
⋃

i∈I Ξis(Υ,Ψ) =
⋃

i∈I CnCL(
⋃

j≤i Υj ∪ Ψ) = CnCL(
⋃

Υ ∪ Ψ).
Ad 4. Suppose the antecedent holds. If

⋃

Υ∪Ψ is inconsistent, CnCL(
⋃

Υ∪
Ψ) = Wc, whence the property follows immediately. In the other case, we have
by the preceding item that Υ ⊕s Ψ = CnCL(

⋃

Υ ∪ Ψ).
Ad 5. Suppose the antecedent holds and Ψ is consistent. I first prove the

following:

(‡) for every i ∈ I, Ξis(Υ,Ψ) is consistent

(i = 1) Immediate in view of the supposition that Ψ is consistent, that ⊕1

obeys G5, and Definition 10.3.(ii).
(i⇒ i+ 1) Immediate in view of the induction hypothesis, the fact that ⊕i+1

obeys G5, and Definition 10.3.(ii).
By (‡) and the compactness of CL,

⋃

i∈I Ξis(Υ,Ψ) is consistent. Hence, by
Definition 10.3.(iii), Υ ⊕s Ψ is consistent.

Ad 6. Suppose the antecedent holds and Ψ a` Ψ′. Then since ⊕1 obeys
G6, it also follows that Υ1 ⊕1 Ψ = Υ1 ⊕1 Ψ′. The rest is immediate in view of
Definition 10.3.(ii)-(iii).
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Besides these basic postulates, we can also prove a stronger variant of Vacuity.
This postulate corresponds to the theorems about premise sets that are normal
up to level i, which were proven for prioritized ALs in the first part of this thesis
(see Chapters 3-5).

Theorem 10.2 (Prioritized Vacuity) Let Υ = 〈Υi〉i∈I and let s = 〈⊕i〉i∈I be
a sequence of revision operations that satisfy the Success postulate. If

⋃

i≤j Υi∪Ψ
is consistent for a j ∈ I, then CnCL(

⋃

i≤j Υi ∪ Ψ) ⊆ Υ ⊕ Ψ.

Proof. Immediate in view of the proof for item 3 of Theorem 10.1.

The Prioritized Vacuity postulate relates to a more general requirement,
which I will call “prioritized rationality”. Suppose that we have a number of
requirements, say X1 up to Xn, that we consider as characteristic for the class
of all “rational” flat revision operations. Moreover, suppose that for all flat
operations ⊕ that are rational according to the list of postulates X1, . . . , Xn,
A ∈ Υ1⊕Ψ. In that case, it seems justified to require that for all rational priori-
tized revision operations ⊕, A ∈ Υ⊕ Ψ. That is, since we consider the beliefs in
Υ1 as the most plausible beliefs, we should want every rational prioritized revi-
sion operation to give us at least the results that would be obtained by revising
Υ1 by Ψ, in terms of a rational flat revision operation. I will return to this point
in Section 10.4, where I apply it to the Axiom of Relevance.

10.2.3 Lexicographic versus Superposed Revision

Maxi-Revision Many revision operations, and more generally, many non-
monotonic consequence relations described in the literature follow a strategy that
was first proposed by Nicholas Rescher and Ruth Manor [126]. Roughly speak-
ing, their idea is to use maximal consistent subsets of a set of formulas, in order
to avoid explosion in the face of mutually inconsistent beliefs or assumptions.
When applied to the context of belief revision, this can lead to several different
operations. One example is the operation of partial meet revision, which was
recapitulated in Chapter 9. Another is the operation ⊕R, which was already
defined in Section 10.2.1 (see Definitions 10.2).

A slightly stronger flat revision operation is obtained by first applying classical
logic to each of the sets ∆ ∪ Ψ with ∆ ∈ M(Υ,Ψ), and only afterwards taking
their intersection. Let us call this operation maxi-revision:

Definition 10.4 (Maxi-Revision) Υ ⊕M Ψ =
⋂

∆∈M(Υ,Ψ)CnCL(∆ ∪ Ψ)

Theorem 10.3 Maxi-revision obeys postulates G1-G6.

Proof. G1. In view of the reflexivity of CL, it suffices to prove that CnCL(Υ⊕M

Ψ) ⊆ Υ⊕MΨ. So suppose A ∈ CnCL(Υ⊕MΨ). By the compactness of CL, there
are B1, . . . , Bn ∈ Υ⊕M Ψ such that (†) {B1, . . . , Bn} `CL A. By Definition 10.4,
for every ∆ ∈ M(Υ,Ψ), {B1, . . . , Bn} ⊆ CnCL(∆). By (†) and the transitivity
of CL, A ∈ ∆ for every ∆ ∈ M(Υ,Ψ). Hence, by Definition 10.4, A ∈ Υ ⊕M Ψ.

G2. Immediate in view of the reflexivity of CL and Definition 10.4.
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G4. Suppose Υ∪Ψ is consistent. By Definition 10.1, M(Υ,Ψ) = {Υ}, whence
by Definition 10.4, Υ ⊕M Ψ = CnCL(Υ ∪ Ψ).

G3. If Υ ∪ Ψ is consistent, the property follows immediately in view of the
preceding item. In the other case, CnCL(Υ∪Ψ) = Wc, whence the property also
follows immediately.

G5. Suppose Ψ is consistent. By Definition 10.1, for every ∆ ∈ M(Υ,Ψ),
∆ ∪ Ψ is consistent. It follows that for every ∆ ∈ M(Υ,Ψ), CnCL(∆ ∪ Ψ) is
consistent. By the monotonicity of CL,

⋂

∆∈M(Υ,Ψ)CnCL(∆ ∪ Ψ) = Υ ⊕M Ψ is
consistent.

G6. Suppose Ψ a`CL Ψ′. By Definition 10.1, M(Υ,Ψ) = M(Υ,Ψ′). The rest
is immediate in view of Definition 10.4.

Example 10.2 Consider again the revision of {p,¬q, r} by {p ⊃ q} (see also
Example 10.1). As was the case with ⊕R, the belief r is upheld. However, this
time we are also able to do something with the beliefs p and ¬q. That is, the two
maximal subsets of {p,¬q, r} that are selected are {p, r} and {¬q, r}. Each of
these entail p ∨ ¬q. Hence, although we have to give up both p and ¬q, we can
still uphold the (implicit) belief p ∨ ¬q.7

In what follows, I will consider two prioritized variants of ⊕M: one that is
obtained by selecting a subset of M(

⋃

Υ,Ψ) in view of the priority of the members
of

⋃

Υ, and another that is obtained by superposing revisions by ⊕M. As I will
show, the latter operation is often stronger, and thus allows us to retain more of
the original beliefs when revising a prioritized belief base Υ.

Lexicographic Maxi-Revision In order to obtain a prioritized variant of
⊕M, we can define a selection function, which allows us to select those ∆ ∈
M(

⋃

Υ,Ψ) that contain the most plausible beliefs from
⋃

Υ. Following Nebel
[114], this is done as follows. We first define a lexicographic order � on the sets
∆ ∈ M(

⋃

Υ,Ψ):8

Definition 10.5 Let Υ = 〈Υi〉i∈I . Where ∆,∆′ ∈ M(
⋃

Υ,Ψ): ∆ � ∆′ iff there
is an i ∈ I such that (a) for all j < i, ∆∩Υj = ∆′∩Υj and (b) ∆′∩Υi ⊂ ∆∩Υi.

By �, we obtain the set P(Υ,Ψ) =df {∆ ∈ M(
⋃

Υ,Ψ) | for no ∆′ ∈
M(

⋃

Υ,Ψ) : ∆′ � ∆}. Finally, we define the prioritized revision operation
⊕P in a way analogous to ⊕M, but replacing M(Υ,Ψ) with P(Υ,Ψ):

Definition 10.6 Υ ⊕P Ψ =df

⋂

∆∈P(Υ,Ψ)CnCL(∆ ∪ Ψ)

It can easily be shown that ⊕P satisfies the prioritized rationality postulates
PG1-PG6. The proof is obtained by small variations on that for Theorem 10.3
– I safely leave this to the reader. Also, ⊕P satisfies the postulate of Prioritized
Vacuity:

7As this example shows, the difference between ⊕R and ⊕M resembles the difference between
adaptive logics that use the Reliability Strategy, and their Minimal Abnormality-variants.

8This definition of � is exactly the same as Nebel’s; however, Nebel uses this preference
relation to define a contraction operation in terms of remainder sets, whereas I use it to select
a subset of M(

⋃

Υ,Ψ).
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Theorem 10.4 Let Υ = 〈Υi〉i∈I . If
⋃

i≤j Υi ∪ Ψ is consistent for a j ∈ I, then
CnCL(

⋃

i≤j Υi ∪ Ψ) ⊆ Υ ⊕P Ψ.

Proof. Suppose the antecedent holds. Let Θ ∈ M(
⋃

Υ,Ψ) be such that
⋃

i≤j Υi ⊆
Θ — it can easily be verified that Θ exists in view of the supposition. Let
Θ′ ∈ M(

⋃

Υ,Ψ) be such that
⋃

i≤j Υi 6⊆ Θ′. It follows immediately that Θ � Θ′.
As a result, for every Λ ∈ P(Υ,Ψ),

⋃

i≤j Υi ⊆ Λ. Hence, for every Λ ∈ P(Υ,Ψ),
CnCL(

⋃

i≤j Υi ∪ Ψ) ⊆ CnCL(Λ). The rest is immediate in view of Definition
10.6.

Example 10.3 Let Υb = 〈{p, q}, {r ⊃ ¬p,¬s}, {¬q ∨ s}〉. Consider the revision
of this base by Ψb = {r}. First of all, M(

⋃

Υb,Ψb) consists of five sets:

∆1 = {p, q,¬s}
∆2 = {p, q,¬q ∨ s}
∆3 = {p,¬s,¬q ∨ s}
∆4 = {q, r ⊃ ¬p,¬s}
∆5 = {q, r ⊃ ¬p,¬q ∨ s}
∆6 = {r ⊃ ¬p,¬s,¬q ∨ s}

From these, only ∆1 is �-minimal: ∆1 � ∆2 � ∆3 � ∆6 and ∆1 �
∆2 � ∆4 � ∆5 � ∆6. It follows that Υb ⊕P Ψb = CnCL(∆1 ∪ {r}) =
CnCL({p, q,¬s, r}).

Example 10.4 Let Υc = 〈{p, q}, {r}〉 and let Ψc = {¬p ∨ ¬q,¬p ∨ ¬r}. In this
case, there are two sets in M(

⋃

Υc,Ψc):

Θ1 = {p}
Θ2 = {q, r}

Neither of these sets is “better” than the other in terms of the lexicographic order
�. That is, Θ1 6� Θ2 and Θ2 6� Θ1, since the sets Θ1 ∩ Υc

1 and Θ2 ∩ Υc
1 are

incomparable. As a result, p ∨ q and p ∨ r are in the revision set Υc ⊕P Ψc, but
neither p nor q or r can be upheld.

Superposing Maxi-Revision The operation ⊕s
M is obtained by superposing

revisions by ⊕M. Since ⊕M obeys the flat rationality postulates G1-G6, and
in view of Theorem 10.1, ⊕s

M obeys the rationality postulates from the preced-
ing section. Moreover, as the following examples show, ⊕s

M is a very strong
operation.

Example 10.5 Consider again the revision of Υb = 〈{p, q}, {r ⊃ ¬p,¬s}, {¬q∨
s}〉 by Ψb = {r}. Let Υb

1 = {p, q},Υb
2 = {r ⊃ ¬p,¬s},Υb

3 = {¬q ∨ s}. First of
all, note that Ψb ∪ Υb

1 is consistent, which implies that all the beliefs in Υb
1 are

upheld: ∆b
1 = Υb

1 ⊕M Ψb = CnCL({p, q} ∪ {r}).
The second step in the revision operation consists in revising Υb

2 by ∆b
1. This

means that the belief r ⊃ ¬p ∈ Υb
2 has to be removed; the belief ¬s ∈ Υb

2 can be
upheld without problems. So we obtain ∆b

2 = CnCL({p, q, r,¬s}). As a result,
also the belief ¬q ∨ s will have to be removed in the third and last step of the
revision. So we obtain the following revision set:
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Υb ⊕M Ψb = CnCL({p, q, r,¬s})

Note that, although the procedure by which it was obtained is rather different,
this revision set is the same as the one obtained by the operation ⊕P.

Example 10.6 Consider again the revision of Υc = 〈{p, q}, {r}〉 by Ψc = {¬p∨
¬q,¬p∨¬r}. As before, we use Υc

1 and Υc
2 to denote the two sets in the sequence

Υc. We start with revising Υc
1 by Ψc. There are two sets in M(Υc

1,Ψ
c): {p}

and {q}. This means that both the belief p and the belief q have to be dropped.
However, since each of the following hold:

p ∨ q ∈ CnCL({p} ∪ Ψc)
p ∨ q ∈ CnCL({q} ∪ Ψc)

we do have that p∨q ∈ Υc
1⊕M Ψc. In fact, Υc

1⊕M Ψc = ∆c
1 = CnCL({p∨q,¬p∨

¬q,¬p ∨ ¬r}).
Now consider the revision of Υc

2 by ∆c
1. Note that r is compatible with ∆c

1.
As a result, there is only one set in M(Υc

2,∆
c
1), i.e. Υc

2 = {r}. But this means
that ∆c

2 = Υc
1 ⊕M Ψc = CnCL({r} ∪ ∆c

1) = CnCL({¬p, q, r}).
So, in contrast to the operation ⊕P, the operation ⊕s

M allows us to uphold
the belief r, and thereby also the belief q (since {¬p ∨ ¬r, r} `CL ¬p and {p ∨
q,¬p} `CL q).

These and other, more complex examples (which I omit here for reasons of
space) motivate the first conjecture of this chapter, which is inspired by the results
from Section 6.7 in Chapter 6. There it was proven that every superposition of
flat adaptive logics that use the Minimal Abnormality strategy is at least as
strong as the corresponding lexicographic adaptive logic, whenever Γ gives rise
to only finitely many equivalence classes of minimally abnormal models.

The operation ⊕P is defined in terms of a lexicographic selection of sets
∆ ∈ M(

⋃

Υ,Ψ), whereas the operation ⊕s
M is defined from the superposition

of corresponding flat revision operations. Hence, translating the results from
Chapter 6 to the current context, we obtain the following conjecture:

Conjecture 10.1 If M(
⋃

Υ,Ψ) is finite, then Υ ⊕P Ψ ⊆ Υ ⊕s
M Ψ.

10.3 Prioritized Adaptive Revision

10.3.1 A Class of Logics

Recall the K-based logics from Chapters 3-5: SKr,SKm,HKr,HKm,Km
@ , . . ..

These allowed us to conditionally derive A from ♦iA, for every A ∈ W l
c. Although

I introduced these systems in order to illustrate the various formats of prioritized
ALs, and to establish some facts about those formats, they can be considered as
logics for prioritized belief revision as well. Let me briefly explain why this is so.

Where Υ = 〈Υi〉i∈I , let Υ♦ = {♦iA | A ∈ Υi, i ∈ I}. Let PK be a metavari-
able for the prioritized adaptive logics from Chapters 3-5. Then we may define
the prioritized revision operation ⊕PK as follows:
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Υ ⊕PK Ψ =df CnPK(Υ♦ ∪ Ψ) ∩Wc

In words, the revision set of Υ by Ψ in view of the logic PK is the set of all
non-modal formulas that can be finally PK-derived from the premise set Υ♦∪Ψ.

One clear advantage of the resulting revision operations is that they are very
conflict-tolerant, in the sense that they do not require the sets Υi in a tuple Υ
to be internally consistent. All that is required is that each belief A is itself
consistent – if not, the logics yield a trivial consequence set.9

In the current section, I will however concentrate on another group of adaptive
logics for prioritized belief revision. These logics can be considered as adaptive
characterizations of the revision operations obtained by the superposition of the
revision operations defined in the preceding Chapter – I return to this point at
the end of this section.

One crucial remark should be made from the start. In Chapter 9, it was
assumed that Υ is a consistent set of beliefs – otherwise, the revision set obtained
by the adaptive logics simply equals CnCL(Ψ). A similar restriction is necessary
to apply the systems from this section in a sensible way. That is, where Υ =
〈Υi〉i∈I , we need to assume that each set Υi is in itself consistent.

The logics from this section are the result of a superposition of flat ALs, each
of which are variants of the logics from the previous chapter. The variants are
obtained by introducing a set of infinitely many different modalities �i (i ∈ N),
which allow us to represent a prioritized belief base in the object language of the
logics. Intuitively speaking, �iA expresses that the belief A has priority degree i.
The ith logic of the superposition then allows us to conditionally derive A from
�iA. In the next few paragraphs, I will make this idea formally precise.

The Language Lω is obtained from Lc by adding an infinite set of necessity-
operators �i (i ∈ N). The associated set of well-formed formulas, Wω, is defined
in a way completely analogous to the definition of Wr:

(i) Wc ⊂ Wω

(ii) Where A ∈ Wc, �iA ∈ Wω for every i ∈ N

(iii) Where A,B ∈ Wω, ¬A,A ∧B,A ∨B,A ⊃ B,A ≡ B ∈ Wω

As before, we need a translation to obtain a premise set from a prioritized set of
beliefs Υ = 〈Υi〉i∈I . The following definition should not come as a surprise, in
view of the preceding chapters:

Υ� =df {�iA | A ∈ Υi, i ∈ I}

Analogous to the case of flat revision, Υ� ∪Ψ is the premise set we feed into
the adaptive logic whenever we are concerned with the revision of Υ by Ψ. The
adaptive logics SARx

i , which are characterized below, define a revision operation
as follows:

Definition 10.7 Υ ⊕SARx
i

Ψ =df {B ∈ Wc | Υ� ∪ Ψ `SARx
i
B}.

9In other words, the K-based logics from Chapters 3-5 are as conflict-tolerant as the logic
MP@ from Chapter 7.
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Multi-Modal Lower Limit Logics The logics MKs and MKts are straight-
forward multi-modal extensions of Ks, resp. Kts from the previous chapter. I
will start with the MKs-semantics and next explain how the semantics of MKts
can be obtained from it.

A MKs-model is a quadruple 〈W,R, v, w0〉, where W is a set of possible
worlds, R = {Ri | i ∈ N} a set of accessibility relations, v : S ×W → {0, 1} an
assignment function and w0 the actual world. The valuation vM : Wω → {0, 1}
defined by the model M is characterized by the following clauses:

C1 where A ∈ S, vM (A,w) = v(A,w)
C2 vM (¬A,w) = 1 iff vM (A,w) = 0
C3 vM (A ∨B,w) = 1 iff vM (A,w) = 1 or vM (B,w) = 1
C4 vM (A ∧B,w) = 1 iff vM (A,w) = 1 and vM (B,w) = 1
C5 vM (A ⊃ B,w) = 1 iff vM (A,w) = 0 or vM (B,w) = 1
C6 vM (�iA,w) = 1 iff, vM (A,w′) = 1 for all w′ such that Riww

′

Let M  A iff vM (A,w0) = 1. In order to obtain the MKts-semantics, it
suffices to add the following condition on the definition of a model:

S-MKts if Riww
′ and Riww

′′, then w′ = w′′

This condition ensures that from every possible world (including the actual
world), only one other world (at most) is accessible by a given relation Ri ∈ R.
As a result, �iA ∨ �i¬A is true in every MKts-model, for every A ∈ Wc.

The syntax of MKs and MKts is obtained by equally straightforward vari-
ations on K and Kt: we extend the axiomatization of CL with the following
axiom (where A,B ∈ Wc and i ∈ N):

A1 �i(A ⊃ B) ⊃ (�iA ⊃ �iB)

and close it under modus ponens (MP) and the following rule (where A,B ∈ Wc):

RN if ` A, then ` �iA

Where `MKs
indicates membership in the set of MKs-axioms, we define

Γ `MKs
A iff there are B1, . . . , Bn ∈ Γ such that `MKs

(B1∧ . . .∧Bn) ⊃ A. Note
that according to these definitions, MKs is a compact Tarski-logic. As before,
Soundness and Completeness are a matter of routine and left to the reader.

Finally, MKts is obtained by adding the following axiom to those of MKs:

A2 �iA ∨ �i¬A

`MKts A and Γ `MKts A are defined in the same way as `MKs
A and Γ `MKs

A.

To obtain lower limit logics from MKs and MKts, we enrich them with
axioms for the checked connectives. As before, this can be done generically, since
both logics are supra-classical – see Section 2.4.2 in Chapter 2 where this was
explained. This gives us the logics MK and MKt.
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The Adaptive Logics ARx
i,j With the above preliminary definitions, we can

define variants of the adaptive logics from the preceding chapter. First of all, we
introduce the metavariable LLLp

i to range over the lower limit logics MKt and
MK:

Let LLLp
1 =df LLLp

2 =df MKt
Let LLLp

3 =df LLLp
4 =df MK

Next, where i ∈ {1, 2, 3, 4} and j ∈ N, let the set Ωr
i,j be obtained by replacing

every occurrence of � in Ωr
i with �j . So for instance, Ωr

2,1 =df {�1A ∧ ¬A | A ∈

W l
c} and Ωr

1,4 =df {(�4A ∧ ¬A) ∨ (�4¬A ∧A) | A ∈ W l
c}.

Finally, every logic ARx
i,j is a flat adaptive logic, characterized by the triple

〈LLLp
i ,Ω

r
i,j ,x〉. Where i ∈ {1, 2, 3, 4} and j ∈ N, the logic ARx

i,j allows for the
defeasible inference from �jA to A, in the same way as the logic ARx

i allowed
us to infer A from �A – see Theorems 9.6 and 9.7 in Chapter 9.

The Prioritized Adaptive Logics SARx
i The final step of the generic pro-

cedure is to combine the flat ALs. As expected, each logic SARx
i is obtained by

the superposition of the logics 〈ARx
i,j〉j∈N. So, for instance:

CnSARr
1

=df lim sup
i→ω

CnARr
1,i

(. . . (CnARr
1,2

(CnARr
1,1

(Γ))) . . .)

In Section 10.3.2, I will illustrate the generic procedure for superposing the
revision operations by means of the logic SARr

1, and give an example of an
object-level proof.

Variations in Several Respects The preceding definitions yield eight prior-
itized revision operations, which are variants of the revision operations from the
preceding chapter. However, in view of the metatheoretic results from Chapter
3, it is possible to obtain a much larger number of logics for prioritized belief
revision. Let me briefly explain why.

First of all, the strategies of the logics in a superposition of ALs need not all
be the same. If, for some reason, we want to be more cautious when we revise
the beliefs with a specific priority k, then we may use the Reliability Strategy for
this part of the revision operation.

Second, since all logics ARx
1,i and ARx

2,j have the same lower limit logic,
we may also superpose them and still obtain a regular logic in the format stud-
ied in chapter 3. Likewise, superpositions of logics ARx

3,i and ARx
4,j pose no

metatheoretic problems.
Third, by varying the definition of the lower limit logics MK and MKt, we

can even obtain combinations of revision operations such as ARr
1 and ARr

3. Re-
call that the format of superpositions of adaptive logics requires that all flat ALs
in the superposition have the same lower limit logic. Hence if we want to com-
bine ARr

1 and ARr
3, we need to make sure that our lower limit logic is a hybrid

logic itself, i.e. that some of its modal operators behave according to K, whereas
others behave according to Kt. To obtain this result at the semantic level, the
condition S-MKts has to be restricted to a subset of relations Ri ⊂ R. On
the syntactic level, it the validity of axiom A2 is restricted to the corresponding
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operators �i. As a result, we can apply the adaptive mechanisms from ARx
1 and

ARx
2 to the corresponding sets Υi, whereas we use the mechanisms from ARx

3

or ARx
4 for the remaining sets Υj.

To avoid technicalities, I will not present the above-mentioned “hybrid” super-
positions in detail here. However, the upshot is that we can obtain superpositions
that “correspond” (see below) to any combination of the revision operations from
the preceding chapter.

The Rationality Postulates It can easily shown, by proofs similar to those
from Section 9.8.2 in the preceding chapter, that the operators ⊕SARx

i
obey the

six rationality postulates PG1-PG6. Let me briefly point out how each of the
postulates can be proven:

• The Closure postulate follows almost immediately from the fact that all
superpositions of ALs are closed under their lower limit logic (see Theorem
3.1.2), and that the logics LLLp

i are modal extensions of CL.

• The Success postulate follows from the reflexivity of each logic SARx
i .

• As in the flat case, the Vacuity postulate requires a more lengthy proof,
which basically relies on (i) the compactness of CL, (ii) the fact that for all
i ∈ {1, 2, 3, 4}, whenever A ∈ Υj for a j ∈ I, then Υ� `LLL

p

i
A ∨̌Dab(∆)

for a ∆ ⊂ Ωr
i,j , (iii) the fact that whenever

⋃

Υ ∪ Ψ is consistent, then

Υ� ∪ Ψ is a normal premise set, and (iv) Theorem 3.15, which states that
for normal premise sets, every logic SAL is equivalent to its upper limit
logic. For the proof of (iii), one needs to construct an LLLp

i -model with
exactly one world w0, in which all formulas A ∈ CnCL(

⋃

Υ ∪ Ψ) are true.

• For the Inclusion postulate, we can reason by cases: either
⋃

Υ ∪ Ψ is
consistent, whence by the Vacuity postulate, Υ ⊕SARx

i
Ψ = CnCL(

⋃

Υ ∪
Ψ); or

⋃

Υ ∪ Ψ is inconsistent, whence CnCL(
⋃

Υ ∪ Ψ) = Wc.

• The Consistency postulate follows from the Syntactic Reassurance of all
logics SARx

i (see Theorem 3.3).

• The Extensionality postulate follows from (i) the fact that whenever Ψ and
Ψ′ are CL-equivalent, then Υ�∪Ψ and Υ�∪Ψ′ are LLLp

i -equivalent, and
(ii) Theorem 3.4.

In view of the behavior of superpositions with respect to premise sets that
are normal up to a certain level i (see Theorem 3.13), we can also safely infer
that all revision operations ⊕SARx

i
satisfy the Prioritized Vacuity postulate that

was introduced in this chapter. So in general, the revision operations defined in
the current section are well-behaved.

Another Conjecture It seems plausible that the following holds for all Υ and
Ψ, for all i ∈ {1, 2, 3, 4} and x ∈ {r,m}:

Conjecture 10.2 Υ ⊕SARx
i

Ψ = Υ ⊕ARx
i

Ψ
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In words, It seems plausible that the revision operation obtained by the su-
perposition of the logics 〈ARx

i,j〉 is equivalent to the superposition of revision
operations obtained from ARx

i . This is so for several reasons. First of all, al-
though each logic ARx

i,j ranges over all the modal operators �i (i ∈ N), its
adaptive behavior seems to be restricted to the operator �j. If this is right,
then in the superposition, each logic ARx

i,j+1 gets as input a set that reduces to

the following: (i) all the LLLp
i -consequences of Υ�, and (ii) a set of non-modal

formulas, which corresponds to the revision set obtained by the logic ARx
i,j from

the preceding step. In view of (i) and (ii), the revision obtained by the (j + 1)th
step is equivalent to Υj+1 ⊕ (Υj ⊕ (. . .⊕ Υ1 ⊕ Ψ)) . . .).

10.3.2 An Example: The Logic SARr

1

An Example To illustrate the logic SARr
1, let us consider the revision of

Υd = 〈{p∧ q}, {¬p∧ r}, {r ⊃ s}〉 by Ψd = {¬q}. As spelled out in the preceding
section, we first need to translate the beliefs, using the modal operators �i. This
gives us:

Υd� = {�1(p ∧ q),�2(¬p ∧ r),�3(r ⊃ s)}

In the remainder of this section, let Γ = Υd� ∪ Ψd.
Now recall that each logic ARr

1,i in the superposition of logics SARr
1 is

defined by the triple 〈LLLp
1 ,Ω

r
1,i, r〉. To simplify notation, I will use ρi(A) as an

abbreviation for (�iA ∧ ¬A) ∨ (�i¬A ∧ A). Then for all i ∈ N, Ωr
1,i = {ρi(A) |

A ∈ S}.
Each logic ARr

1,i allows for the defeasible derivation of A from �iA, on the

condition {ρi(B) | B ∈ E(A)} – the proof of this fact proceeds wholly analogous
to that of Theorem 9.6. Let us use the name RDi for the associated (derivable)
inference rule. Since in an SARr

1-proof, we may apply all these logics whenever
it suits us, we can e.g. start by deriving ¬p ∧ r from �2(¬p ∧ r):10

1 ¬q PREM ∅
2 �1(p ∧ q) PREM ∅
3 �2(¬p ∧ r) PREM ∅
4 �3(r ⊃ s) PREM ∅
5 ¬p ∧ r 3;RD2 {ρ2(p), ρ2(r)}

Relying on the last step of this stage, and the premise �3(r ⊃ s), we may
moreover derive s:

6 r ⊃ s 4;RD3 {ρ3(r), ρ3(r)}
7 s 5,6;RU {ρ2(p), ρ2(r), ρ3(r), ρ3(s)}

However, not all of the preceding derivations are unproblematic. In view of the
most plausible belief, i.e. p∧¬q, we should uphold p unless this belief contradicts
the revision set. But this means that ¬p∧ r, and anything that was derived from
it, has to be retracted:

10Note that for all i, j ∈ N with i 6= j, Ωr
1,i ∩ Ωr

1,j = ∅, whence we can use sets instead of
sequences of sets, in the conditions of lines – see Section 3.5 in Chapter 3.
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5 ¬p ∧ r 3;RD2 {ρ2(p), ρ2(r)} X
2

6 r ⊃ s 4;RD3 {ρ3(r), ρ3(s)}
7 s 5,6;RU {ρ2(p), ρ2(r), ρ3(r), ρ3(s)} X

2

8 �1p 2;RU ∅
9 p 8;RD1 {ρ1(p)}
10 �2¬p 3;RU ∅
11 ρ2(p) 9,10;RU {ρ1(p)}

Note that SΣ1
11(Γ) = ∅, whence no lines are 1-marked at stage 11. But this

means that the formula on line 11 is a minimal Dab2-formula at stage 11. As a
result, SU2

11(Γ) = {ρ2(p)}, which implies that lines 5 and 7 are 2-marked at stage
11.

Nevertheless, by analyzing the belief ¬p∧r, we are able to uphold r and hence
derive s, as the following continuation of the proof illustrates:

12 �2r 3;RU ∅
13 r 12;RD2 {ρ2(r)}
14 s 6,13;RU {ρ2(r), ρ3(s)}

It can easily be verified that line 14 is unmarked at stage 14, and that p, ¬q,
r and s are finally derived in this proof.

Adaptive Revision and Superposed Revision. Let us now compare this
result to the set Υd ⊕ARr

1
Ψd, which is obtained from the superposition of the

operation ⊕ARr
1
. This revision consists in three steps:

(i) Revision of Υd
1 in view of Ψd, by the operation ⊕ARr

1
. Obviously, we have

to retract the belief q. However, since p ∈ CnCL(Υd
1) is not relevant to the

revision, we can uphold it. More generally, it can easily be shown that

Υd
1 ⊕ARr

1
Ψd = CnCL({p,¬q})

(ii) Revise Υd
2 in view of ∆d

1 = CnCL({p,¬q}), by ⊕ARr
1
. Note that in this

case, we have to retract the (implicit) belief in ¬p, but we can still uphold
the belief in r. As a result, we obtain the set ∆d

2 = CnCL({p,¬q, r}).
(iii) Revise Υd

3 = {r ⊃ s} in view of ∆d
2, by ⊕ARr

1
. Since these two sets are

mutually compatible, we obtain the following end result:

Υd ⊕ARr
1

Ψd = CnCL({p,¬q, r, r ⊃ s}) = CnCL({p,¬q, r, s})

Note that the fact that every operation Υ⊕ARr
1

Ψ obeys the relevance axiom
in a specific way, allows us to obtain this result – otherwise, r would not be in
the revision set.

10.4 Priorities and Relevance

In this section, I return to the axiom of relevance P from the preceding chapter.
More specifically, I will address the question whether we can define an appro-
priate variant of P for prioritized belief bases. I will first consider the most
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straightforward way to do this, arguing that it leads to rather counterintuitive
results. This will bring me to a number of requirements on sensible relevance
axioms. After that, I will propose two slightly more complicated proposals, and
explain why they both seem worthy of further inquiry.

10.4.1 A Failing Proposal

As explained at the beginning of the previous chapter, the central motor behind
the axiom of relevance is the idea that whenever a belief A is in the original set
of beliefs, and A is not “relevant” to the new information (in view of the other
beliefs in Υ), then it should be upheld. So it remains to be specified what is
meant by the phrase “A is not relevant to the revision of Υ by Ψ.” As before, I
will do this in terms of letter sets of A and Ψ, and partitions of the set of letters
S that are obtained from a given set ∆ ⊆

⋃

Υ.

A straightforward way to define relevance to the revision of Υ = 〈Υi〉i∈I by
Ψ, is by letting

⋃

Υ play the role of Υ in the original definition of relevance.
Formally, this proposal reads as follows:

Definition 10.8 Let E be the finest splitting of
⋃

Υ. We say that B is simply
p-relevant to the revision of Υ by Ψ iff there is a ∆i ∈ E such that E(B)∩∆i 6= ∅
and E∗(Ψ) ∩ ∆i 6= ∅.11

Hence, simple p-relevance (the “p” stands for “prioritized”) with respect to
Υ ⊕ Ψ is equivalent to relevance with respect to

⋃

Υ ⊕ Ψ. In other words, the
concept of simple p-relevance does not take into account the priority of the beliefs
in

⋃

Υ, and simply looks at the prioritized belief base as if it were one set of
beliefs.

Under this interpretation, it should be assumed that
⋃

Υ is consistent; oth-
erwise we end up with the same problems as in the case of the original axiom P
and inconsistent sets of beliefs – see also Chapter F in the appendix. Although
this is already a strong assumption, let us grant it here for the sake of argument.

In line with the preceding chapter, the resulting relevance axiom reads: if
B ∈ CnCL(

⋃

Υ) is not simply p-relevant to the revision (contraction) of Υ by
Ψ, then B ∈ Υ ⊕ Ψ (B ∈ Υ	 Ψ). Let us call this axiom Ps.

Let us take a look at a very simple example, to illustrate Ps. Consider the
prioritized belief base Υe = 〈{p ∨ q, r}, {p,¬q}〉, and its revision by {¬p ∨ ¬r}.
Note that

⋃

Υe `CL p,¬q, r. It follows that Ee = {{p}, {q}, {r}} is the finest
splitting of

⋃

Υ.12 Hence the belief ¬q is not relevant to the new information,
i.e. ¬p∨¬r. This means that one should uphold this belief, in order to obey Ps.

Now consider again the postulate of Prioritized Vacuity from Section 10.2.2.
This postulate states that if Υ1 ∪ . . . ∪ Υn is consistent with Ψ, then we are not
allowed to retract any belief in Υ1 ∪ . . . ∪ Υn (irrespective of the members of
any Υm with m > n). Still in other words, beliefs with a lower priority degree
should not be able to rule out beliefs with a higher priority degree, if the latter

11Recall that E∗(Ψ) is the least letter-set of Ψ – see Section 9.2 in Chapter 9.
12As in the previous chapter, I omit letters that do not occur in the initial formulation of a

set Υ, whenever I give the finest splitting of this set.
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are totally unproblematic with regards to the new information. This intuition
lies at the core of prioritized belief revision.

Now let us take a closer look at Υe, and the priorities of the different beliefs
in it. Note that {p ∨ q, r}, i.e. the set of beliefs with the highest priority, does
not conflict with the new information {¬p ∨ ¬r}. Hence, if want to obey the
Prioritized Vacuity postulate, we should get ¬p, r, q in our revision set. But in
that case we can no longer put the belief ¬q (which has a lower priority degree)
in the revision set, if we want to avoid an inconsistent revision set. So it seems
that in this and similar cases, we face a dilemma: either we cannot obey Ps, or
we have to violate the (very intuitive) postulate of Prioritized Vacuity.

10.4.2 Some Requirements for Axioms of Relevance

Before I introduce the alternative proposal, let me briefly spell out some re-
quirements which any sensible axiom of p-relevance should fulfill. The first was
already called upon in the preceding section, i.e. that the resulting relevance ax-
iom should not conflict with such basic requirements as the Prioritized Vacuity
postulate, or the requirement that revision sets are consistent.

Another requirement follows immediately from the idea of prioritized ratio-
nality, as spelled out at the end of Section 10.2.2. It states that whenever A ∈ Υ1

is not relevant to the revision of Υ1 by Ψ, then neither should it be p-relevant to
the revision of Υ = 〈Υ1,Υ2, . . .〉 by Ψ. However, as explained in the preceding
chapter, there are many different ways to satisfy relevance in the flat case.

Consider the following example: we revise Υd = 〈Υd
1,Υ

d
2〉 = 〈{p ∨ q, q ∨

r}, {¬r}〉 by Ψd = {¬p,¬q}. Let us first focus on the flat revision of Υd
1 by Ψ.

Note that this operation corresponds to the revision of Υ9 by A4, as discussed in
Section 9.6 of Chapter 9. As explained there, both p ∨ q and q ∨ r are relevant
to the revision by Ψd. However, it depends on the specific revision operation
whether q ∨ r is upheld, and hence whether r ∈ Υd

1 ⊕ Ψd. That is, compare
the flat revision operation defined from ARr

1 to that defined from ARr
3, for this

specific case:

r 6∈ Υd
1 ⊕ARr

1
Ψd

r ∈ Υd
1 ⊕ARr

3
Ψd

Hence, depending on the way we obey flat relevance with regards to Υd
1 ⊕Ψd,

we may or may not be able to uphold the belief ¬r ∈ Υd
2. Note that ¬r is not

relevant to Υd
2 ⊕ (Υd

1 ⊕ARr
1

Ψd), whereas it is relevant to Υd
2 ⊕ (Υd

1 ⊕ARr
3

Ψd).

This brings me to a final requirement for any axiom of p-relevance. An obvious
feature of postulates is that they are operation-independent, i.e. they are means
to compare different revision operations. Hence, a useful axiom of p-relevance
should also be independent of the specific operation at hand. However, another
question is if p-relevance itself should also be defined in such a way that it is
operation-independent. This also relates to the question whether we want to
define an independent notion of relevance (and afterwards spell out the axiom
of relevance on the basis of this notion), or to simply formulate an axiom of
relevance immediately – this distinction will become more clear below.
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In the next two sections, I will consider two proposals for a relevance axiom:
one that relies on an independent notion of relevance, and another that defines
relevance of a revision operation in a more direct way. In both sections, it is not
assumed that

⋃

Υ is consistent, but only that each set Υi is consistent.

10.4.3 An Operation-Independent Notion of P-relevance

Recall the example from Section 10.4.1. The reason why the belief ¬q ∈
⋃

Υe

could not be upheld in the revision of 〈{p∨ q, r}, {p,¬q}〉 by {¬p∨¬r} is that it
conflicts with the more plausible information in the sets Υe

1 and Ψe, which were
mutually compatible. More generally, in the case of prioritized revision, a belief
A ∈

⋃

Υ may be retracted not just because it relates to the new information,
but also because it relates to more plausible original beliefs. In that case, we may
consider a belief A ∈ Υi as relevant to the revision of Υ by Ψ iff it is relevant to
the revision of Υi by either Ψ or Υ1 or . . . or Υi−1.

In order to stay in line with the more generic definition of relevance from the
previous chapter – which defines relevance for all formulas A ∈ Wc, not just for
all A ∈ Υ –, it is convenient to introduce the following notion:

Definition 10.9 (p1k-relevance) Let Υ = 〈Υi〉i∈I and k ∈ I. Let E be the
finest splitting of Υk. We say that B is p1k-relevant to the revision of Υ by
Ψ iff there is a ∆ ∈ E such that (a) E(B) ∩ ∆ 6= ∅ and (b) E(Ψ∗) ∩ ∆ 6=
∅ or E(Υ∗

1) ∩ ∆ 6= ∅ or . . . or E(Υ∗
k−1) ∩ ∆ 6= ∅.

Hence according to Definition 10.9, B is p1k-relevant to Υ ⊕ Ψ if and only if
it is either relevant to Υk ⊕Ψ, or to Υk ⊕Υ1, or . . . or to Υk ⊕Υk−1. Note that
this means that as the index k gets higher, it becomes more likely that a given
formula is p1k-relevant to the revision of Υ by Ψ, since an increasing number of
sets is taken into account. Thus we have:

Fact 10.1 Where k, k + 1 ∈ I: if A is p1k-relevant to Υ ⊕ Ψ, then A is also
p1k+1-relevant to Υ ⊕ Ψ.

The following is immediate in view of Definition 10.9:

Fact 10.2 A is p11-relevant to Υ ⊕ Ψ iff A is relevant to Υ1 ⊕ Ψ.

The relevance axiom that is associated with the notion of p1k-relevance can
be stated as follows:

P1 For every k ∈ I and A ∈ CnCL(Υk): if A is not p1k-relevant to Υ⊕Ψ, then
A ∈ Υ ⊕ Ψ.

In view of Fact 10.2, it follows immediately that if ⊕ satisfies p1-relevance,
and A ∈ Υ1 is not relevant to Υ1 ⊕ Ψ, then A ∈ Υ ⊕ Ψ.

To see how the definition of p1k-relevance works, let us consider a simple
example:
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Example 10.7 Consider the revision of Υf = 〈{p∨ q, r}, {p,¬q}, {¬r∧ s}}〉 by
Ψf = {¬p ∨ ¬r} – note that Ψf = Ψe and that Υf is an extension of Υe. Note
also that Ψf is a least letter-set representation of itself, and where i ∈ {1, 2, 3},

each set Υf
i is a least letter-set representation of itself.

Let us start with the belief ¬q ∈ Υf
2 . This belief is p12-relevant to this revision.

That is,

• the finest splitting of Υf
2 is E

f
2 = {{p}, {q}, {r}, {s}}

• there is no ∆ ∈ E
f
2 = {{p}, {q}}, such that E(¬q)∩∆ 6= ∅ and E(Ψf)∩∆) 6= ∅,

but
• there is a ∆ ∈ E

f
2 such that E(¬q)∩∆ 6= ∅ and E(Υf

1 )∩∆) 6= ∅, viz. ∆ = {q}

Hence, it is not required by the axiom P1 that ¬q ∈ Υe ⊕ Ψe.
Consider now the belief s ∈ CnCL(Υf

3). Note that the finest splitting of Υf
3

is E
f
3 = {{p}, {q}, {r}, {s}}. From this, it can easily be verified that s is not

p13-relevant to Υf ⊕ Ψf . Hence the relevance axiom P1 stipulates that s should
be upheld.

10.4.4 P-Relevance in a Direct Way

The second alternative proposal for a prioritized relevance axiom makes reference
to the specific operation ⊕ under consideration. It requires certain beliefs to be
upheld in the revision of Υ by Ψ, in view of other beliefs that are upheld in the
same revision. Note that the rationality postulate G1 also has this property: it
states that whenever A is classically entailed by the revision set, then A should
itself also be in the revision set.

This means that, unlike the previous proposal, the axiom of p2-relevance is
not specified in terms of an operation-independent notion of relevance to “any
revision” of Υ by Ψ. Rather, the axiom is spelled out in a direct way, as will
become clear below.

The idea behind the second alternative is that, wheneverA ∈ CnCL(Υk), then
this belief should be upheld, unless it is relevant to either the new information,
or other beliefs that have a higher priority, and that are themselves upheld.
Formally, where ⊕ is an operation of prioritized revision and Υ = 〈Υi〉i∈I , this
axiom requires the following:

P2 Where A ∈ CnCL(Υk) for a k ∈ I, let ∆k = (Υ ⊕ Ψ) ∩
⋃

j<k CnCL(Υj). If
A is not relevant to the revision of Υk by ∆k ∪ Ψ, then A ∈ Υ ⊕ Ψ.

Example 10.8 I will first consider the operation ⊕P, and show that it does
not satisfy the axiom of p2-relevance. Consider again the revision of Υf =
〈{p∨q, r}, {p,¬q}, {¬r∧s}}〉 by Ψf = {¬p∨¬r}. Note that P(

⋃

Υf ,Ψ) contains
only one set, i.e. {p ∨ q, r}. So Υf ⊕P Ψf = CnCL({p ∨ q, r} ∪ {¬p ∨ ¬r}) =
CnCL({¬p, r, q}).

Let us first consider the belief ¬q ∈ Υf
2 . In order to see what the relevance ax-

iom tells us about this belief, we have to consider the set Υf⊕PΨf∩CnCL(Υf
1 ) =

{p ∨ q, r}. Next, we should ask whether ¬q is relevant to the revision of Υf
2 by
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Ψf ∪ {p ∨ q, r}. This holds trivially so since ¬q shares a letter with p ∨ q. It
follows that ¬q should not be upheld.

However, note that also s 6∈ Υf ⊕P Ψf . Note that Υf ⊕ Ψf ∩ (CnCL(Υf
1 ) ∪

CnCL(Υf
2 )) = CnCL({¬p, r, q}) ∩CnCL({p ∨ q, r}) (none of the beliefs from Υf

2

are retained in the revision operation). So it remains to be checked whether s is
relevant to the revision of {¬r ∧ s} by {p ∨ q, r} ∪ {¬p ∨ ¬r}. Since the finest

splitting of {¬r ∧ s} is E
f
2 = {{p}, {q}, {r}, {s}}, it immediately follows that s is

not relevant to this revision. Hence in this case, the relevance axiom stipulates
that s should be upheld, which is not the case in Υf ⊕P Ψf .

Hence ⊕P does not obey the axiom P2. This is an immediate consequence of
the fact that ⊕P is defined in terms of maximal consistent subsets of the set of
beliefs, as they are initially formulated. For similar reasons, also ⊕s

M does not
obey the axioms of P1-relevance or P2-relevance.

In general, it seems that P2 is a stronger requirement than P1. That is, in the
definition of p1k-relevance, all the beliefs in the sets Υ1, . . . ,Υk−1 are taken into
account. In axiom P2, only those more plausible beliefs are taken into account
that are in the revision set.

Several questions can be asked about the two axioms P1 and P2 presented
here. First of all, although they were motivated in terms of intuitive principles,
and seem to lead to expected results for simple examples, one might still wonder
whether it can be shown that both axioms are compatible with the postulates
PG1-PG6, and the Prioritized Vacuity postulate. Second, it could be asked to
what extent P1 and P2 are co-extensive, if one of both always implies the other,
or if there are cases in which they are mutually exclusive. Finally, one might
wonder in what way these axioms relate to the revision operations obtained by
the superposition of flat operations and to the adaptive logics from Section 10.3.
For instance, can we show that whenever each flat operation ⊕i in the sequence
s = 〈⊕i〉i∈I obeys the flat relevance axiom, then the operation ⊕s obeys P1? Or
can it be shown that all logics SARx

i from Section 10.3 satisfy axiom P2?

10.5 In Conclusion

In the preceding, we saw how it is possible to obtain well-behaved prioritized
revision operations by superposing flat revision operations. In an analogous way,
prioritized extensions were defined of the adaptive logics for belief revision from
the preceding chapter. It was shown that a straightforward extension of the Ax-
iom of Relevance to the prioritized case leads to counterintuitive results. Finally,
I proposed two alternative ways to deal with the notion of relevance in a priori-
tized setting, which seem to lead to intuitive results and interesting questions.

More than any other chapter in this thesis, the current one ends with a number
of open problems. First and foremost, we encountered a number of conjectures,
which are still in need of a proof. Also, it seems that more research is needed to
uncover the relations between prioritized belief revision and relevance in detail.
Finally, as with many results from this thesis, it remains to be seen whether the
insights from the current chapter can be transferred to the context in which our
information is (merely) partially ordered.
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Appendix A

Overview of Languages

CL Lc Wc =df 〈S ∪{⊥}〉 | ¬〈Wc〉 | 〈Wc〉∨ 〈Wc〉 | 〈Wc〉∧ 〈Wc〉 |
〈Wc〉 ⊃ 〈Wc〉 | 〈Wc〉 ≡ 〈Wc〉

LLLs Ls Ws

LLL, AL,
ULL

Ľs W̌s =df 〈Ws〉 | ¬̌〈W̌s〉 | 〈W̌s〉 ∨̌〈W̌s〉 | 〈W̌s〉 ∧̌〈W̌s〉 |
〈W̌s〉 ⊃̌〈W̌s〉 | 〈W̌s〉 ≡̌〈W̌s〉

CLuN L∼ W∼=df 〈S ∪ {⊥}〉 | ∼〈W∼〉 | 〈W∼〉 ∨ 〈W∼〉 | 〈W∼〉 ∧
〈W∼〉 | 〈W∼〉 ⊃ 〈W∼〉 | 〈W∼〉 ≡ 〈W∼〉

CLuN+,
CLuNx

Ľ∼ W̌∼=df 〈W∼〉 | ¬̌〈W̌s〉 | 〈W̌s〉 ∨̌〈W̌s〉 | 〈W̌s〉 ∧̌〈W̌s〉 |
〈W̌s〉 ⊃̌〈W̌s〉 | 〈W̌s〉 ≡̌〈W̌s〉

Ks Lm Wm=df 〈Wc〉 | �〈Wm〉 | ¬〈Wm〉 | 〈Wm〉 ∨ 〈Wm〉 |
〈Wm〉 ∧ 〈Wm〉 | 〈Wm〉 ⊃ 〈Wm〉 | 〈Wm〉 ≡ 〈Wm〉

MPs Lo Wo =df 〈Wc〉 | O〈Wc〉 | Oi〈Wc〉 | ¬〈Wo〉 | 〈Wo〉 ∨ 〈Wo〉 |
〈Wo〉 ∧ 〈Wo〉 | 〈Wo〉 ⊃ 〈Wo〉 | 〈Wo〉 ≡ 〈Wo〉

Ts Lt Wt =df 〈Wf 〉 | �〈Wf 〉 | ¬〈Wt〉 | 〈Wt〉 ∨ 〈Wt〉 | 〈Wt〉 ∧
〈Wt〉 | 〈Wt〉 ⊃ 〈Wt〉 | 〈Wt〉 ≡ 〈Wt〉

Ks,Kts Lr Wr =df 〈Wc〉 | �〈Wc〉 | ¬〈Wr〉 | 〈Wr〉 ∨ 〈Wr〉 | 〈Wr〉 ∧
〈Wr〉 | 〈Wr〉 ⊃ 〈Wr〉 | 〈Wr〉 ≡ 〈Wr〉

MKs,
MKts

Lω Wω =df 〈Wc〉 | �i〈Wc〉 | ¬〈Wω〉 | 〈Wω〉 ∨ 〈Wω〉 | 〈Wω〉 ∧
〈Wω〉 | 〈Wω〉 ⊃ 〈Wω〉 | 〈Wω〉 ≡ 〈Wω〉

Table A.1: (Metavariables for) Logics and their respective languages, in their
order of occurrence in this thesis.

To understand this table, recall that S = {p, q, r, . . .} is the set of propositional
letters. Also, as explained in Chapter 8 (see page 193), Wf is the set of closed
formulas in the standard language of classical first order predicate logic Lf , where
the latter is obtained from S, a set of constants C = {a, b, c, . . .}, a set of variables
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V = {x, y, z, . . .}, a set of predicates P = {P,Q,R, . . .}, the connectives ¬,∨,∧,⊃
,≡ and the quantifiers ∀ and ∃.

The languages of K, MP, T, Kt, MK and MKt are defined generically – see
the relation between Ls (Ws) and Ľs (W̌s). The same applies to the respective
adaptive logics that have K, MP, T, Kt, MK or MKt as their lower limit
logic.



Appendix B

Axiomatization of CL

Propositional CL For the purposes of the present thesis, it is useful to divide
the axioms of propositional CL in two fragments: (i) the positive fragment of
CL

A⊃1 A ⊃ (B ⊃ A)
A⊃2 ((A ⊃ B) ⊃ A) ⊃ A)
A⊃3 (A ⊃ (B ⊃ C)) ⊃ ((A ⊃ B) ⊃ (A ⊃ C))
A⊥ ⊥ ⊃ A
A∧1 (A ∧B) ⊃ A
A∧2 (A ∧B) ⊃ B
A∧3 A ⊃ (B ⊃ (A ∧B))
A∨1 A ⊃ (A ∨B)
A∨2 B ⊃ (A ∨B)
A∨3 (A ⊃ C) ⊃ ((B ⊃ C) ⊃ ((A ∨B) ⊃ C))
A≡1 (A ≡ B) ⊃ (A ⊃ B)
A≡2 (A ≡ B) ⊃ (B ⊃ A)
A≡3 (A ⊃ B) ⊃ ((B ⊃ A) ⊃ (A ≡ B))

and (ii) the axioms for the classical negation:

A¬1 ¬¬A ⊃ A
A¬2 (A ⊃ B) ⊃ ((A ⊃ ¬B) ⊃ ¬B)

The set of all axioms of propositional CL is obtained by closing the above
list under modus ponens (MP).

First order predicative CL without identity Note that I only consider CL
in terms of closed formulas, i.e. CL : ℘(Wf ) → ℘(Wf ). The first order fragment
of CL without identity, is obtained by adding the following three axioms to
propositional CL:

A∀ ∀αA(α) ⊃ A(β)
A∃ A(β) ⊃ ∃αA(α)
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and closing the resulting set under MP and the rules R∀ and R∃:

R∀ To derive ` A ⊃ ∀αB(α) from ` A ⊃ B(β), provided β does not occur
in either A or B(α).

R∃ To derive ` ∃αA(α) ⊃ B from ` A(β) ⊃ B, provided β does not occur
in either A(α) or B.



Appendix C

Minimal
Abnormality-variants: Some
Negative Results

Sections B.1 and B.3 of this appendix are based on the appendix from the paper
“Three Formats of Prioritized Adaptive Logics. A Comparative Study” (Logic
Journal of the IGPL 2012, doi:10.1093/jigpal/JZS004), which was co-authored
by Christian Straßer. I thank two anonymous referees for their valuable comments
on that paper.

In this appendix, I use the K-based prioritized adaptive logics from Chapters
3-5, to prove some negative results about their respective formats. These negative
results also illustrate several negative claims made in Chapters 3 and 4. One of
the reasons why I decided to put them in the appendix, is since that way I can
rely on all the positive results from Chapters 3-5, which greatly simplifies certain
proofs.

As the reader will note, only the Minimal Abnormality-variants of the logics
are considered. The reason is that for the Reliability-variants, often fairly sim-
ple examples suffice to show various negative results – these were given in the
main text –, whereas for Minimal Abnormality, rather complex constructions are
required. To facilitate the reading, I briefly recapitulate the definitions of the
various specific logics. Let i ∈ N. Then we have:

• ♦iA denotes A, preceded by i ♦s
• !iA =df ♦iA ∧ ¬A
• ΩK

i =df {!iA | A ∈ W l
c}

• ΩK
(i) =df ΩK

1 ∪ . . . ∪ ΩK
i

• Km
i is the flat AL, defined by 〈K,ΩK

i ,x〉
• Km

(i) is the flat AL, defined by 〈K,ΩK
(i),x〉

• SK2m is obtained from the superposition of the logics 〈Km
i 〉i∈{1,2}.

• SK2m
(2) is obtained from the superposition of the logics 〈Km

(i)〉i∈{1,2}.
• HK2m is the hierarchic AL, obtained from the combination of Km

(1) and Km
(2)
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• K2m
@ is the lexicographic AL, defined by the triple 〈K, 〈ΩK

i 〉i∈{1,2},x〉.

To avoid clutter, let me introduce some more notational conventions for this
section. I use Φ@2(Γ) to refer to the @-minimal choice sets of Σ(2)(Γ).Also, where
M ∈ MK, let Ab(i)(M) = {A ∈ ΩK

(i) |M  A}. Slightly abusing notation, I write

M  ∆ to denote that M  A for every A ∈ ∆. As before, ∆¬̌ = {¬̌A | A ∈ ∆}.

C.1 HK2m Is Not Complete

As a result of Corollary 6.12 from Chapter 6, whenever Γ satisfies FHAL, then it
holds that A ∈ CnHK2m(Γ) iff Γ |=HK2m A. We will now give an example that
shows that HK2m is not in general complete with respect to its semantics.

Let Γ1 = Γ1
1 ∪ Γ2

1 ∪ Γ3
1 ∪ Γ4

1, where

Γ1
1 = {!1pi ∨ !2qj | i, j ∈ N, i ≥ j}

Γ2
1 = {!2qi ∨ !2qj | i, j ∈ N, i 6= j}

Γ3
1 = {!2qi ∨ !2r | i ∈ N}

Γ4
1 = {s ∨ !2r}

Lemma C.1 Φ@2(Γ1) = {!2qi | i ∈ N}.

Proof. First of all, note that Φ(2)(Γ1) = Υ1 ∪ Υ2, where

Υ1 = {{!2qi | i ∈ N}}
Υ2 = {ϕk | k ∈ N} = {{!2qi, !

1pj , !
2r | i ∈ N − {k}, j ≥ k} | k ∈ N}

By Theorem 5.2, Φ@2(Γ1) ⊆ Φ(2)(Γ1). Note that for every ϕ ∈ Υ2, {!2qi | i ∈
N} @ ϕ. Hence Φ@2(Γ1) = {{!2qi | i ∈ N}}.

By Theorem 6.7.7, we can derive:

Corollary C.1 cΦ@(2)(Γ1) has no infinite minimal choice sets.

Lemma C.2 Γ1 |=HK2m s.

Proof. We prove that Γ1 |=K2m
@
s – the rest is immediate in view of Corollary

6.1. By Lemma C.1 and Theorem 5.3, for every M ∈ MK2m
@

(Γ), Ab(M) = {!2qi |

i ∈ N}. But then for every such M , M 6!2r, whence in view of Γ4
1, M  s.

To show that s is not in the HK2m-consequence set of Γ1, we will need a
slightly longer proof. Note that there is no Θ ⊂ ΩK

(1) such that Γ1 `K Dab(Θ).

Hence Γ1 is normal with respect to ΩK
(1). By Theorem 2.17, we have:

Lemma C.3 CnKm
1

(Γ1) = CnK(Γ1 ∪ {¬̌A | A ∈ ΩK
(1)}).

Lemma C.4 s 6∈ CnHK2m(Γ1).
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Proof. Suppose s ∈ CnHK2m(Γ1). By Definition 4.1, CnKm
1

(Γ1)∪CnKm
(2)

(Γ1) `K

s. By Lemma C.3, CnK(Γ1 ∪ ΩK
(1)

¬̌) ∪ CnKm
(2)

(Γ1) `K s. Since K is monotonic,

transitive and reflexive, we can derive that Γ1 ∪ ΩK
(1)

¬̌ ∪CnKm
(2)

(Γ1) `K s. Since

Km
(2) is reflexive, ΩK

(1)
¬̌ ∪ CnKm

(2)
(Γ1) `K s. By the compactness of K, Θ¬̌ ∪

CnKm
(2)

(Γ1) `K s for a finite Θ ⊂ ΩK
(1). But then, by the Deduction Theorem,

CnKm
(2)

(Γ1) `K s ∨̌Dab(Θ). By Theorem 2.18, Γ1 `Km
(2)
s ∨̌Dab(Θ).

Since Θ is finite, there is a k ∈ N such that, for every l ≥ k: !1pl 6∈ Θ. Let
M ∈ MK(Γ1) be such that each of the following holds:1

(C1) Ab(2)(M) = ϕk
(C2) M 6 s

By Theorem 2.1 and Lemma C.1, M ∈ MKm
(2)

(Γ1). By (C1), M 6 Dab(Θ),

whence by (C2), also M 6 s ∨̌Dab(Θ). By the soundness of Km
(2), Γ1 6`Km

(2)

s ∨̌Dab(Θ) — a contradiction.

By Corollary C.1, Lemma C.2 and Lemma C.4, we immediately have:

Proposition C.1 There are Γ, A for which cΦ@(2)(Γ) has no infinite minimal
choice sets and Γ |=HK2m A, but A 6∈ CnHK2m(Γ).

Likewise, by Lemma C.2, Corollary 6.1 and Proposition C.1, it follows that:

Proposition C.2 There are Γ such that CnK2m
@

(Γ) 6⊆ CnHK2m(Γ).

C.2 HK2m Is Not Cumulatively Transitive

The premise set Γ1 from the preceding section can also serve as a counterexample
to the cumulative transitivity and idempotence of HK2m. That is, remark that
Γ′

1 = {¬!1pi | i ∈ N} ⊆ CnKm
1

(Γ) ⊆ CnHK2m(Γ). Now consider the set Γ1 ∪ Γ′
1.

Note that the only minimal Dab(2)-consequences of Γ1 ∪ Γ′
1 are all formulas !2qi

(i ∈ N). It follows that !2r 6∈ ϕ for every ϕ ∈ Φ(2)(Γ1 ∪ Γ′
1). In view of Γ4

1, we
can derive that Γ1 ∪ Γ′

1 `Km
(2)

s, which means that also s ∈ CnHK2m(Γ1 ∪ Γ′
1).

So we have:

Proposition C.3 There are Γ,Γ′ such that Γ′ ⊆ CnHK2m(Γ), but CnHK2m(Γ∪
Γ′) 6⊆ CnHK2m(Γ).

By the same reasoning, we can also infer that HK2m is not in general idem-
potent. Note that since Γ′

1 ⊆ CnHK2m(Γ), and by the monotonicity of K and
reflexivity of HK2m, the set of minimal Dab(2)-consequences of CnHK2m(Γ1) is a
subset of the set of minimal Dab-consequences of Γ1∪Γ′

1. Hence !2r is also a reli-
able abnormality in view of CnHK2m(Γ1), whence s ∈ CnHK2m(CnHK2m(Γ1))−
CnHK2m(Γ1).

1See Lemma C.1 for the definition of ϕk.
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C.3 HK2m and SK2m
(2) are Incomparable

Lemma C.5 s ∈ CnSK2m
(2)

(Γ1).

Proof. From Lemma C.2 and Corollary 6.1, we can infer that Γ1 |=SK2m
(2)

s. By

Corollaries 6.11.1 and C.1, it follows that s ∈ CnSK2m
(2)

(Γ1).

By Lemma C.4 and Lemma C.5, we obtain the following:

Proposition C.4 There are Γ such that CnSK2m
(2)

(Γ) 6⊆ CnHK2m(Γ).

We will now prove that also the converse holds. Let Γ2 = Γ1
2∪Γ2

2∪Γ3
2∪Γ4

2∪Γ5
2,

where

Γ1
2 = {!1pi ∨ !1pj | i, j ∈ N, i 6= j}

Γ2
2 = {!1pi ∨ !2tj | i, j ∈ N, i ≤ j}

Γ3
2 = {!1pi ∨ !2s | i ∈ N}

Γ4
2 = {r ∨ !1pi ∨ !2qi | i ∈ N}

Γ5
2 = {r ∨ !2s}

Lemma C.6 r ∈ CnHK2m(Γ2).

Proof. Note that Φ(2)(Γ2) = Ψ1 ∪ Ψ2, where

Ψ1 = {ϕ0} = {{!1pi | i ∈ N}}
Ψ2 = {ϕj | j ∈ N} = {{!1pi | i ∈ N − {j}} ∪ {!2tk | k ≥ j} ∪ {!2s} | j ∈ N}

In view of Γ4
2, for every ϕj ∈ Ψ2, there is a Θj = {!1pj, !

2qj}, such that Γ2 `K

r ∨̌Dab(Θj) and Θj ∩ ϕj = ∅. Also, in view of Γ5
2, Γ2 `K r ∨̌Dab({!2s}), and

{!2s} ∩ ϕ0 = ∅. By Theorem 2.7.2, r ∈ CnKm
(2)

(Γ2). Hence by Definition 4.1 and

the reflexivity of LLL, r ∈ CnHK2m(Γ2).

By Theorem 4.6 and Corollary 6.1, we immediately obtain the following:

Lemma C.7 Γ2 |=SK2m
(2)
r.

We will now prove that r is not a member of the SK2m
(2)-consequence set of

Γ1. The proof relies on the following lemma:

Lemma C.8 There is no Θ ⊂ ΩK
(2)−({!1pi | i ∈ N}∪{!2s}), such that CnKm

1
(Γ2)

`K r ∨̌Dab(Θ).

Proof. Suppose that there is a Θ ⊂ ΩK
(2) − ({!1pi | i ∈ N} ∪ {!2s}), such that

CnKm
1

(Γ2) `K r ∨̌Dab(Θ). By Theorem 2.18, (†) r ∨̌Dab(Θ) ∈ CnKm
1

(Γ2).
Since Θ is finite, there is a k ∈ N such that each of the following holds:

(i) !2tl 6∈ Θ for every l ≥ k
(ii) !2ql 6∈ Θ for every l ≥ k
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From this and the supposition, we can derive:

Θ ⊆ ΩK
(2) − ({!1pi | i ∈ N} ∪ {!2s} ∪ {!2tl, !

2ql | l ≥ k}) (C.1)

Let M ∈ MK(Γ2) be such that each of the following holds:

(C1) M  !1pi for every i 6= k
(C2) M  !2tl for every l ≥ k
(C3) M  !2ql for every l ≥ k
(C4) M  !2s
(C5) M 6 r
(C6) M 6 A for every A ∈ ΩK

1 − {!1pi | i ∈ N − {k}}
(C7) M 6 A for every A ∈ ΩK

2 − {!2tl, !
2ql, !

2s | l ≥ k}

Note that by (C1), M  Γ1
2; by (C1) and (C2), M  Γ2

2; by (C1) and (C3),
M  Γ4

2; finally, by (C4), M  Γ3
2 ∪ Γ5

2. Suppose there is an M ′ ∈ MK(Γ2) such
that Ab(1)(M ′) ⊂ Ab(1)(M). In that case, M ′ 6!1pi for an i 6= k. But then, in
view of Γ1

1, M ′ !1pk, whence !1pk ∈ Ab(1)(M ′) − Ab(1)(M) — a contradiction.
It follows that M ∈ MKm

1
(Γ2).

Note that by (C6) and (C7), M 6 Dab(Λ) for every Λ ⊆ ΩK
(2) − ({!1pi |

i ∈ N} ∪ {!2tl, !
2ql, !

2s | l ≥ k}), whence by (C.1), M 6 Dab(Θ). Together
with (C5), this implies that M 6 r ∨̌Dab(Θ). By the completeness of Km

1 ,
Γ2 6`Km

1
r ∨̌Dab(Θ) — a contradiction.

Lemma C.9 r 6∈ CnSK2m
(2)

(Γ2).

Proof. First of all, note that Φ(1)(Γ2) = {{!1pi | i ∈ N − {j} | j ∈ N}. In
view of Γ4

2, for every ϕ ∈ Φ(1)(Γ2), Γ2 `K!2s ∨̌Dab(Θ) for a Θ ⊂ ΩK
1 such

that ϕ ∩ Θ = ∅. Hence by Theorem 2.7.2, !2s ∈ CnKm
1

(Γ2). This implies that

Φ(2)(CnK1m(Γ2)) = Ξ1 ∪ Ξ2, where

Ξ1 = {ϕ?} = {{!1pi | i ∈ N} ∪ {!2s}}
Ξ2 = {{!1pi | i ∈ N − {j}} ∪ {!2tk | k ≥ j} ∪ {!2s} | j ∈ N}

By Lemma C.8, there is no Θ ⊆ ΩK
(2) − ϕ?, such that CnKm

1
(Γ2) `K r ∨̌Dab(Θ).

By Theorem 2.7.2, r 6∈ CnKm
(2)

(CnKm
1

(Γ2)) = CnSK2m
(2)

(Γ2).

By Lemma C.6 and Lemma C.9, we immediately have:

Proposition C.5 There are Γ such that CnHK2m(Γ) 6⊆ CnSK2m
(2)

(Γ).

Since the SK2m
(2)-semantics and the HK2m-semantics are equivalent, and in

view of Theorem 4.6, it follows immediately that SK2m
(2) is not complete with

respect to its semantics:

Proposition C.6 There are Γ, A such that Γ |=SK2m
(2)
A, but A 6∈ CnSK2m

(2)
(Γ).

Finally, by Corollary 6.1, Proposition C.6 and the soundness and completeness
of K2m

@ :

Proposition C.7 There are Γ such that CnK2m
@

(Γ) 6⊆ CnSK2m
(2)

(Γ).
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C.4 HK2m Is not Cautiously Monotonic

By the same example from the previous section, we can show that HK2m is
not (in general) cautiously monotonic. Recall that r ∈ CnHK2m(Γ2), due to
the fact that r ∈ CnKm

(2)
(Γ). However, it was also shown in the preceding sec-

tion that !2s ∈ CnKm
1

(Γ). The reader can easily verify that Φ(2)(Γ2 ∪ {!2s}) =

Φ(2)(CnKm
1

(Γ2)), whence the set ϕ? is a member of Φ(2)(Γ2 ∪ {!2s}).
By Lemma C.8 and the fact that Km

1 is always at least as strong as K, we
can infer that there is no Θ ⊂ ΩK

(2) − ϕ?, such that Γ2 `K r ∨̌Dab(Θ). It follows

that r 6∈ CnKm
(2)

(Γ2 ∪ {!2s}). More generally, by a reasoning similar to the one

from Section C.1, we can derive that r 6∈ CnHK2m(Γ2 ∪ {!2s}). So we have:

Proposition C.8 There are Γ,Γ′ such that Γ′ ⊆ CnHK2m(Γ) and CnHK2m(Γ) 6⊆
CnHK2m(Γ ∪ Γ′).

C.5 SK2m
(2) Is Not Cumulatively Transitive

For the proof that SK2m
(2) is not cumulatively transitive, we can use the premise

set Γc, which was introduced on page 52 in order to show that SALm-logics are
not in general complete, and was reconsidered on page 83 to show that the same
logics are not in general cumulatively transitive or idempotent. The reasoning is
completely analogous to the one for SK2m.

C.6 HKm and Km Are Incomparable

Recall that HKm is a hierarchic AL, obtained from the flat ALs Km
(1) =

〈K,ΩK
(1),m〉 and Km

(2) = 〈K,ΩK
(2),m〉, and that Km is a flat AL defined by

the triple 〈K,
⋃

i∈N
Ωi,m〉. In this section, I construct a premise set Γ for which

CnKm(Γ) 6⊆ CnHKm(Γ), and hence prove Proposition 4.1 from Chapter 4 – see
page 107. It can also be shown that CnKm(Γ) 6⊆ CnSK2m

(2)
(Γ) — the reasoning

is completely analogous and left to the reader.
Let Γ = ∆1 ∪ ∆2 ∪ ∆3, where

∆1 = {!npi∨!npj | i, j, n ∈ N, i 6= j}
∆2 = {!npi∨!mpj | i, j, n,m ∈ N, n < m, i ≤ j}
∆3 = {q∨!np1 | n ∈ N}

I will first show why q ∈ CnKm(Γ) in an informal way. Where M ∈ MK
Γ ,

we can represent Ab(M) as a series of dots in a two-dimensional space. An
example of one such M is shown in Figure C.1. Each point (n, i) represents
the abnormality !npi, with n, i ∈ N. The white dots represent the abnormalities
that are an element of Ab(M). Connecting the black dots in the space, we get a
“path” PM that represents Ω − Ab(M). This representation allows us to grasp
relations between models in a fairly straightforward way, as I will now explain.

Let us take a closer look at Γ, and start with ∆1. This set ensures that for
every n ∈ N, every K-model of Γ can falsify at most one abnormality !npi. To
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!1 !2 !3 !4 !5 !6 !7 !8 . . .

p1 ◦ ◦ ◦ ◦ ◦ • ◦ ◦

p2 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

p3 ◦ ◦ ◦ ◦ • ◦ ◦ ◦

p4 ◦ ◦ ◦ • ◦ ◦ ◦ ◦

p5 ◦ ◦ • ◦ ◦ ◦ ◦ ◦

p6 • ◦ ◦ ◦ ◦ ◦ ◦ ◦

. . .

Figure C.1: A representation of a model M ∈ MKm(Γ) for which: Ab(M) =
{!ipj | i, j ∈ N} − {!1p6, !

3p5, !
4p4, !

5p3, !
6p1}.

see why, suppose M falsifies !npi for n, i ∈ N. By ∆1, every !npj must be true in
this model, for any j ∈ N, j 6= i.

As concerns the graphic representation, ∆1 implies that no path that rep-
resents a set Ab(M) with M ∈ MK(Γ) can contain two black dots of the same
column. Note that this restriction is satisfied in Figure 1: sinceM 6!1p6, M !1pi
for any i ∈ N, i 6= 6.

Now let us look at ∆2, in the face of the example in Figure 1. We can see
that M 6!4p4. This implies by ∆2 that M !mpj for any m > 4, j ≥ 4. So, if
there is a black dot in the representation of a set Ab(M) for an M ∈ MK(Γ),
we can infer that all dots that appear after it in the same row have to be white,
and that all dots underneath those dots have to be white too. In other words,
the path that connects the black dots can only go upwards. As a result, every
model of Γ can falsify a finite number of abnormalities only.

A third remark concerns the minimal abnormal models, in view of Km. Sup-
pose a selection of abnormalities in view of Γ is represented by the path PM ,
and there is a path PM ′ such that this path extends PM with one more black
dot. This implies that the model M ′ falsifies one extra abnormality. As a result,
Ab(M ′) ⊂ Ab(M), which means that M is not minimal abnormal.

From these facts, we can infer that every path PM that represents Ω−Ab(M)
for a minimal abnormal model M , must necessarily end at some point !np1, hence
at a point in the first row – if it would not end there, we could extend PM with
at least one more point, and hence Ab(M) would not correspond to a minimal
selection of abnormalities. Hence, every Km-model of Γ falsifies one abnormality
!np1, which means that it verifies q. By the completeness of Km, Γ `Km q.

In the remainder, I prove that Γ 6`HKm q. To simplify the proof, it is con-
venient to rely on the equivalence results from Chapter 6. In the remainder, let
every logic Km

@(i)
(i ∈ N) be a lexicographic adaptive logic characterized by the
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triple 〈K, 〈ΩK
j 〉j≤i,m〉, and let @(i) be the lexicographic order associated with

this logic.

Lemma C.10 For every i ∈ N: there is an M ∈ MKm
@(i)

(Γ) such that M 6 q.

Proof. Let i ∈ N. Let M ∈ MK(Γ) be such that Ab(M) = {!ipj | i, j ∈
N} − {!jpi+2−j | 1 ≤ j ≤ i} and M 6 q. Assume that there is an M ′ ∈ MK(Γ)
such that Ab(M ′) ∩ Ω(i) @(i) Ab(M) ∩ Ω(i).

Let j ≤ i be such that (1) for all k ≤ j, Ab(M ′) ∩ Ωk = Ab(M) ∩ Ωk and (2)
Ab(M ′) ∩ Ωj ⊂ Ab(M) ∩ Ωj . By (2), M ′ 6!jpi+2−j . But then, since M ′  ∆1,
M ′ !jpk for every k ∈ N, k 6= i+ 2 − j. Hence Ab(M ′) ∩ Ωj = Ab(M) ∩ Ωj — a
contradiction.

In view of the equivalence of the semantics of lexicographic ALs and the
corresponding hierarchic ALs, we have:

Corollary C.2 For every i ∈ N: there is an M ∈
⋂

j≤iMKm
(j)

(Γ) such that

M 6 q.

Lemma C.11 q 6∈ CnHKm(Γ).

Proof. Assume that q ∈ CnHKm(Γ). Hence q ∈ CnK(
⋃

i∈N
CnKm

(i)
(Γ)). By the

compactness of K, there is an i ∈ N such that q ∈ CnK(
⋃

j≤i CnKm
(j)

(Γ)). But

then, by the soundness of hierarchic adaptive logics, q is true in every model
M ∈

⋂

j≤iMKm
(j)

(Γ). This however contradicts Corollary C.2.

C.7 SK2m versus K2m
@ , HK2m and SK2m

(2)

I have not yet been able to come up with examples of a Γ such that CnSK2m
(2)

(Γ) 6⊆

CnSK2m(Γ), although it is plausible – in view of the other incomparability results
from this appendix – that there are such premise sets.

For an example where A ∈ CnHK2m(Γ)−CnSK2m(Γ), I refer to the example
Γ2 from Section C.3. There it was proven that r ∈ CnHK2m(Γ2). That r 6∈
CnSK2m(Γ2), is immediate in view of the following two lemmas – I omit their
very simple proofs for reasons of space:2

Lemma C.12 Φ2(CnSK2m(Γ2)) = {{!2s}}.

Lemma C.13 There is no ∆ ⊆ Ω2 − {!2s} such that r ∨̌Dab(∆) ∈ CnKm
1

(Γ2).

There is also a relatively simple example that shows that in some cases, K2m
@

is stronger than SK2m. This example was already given in Section 3.3.3 of
Chapter 3 (see page 52):

Γc = {!1pi ∨ !1pj | i, j ∈ N, i 6= j} ∪ {!1pi ∨ !2qi ∨ r | i ∈ N}.

2The second lemma is proven in a similar way as Lemma C.8 in Section C.3. That is, for
every finite ∆ ⊆ Ω2 − {!2s}, we can define a model M ∈ MK

m
1

(Γ2) such that (i) M 6 s, and

(ii) M 6 Dab(∆).
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As shown there, r 6∈ CnSK2m(Γc). To see why r ∈ CnK2m
@

(Γc), note that

Φ@2(Γc) = {ϕj | j ∈ N} = {{!1pi | i ∈ N−{j}} | j ∈ N}. For every ϕj ∈ Φ@2(Γc),
we can derive r on a condition ∆j = {!1pj , !

2qj} such that ϕj ∩ ∆j = ∅.





Appendix D

The Complexity of
Superpositions

As explained at the end of Chapter 6, most questions concerning the computa-
tional complexity of the various formats of prioritized ALs are still to be adressed
in future research. However, on the basis of some preliminary work, it seems plau-
sible that many superpositions of n logics 〈ALr

i 〉i≤n have a worst case complexity
of at least Σ0

2n+1. Let me try to spell out why this is the case.

Two Priority Levels Recall that SK2r is obtained by the superposition of
Kr

2 on Kr
1, or more formally:

CnSK2r(Γ) =df CnKr
2
(CnKr

1
(Γ))

In what follows, I give the outline for a proof that SK2r has a worst case
complexity of at least Σ0

5. That is, I will define a recursive premise set Γ ⊆ Wm

such that, for all i ∈ N, ui ∈ CnSK2r(Γ) iff i is a member of a Σ0
5-complete set.

The example I use is obtained by an extension of the example given by Horsten
& Welch, in order to show that flat adaptive logics with the Reliability strategy
are Σ0

3-complex (see [79, p. 56]).
Let the set IR ⊂ N be Σ0

5-complete, i.e. where i ∈ N:

i ∈ IR iff ∃x1∀x2∃x3∀x4∃x5 : (x1, . . . , x5, i) ∈ R

with R recursive.

Let Γ = ∆1 ∪ . . . ∪ ∆6, where

∆1 = {pix1,...,x5
| (x1, . . . , x5, i) ∈ R}

∆2 = {pix1,...,x5
⊃ !1qix1,...,x4

| x1, . . . , x5, i ∈ N}

∆3 = {!1qix1,...,x4
∨ !1rix1,x2,x3

| x1, . . . , x4, i ∈ N}

∆4 = {!1rix1,x2,x3
∨ !2six1,x2

| x1, x2, x3, i ∈ N}

∆5 = {!2six1,x2
∨ !2tix1

| x1, x2, i ∈ N}

∆6 = {ui ∨ !2tix1
| x1, i ∈ N}

305
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We need to prove that ui ∈ CnSK2r(Γ) iff i ∈ IR. This follows immediately
from the following lemma:

Lemma D.1 Where i, x1, . . . , x5 ∈ N, each of the following holds:

1. ui ∈ CnKr
2
(CnKr

1
(Γ)) iff there is an x1 ∈ N such that !2tix1

6∈ U2(CnKr
1
(Γ)).

2. !2tix1
6∈ U2(CnKr

1
(Γ)) iff for all x2 ∈ N, !2six1,x2

∈ CnKr
1
(Γ).

3. !2six1,x2
∈ CnKr

1
(Γ) iff there is an x3 ∈ N, such that !1rix1,x2,x3

6∈ U1(Γ).

4. !1rix1,x2,x3
6∈ U1(Γ) iff for all x4 ∈ N, Γ `K!1qix1,...,x4

.

5. Γ `K!1qix1,...,x4
iff there is an x5 ∈ N such that pix1,...,x5

∈ Γ.

Some explanation might help to understand why each of these claims are
plausible. The right-left direction of item 1 is immediate in view of ∆6 and
Theorem 2.6. The other direction can be proven with the aid of an additional
lemma, which states that (†) each ui (i ∈ N) can only be derived from CnKr

1
(Γ)

on conditions ∆ ⊆ ΩK
2 such that !2tix1

∈ ∆. If (†) holds, then in order for ui to
be finally Kr

2-derivable from CnKr
1
(Γ) on such a condition ∆, it should be the

case that !2tix1
6∈ U2(CnKr

1
(Γ)).

The left-right direction of item 2 follows from the fact that, for every i, x1, x2 ∈
N, !2six1,x2

∨̌ !2tix1
is a Dab2-consequence of CnKr

1
(Γ) (since Kr

1 is reflexive and

in view of ∆5). Hence, if !2tix1
is reliable in view of CnKr

1
(Γ), then none of these

Dab2-consequences are minimal, and hence, all formulas !2six1,x2
should be K-

derivable from CnKr
1
(Γ). For the other direction, we need to show that there

are no Dab-consequences of CnKr
1
(Γ) which contain !2tix1

, except formulas of the
form !2six1,x2

∨̌ !2tix1
∨̌Dab(∆).

The reasoning for item 3 is analogous to that for item 1: we need to prove
that the only conditions on which we can Kr

1-derive !2six1,x2
from Γ, are sets

∆ ⊂ ΩK
1 for which !1rix1,x2,x3

∈ ∆, for an x3 ∈ N. So !2six1,x2
∈ CnKr

1
(Γ) iff one

of these abnormalities are reliable in view of Γ.
The reasoning for item 4 is analogous to that for item 2: since all formulas

!1qix1,...,x4
∨̌ !1rix1,x2,x3

are Dab1-consequences of Γ, an abnormality !1rix1,x2,x3
is

reliable if and only if every abnormality !1qix1,...,x4
is derivable in itself.

Item 5 can be shown as follows. If pix1,...,x5
∈ Γ for an x5 ∈ N, then !1qix1,...,x4

∈
CnK(Γ) in view of ∆2. On the other hand, if there is no x5 ∈ N such that
pix1,...,x5

∈ Γ, then we can easily see that there is an M ∈ MK(Γ) such that

M 6!1qix1,...,x4
— this model is such that it verifies all formulas !1rix1,x2,x3

with
i, x1, x2, x3 ∈ N.

More Than Two Levels The above example can easily be adapted to show
that, whenever a K-based prioritized logic uses n priority levels, then the worst
case complexity of this logic is at least Σ0

2n+1. For instance, for n = 3, we need
to adjust the construction as follows:

Let the set IR′ ⊂ N be Σ0
7-complete, i.e. where i ∈ N:

i ∈ IR′ iff ∃x1∀x2∃x3∀x4∃x5∀x6∃x7 : (x1, . . . , x7, i) ∈ R′

with R′ recursive.
Let Γ′ = ∆′

1 ∪ . . . ∪ ∆′
8, where
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∆′
1 = {pix1,...,x7

| (x1, . . . , x7, i) ∈ R′}

∆′
2 = {pix1,...,x7

⊃ !1qix1,...,x6
| x1, . . . , x7, i ∈ N}

∆′
3 = {!1qix1,...,x6

∨ !1rix1,...,x5
| x1, . . . , x6, i ∈ N}

∆′
4 = {!1rix1,...,x5

∨ !2six1,...,x4
| x1, . . . , x5, i ∈ N}

∆′
5 = {!2six1,...,x4

∨ !2mi
x1,x2,x3

| x1, . . . , x4, i ∈ N}

∆′
6 = {!2mi

x1,x2,x3
∨ !3nix1,x2

| x1, x2, x3, i ∈ N}

∆′
7 = {!3nix1,x2

∨ !3tix1
| x1, x2, i ∈ N}

∆′
8 = {ui ∨ !3tix1

| x1, i ∈ N}

Let the logic SK3r be obtained by the sequential superposition of the logics
Kr

1, Kr
2 and Kr

3. By a reasoning analogous to that for Γ, we can show that, for
all i ∈ N, ui ∈ CnSK3r(Γ′) iff i ∈ IR′ .





Appendix E

Adaptive Belief Revision:
Two Supplementary
Postulates

Beside the 6 basic rationality postulates for belief revision (see Chapter 9), two
supplementary postulates are usually considered in the AGM-framework, i.e.
those of super- and subexpansion (see e.g. [74, Section 3]). Given the notational
conventions from Chapter 9, they can be formulated as follows:

G7 Superexpansion: Υ ⊕ {A ∧B} ⊆ CnCL((Υ ⊕ {A}) ∪ {B})
G8 Subexpansion: If ¬B 6∈ CnCL(Υ ⊕ {A}), then CnCL((Υ ⊕ {A}) ∪ {B}) ⊆

Υ ⊕ {A ∧B}

Note that if ⊕ satisfies the Closure postulate (G1), the antecedent of G8 is
equivalent to ¬B 6∈ Υ ⊕ {A}. As shown in [3], adding G7, or both G7 and G8
to the basic postulates, one obtains characterizations of specific classes of partial
meet revisions, which are (proper) subsets of the class of all partial meet revision.
Although G7 and G8 are perhaps not as intuitive as the 6 basic postulates –
see e.g. [117] for a critical discussion –, it nevertheless seems worthwhile to see
whether the logics ARx

i obey them.
In this appendix, I show each of the following:

(i) Where i ∈ {1, 2, 3, 4}, all revision operations defined from ⊕ARm
i

satisfy
Superexpansion

(ii) Where i ∈ {1, 2, 3, 4}, there are revision operations defined from ⊕ARr
i

which do not satisfy Superexpansion
(iii) Where i ∈ {1, 2, 3, 4}, there are revision operations defined from ⊕ARx

i

which do not satisfy satisfy Subexpansion

Proof of (i) Let i ∈ {1, 2, 3, 4}. Suppose that C ∈ Υ ⊕ARm
i
{A ∧ B}. Hence

by Definition 9.16,

C ∈ CnARm
i

(Υ� ∪ {A ∧B}) ∩Wc

309
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Note that, since LLLi is a conservative extension of CL, Υ� ∪ {A ∧ B} is
LLLi-equivalent to Υ� ∪ {A} ∪ {B}. Hence by Theorem 9.14:

C ∈ CnARm
i

(Υ� ∪ {A} ∪ {B}) ∩Wc

Since ARm
i satisfies the Deduction Theorem (see Theorem 2.11), and since

⊃ and ⊃̌ are equivalent in LLLi, we have:

(B ⊃ C) ∈ CnARm
i

(Υ� ∪ {A})

Note that B,C ∈ Wc and thus also B ⊃ C ∈ Wc. Hence, by Definition 9.16:

(B ⊃ C) ∈ Υ ⊕ARm
i
{A}

By modus ponens,

C ∈ CnCL((Υ ⊕ARm
i
{A}) ∪ {B})

Example of (ii) Let Υ = {p, q}, A = ¬p ∨ ¬q and B = ¬p. I will only discuss
the behavior of ARr

1 for this example – the reasoning for ARr
2, ARr

3 and ARr
4

and their respective revision operations proceeds wholly analogous.

Consider first Υ⊕ARr
1
{A∧B}. Let Γ = Υ�∪{A∧B} = {�p,�q,¬p∨¬q,¬p}.

Note that this set has only one minimal Dab1-consequence:

ρ(p)

As a result, U1(Γ) = {ρ(p)}. Hence we can finally derive q in an ARr
1-proof

from Γ, on the condition {ρ(q)}. So we have:

q ∈ Υ ⊕ARr
1
{A ∧B}

Consider now Υ ⊕ARr
1
{A}. Let Γ′ = Υ� ∪ {A} = {�p,�q,¬p ∨ ¬q}. The

only minimal Dab1-consequence of Γ′ is

ρ(p) ∨̌ ρ(q)

Hence U1(Γ′) = {ρ(p), ρ(q)}. This means that there are models M ∈
MARr

1
(Γ′) for which M  ¬p and M  ¬q. As a result, q 6∈ Υ⊕ARr

1
{A}, but also

p∨ q 6∈ Υ⊕ARr
1
{A}. More generally, Υ⊕ARr

1
{A} = CnCL({A}) = CnCL({¬p∨

¬q}). This implies that q 6∈ CnCL((Υ ⊕ARr
1
{A}) ∪ {B}) = CnCL({¬p}).

The difference with ARm
1 is that the latter allows us to uphold the implicit

belief p ∨ q. As a result, when we expand the revision set Υ ⊕ARm
1
{A} with

B = ¬p, we can regain q by applying disjunctive syllogism to p ∨ q and ¬p.
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Example of (iii) Let Υ = {p, q, r}, A = ¬p ∨ ¬q and B = ¬p ∨ ¬r. As in
the preceding paragraph, I will only explain what happens in the case of ARr

1

and ARm
1 – the reasoning for the other logics, resp. revision operations is again

analogous.
Consider first Υ ⊕ARr

1
{A}. This set is obtained by closing Γ = {�p,�q,�r,

¬p∨¬q} under the logic ARr
1. Note that Γ has one minimal Dab1-consequence,

i.e.

ρ(p) ∨̌ ρ(q)

As a result, p and q are lost in the revision operation defined by ARr
1. How-

ever, the belief r can be upheld (note that this belief is not relevant to the revision
of Υ by A). So we have:

r ∈ Υ ⊕ARr
1
{A}

Since ARm
1 is at least as strong as ARr

1 (see Theorem 9.8), also r ∈ Υ⊕ARm
1

{A}. Hence, where x ∈ {r,m}:

¬p ∈ CnCL((Υ ⊕ARx
1
{A}) ∪ {¬p ∨ ¬q}) = CnCL((Υ ⊕ARx

1
{A}) ∪ {B})

Consider now Υ⊕ARm
1
{A∧B}. Let Γ′ = Υ�∪{A∧B}. Note that the revision

set equals CnARm
1

(Υ� ∪ {A ∧ B}) ∩ Wc. In view of the additional information
B, we are now dealing with two minimal Dab-consequences:

ρ(p) ∨̌ ρ(q)

and

ρ(p) ∨̌ ρ(r)

As a result, Γ′ has two kinds of ARm
1 -models: those M ∈ MKt(Γ

′) for which
Ab1(M) = {ρ(p)}, and those M ∈ MKt(Γ

′) for which Ab1(M) = {ρ(q), ρ(r)}.
Models of the second kind verify �p and falsify ρ(p), whence they verify p. By
the soundness of ARm

1 , ¬p 6∈ CnARr
1
(Γ′). Hence by Definition 9.16:

¬p 6∈ Υ ⊕ARm
1
{A ∧B}

Since ARm
1 is at least as strong as ARr

1, also ¬p 6∈ Υ ⊕ARr
1
{A ∧B}.





Appendix F

Subclassical Relevance

This chapter is based on the paper “Subclassical Relevance: Broadening the Scope
of Parikh’s Concept” (under review, submitted August 2011). I am greatly in-
debted to Peter Verdée for his comments on an earlier draft of that paper, and to
David Makinson for his helpful suggestions concerning some specific formulations
and proofs.

F.1 Aim and Content of This Chapter

In Chapter 9, several adaptive logics for belief revision were presented, each of
which satisfy Parikh’s relevance postulate. In the current chapter, I will address
the question whether, and if so, how the relevance axiom may be applied to
inconsistent beliefs. The main results of this chapter are:

(i) as it is formulated in Chapter 9, Parikh’s relevance axiom trivializes incon-
sistent belief bases;

(ii) however, if we weaken our standard of deduction to a paraconsistent logic,
we obtain a new, fairly strong yet non-trivializing axiom of relevance; and

(iii) more generally, we may replace the standard of deduction by various sub-
classical logics, and extend many important results from the literature to
the resulting axioms of relevance.

Besides these basic results, the chapter briefly discusses the relation between
(paraconsistent) relevance and the notion of local change from [54, 75], and pro-
vides a generic way to prove Makinson’s least letter-set theorem for a large class
of logics.

Outline of this Chapter. Since relevance is a function of the classical logic
consequences of the set of initial beliefs, the relevance axiom trivializes (mutu-
ally) inconsistent beliefs. This problem will be explained in Section F.2.1. The
solution, as outlined in Section F.2.2, is to replace classical logic as the standard
of deduction by a paraconsistent logic.
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I will argue that this solves the problem of inconsistent relevance, using the
well-known paraconsistent logic CLuNs [28, 27, 25, 161] to illustrate this point
(Sections F.3.1 and F.3.2). In Section F.3.3, the resulting axiom of relevance
is compared to Hansson & Wasserman’s notion of Local Change [75] and to
Fuhrmann’s requirement that not every inconsistency is removed whenever one
performs a revision or contraction [54, 127].

The remainder of the chapter is more of a technical nature. In Section F.4,
nine other subclassical logics are defined, including intuitionistic logic. In the
subsequent section, it is shown that many results from [87], [150] and [93] can
easily be generalized to each of these systems and CLuNs. First and foremost,
where L is one of these logics, every set of formulas has a finest L-splitting.
Also, with the aid of a specific set MinL(Γ), one can generalize the least letter-
set theorem from [93] to all logics L under consideration (Section F.5.3). As a
result, it is possible to define an axiom of L-relevance for each of these logics L
(Section F.5.1). In Section F.5.4, the notion of a canonical form is generalized
to that of an L-canonical form, and it is proven that a specific partial meet
contraction of any L-canonical form of a set of formulas obeys the axiom of L-
relevance. Finally, it is shown that MinL(Γ) is an L-canonical form of Γ (Section
F.5.2).

Preliminaries. All results from this chapter are situated at the propositional
level. Since I will need a negation that is often weaker than that of classical logic,
I will use the language schema L∼ of the logic CLuN, which was defined on page
25. Let W l

∼ = S ∪ {∼A | A ∈ S}.

For all logics L defined in this chapter, it is stipulated that `L ⊥ ⊃ A for any
A ∈ W∼. Also, Γ `L A iff there are B1, . . . , Bn ∈ Γ such that `L (B1∧. . .∧Bn) ⊃
A.1

Let W 6⊥
∼ refer to the set of all formulas that do not contain ⊥. A logic L

will be called paraconsistent iff there are A,B ∈ W∼ such that A ∧ ∼A 0L B.
L is fully paraconsistent iff there are no A ∈ W 6⊥

∼ such that A ∧ ∼A `L B for
every B ∈ W∼. A monotonic logic L is maximally paraconsistent iff adding a
CL-axiom A for which 0L A to L yields full CL.

As in the previous chapter, a distinct set of metavariables Υ,Υ1, . . . ,Υ
′, . . .

is used to refer to sets of beliefs. In this notation, Υ may be closed under a
logic L or not. Where Υ is closed under a logic L, we say that it is an L-theory;
otherwise, Υ is called a base.

F.2 Relevance and Inconsistency

F.2.1 The Problem with Inconsistent Beliefs

As pointed out by several authors, inconsistent belief bases are a fact of life – see
e.g. [75, 54, 127, 46]. Especially when building large databases, it is very hard to
avoid that inconsistencies creep in. Likewise, it is commonly acknowledged that

1For all logics defined in this chapter, proof theories are either available or can easily be
obtained – to define them here would distract us from the main purpose of this chapter.
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even our most reliable scientific theories can turn out to be inconsistent. It is
therefore reasonable to try to adapt achievements in the field of belief revision
to a paraconsistent setting, i.e. a setting in which the presence of inconsistencies
is taken seriously, and does not lead to absurd outcomes. Examples of this
paraconsistent turn can be found in [54, 127, 46], where results from the AGM
approach are generalized to approaches based on paraconsistent, relevantist and
inconsistency-adaptive logics respectively.

In a similar vein, one may ask whether the idea of relevant belief change can
be reasonably applied to inconsistent belief bases or belief sets. However, if we
take the relevance axiom literally, the outcome seems fairly negative. Let me
explain why this applies to both Parikh’s original axiom P, and my more general
formulation Pg.

Consider an Υ such that Υ = CnCL(Υ) and Υ `CL ⊥. Hence also A ∈ Υ for
every A ∈ W l

∼, whence W l
∼ a`CL Υ. It follows that the finest splitting of Υ is

E = {{A} | A ∈ E}.

In this case, relevance to Υ⊕Ψ reduces to mere letter-sharing with the least
letter-set E∗(Ψ) of Ψ: A ∈ Υ is relevant to Υ⊕Ψ iff E(A) ∩ E∗(Ψ) 6= ∅. As a
result, a revision operation Υ⊕Ψ that obeys P would result in (a superset of)
the set {A ∈ W l

∼ | E(A) ∩ E∗(Ψ) = ∅}. Hence, such a revision operation would
result in something close to plain triviality.2

So how about the more general axiom Pg, applicable to both theories and
bases? Suppose again that Υ `CL ⊥ — this time, we need not assume that Υ is
a CL-theory. By the same reasoning as in the previous paragraph, W l

∼ a`CL Υ
and the finest splitting of Υ is E = {{A} | A ∈ E}. If Pg is obeyed, this means
that for every A ∈ W l

∼ such that E(A) ∩ E∗(Ψ) = ∅, A has to be in the CL-
consequence set of Υ⊕ Ψ. Hence it is required that Υ⊕ Ψ is inconsistent; but
more importantly, it suffices to take any inconsistent set Υ′, in order to obey the
axiom Pg. Arguably, this requirement is far too liberal to receive the status of a
rationality postulate.

This does not mean that the intuition behind Parikh’s relevance axiom is not
applicable to inconsistent beliefs. Consider the belief base Υ1 = {p∧q, r,∼r}, and
suppose we have to contract this set by q ∨ r. Even though one has to remove
both q and r, one can readily argue that p is not relevant to this particular
contraction. This has little to do with the fact that Υ1 is inconsistent.

How can we get more formal grip on this? Note that even a very weak
paraconsistent logic will usually validate Simplification (from A∧B, infer A and
B).3 Hence in the above example, every such logic will allow us to derive p from
p∧q, and hence consider p as separable from q in Υ1. More generally, a logic can
be (fully) paraconsistent, yet still allow us to analyse our set of initial beliefs to
some extent, and hence obey a certain degree of relevance. So it seems at least
plausible that we can obtain a strong, but also non-trivializing relevance axiom,
if we weaken our standard of deduction in such a way that inconsistencies do not
cause us to believe anything.

2By “plain triviality” I mean that every A ∈ W∼ is an element of Υ⊕ Ψ, resp. Υ 	Ψ. The
triviality that P yields in the face of an inconsistent belief base is slightly weaker: for every
A ∈ W∼, if E(A) ∩ E∗(Ψ) = ∅, then A ∈ Υ⊕ Ψ, resp. A ∈ Υ 	 Ψ.

3For some examples of logics that do not validate Simplification, see [25, Chapter 8].
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F.2.2 Outline of a Solution

Before we move over to a concrete solution for the problem of relevance in an
inconsistent setting, let me briefly spell out the basic ingredients we need, using
L as a metavariable for any subclassical logic. We first generalize the definition
of a splitting, obtaining the concept of an L-splitting:

Definition F.1 (L-splitting) Let E = {Λi}i∈I be a partition of E. We say that
E is a L-splitting of Γ iff there is a ∆ =

⋃

i∈I ∆i such that each E(∆i) ⊆ Λi and
∆ a`L Γ.

Also, to warrant that relevance is also independent of the syntax of the new
information (see also Chapter 9), we need to generalize the definition of the least
letter-set to L:

Definition F.2 A∗ is a least letter-set representation of A in L iff (i) A∗ a`L A
and (ii) for every B such that B a`L A, E(A∗) ⊆ E(B). Where A∗ is an
arbitrary least letter-set representation of A in L, let E∗

L(A) =df E(A∗).
Likewise, Ψ∗ is a least letter-set representation of Ψ in L iff (i) Ψ∗ a`L Ψ and

(ii) for every ∆ such that ∆ a`L Ψ, E(Ψ∗) ⊆ E(∆). Where Ψ∗ is an arbitrary
least letter-set representation of Ψ in L, let E∗

L(Ψ) =df E(Ψ∗).

Suppose that for a specific logic L : ℘(W∼) → ℘(W∼), we can prove that
(i) every Γ ⊆ W∼ has a finest L-splitting, and (ii) every ∆ ⊆ W∼ has a least
letter-set representation in L. Then we can use the notion of a finest splitting
to define L-relevance, just as in the case where classical logic was the underlying
logic:

Definition F.3 (L-relevance) Let E be the finest L-splitting of Υ. We say that
a formula B is L-irrelevant to the revision of Υ by Ψ iff for every cell Λi ∈ E:
Λi ∩ E(B) = ∅ or Λi ∩E∗

L(Ψ) = ∅.

Finally, this allows us to define an axiom of L-relevance:

PL If B ∈ CnL(Υ) is L-irrelevant to the revision (contraction) of Υ by Ψ, then
B is an element of CnL(Υ⊕ Ψ) (CnL(Υ 	 Ψ)).

By these steps, we obtain a notion of subclassical relevance. As is clear from
the above definitions, the crucial properties we need to arrive at this result are
(i) and (ii). Of course, to allow for a sensible notion of relevance in the context
of inconsistent beliefs, we have to use a paraconsistent logic L. As announced,
I will first focus on one particular such logic. In the subsequent sections, I will
move to a more general level, and show that the above strategy can be applied
to a number of other subclassical systems, including intuitionistic logic.

F.3 CLuNs-relevance and Local Consistency

F.3.1 The Paraconsistent Logic CLuNs

To explain the idea behind a subclassical relevance axiom, I will use the para-
consistent logic CLuNs, as axiomatized in [28]. This choice is motivated by two
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properties of the logic: (i) CLuNs is maximally paraconsistent, which means
that its analytic power is very close to that of CL; (ii) nevertheless, CLuNs is
also fully paraconsistent, whence CLuNs-relevance will not trivialize any belief
base Γ ⊆ W∼. Each of these advantages will be illustrated below.

The propositional fragment of CLuNs is one of the three systems devised by
Schütte in [132], the two others are CLaNs and CLoNs and will be presented
in Section F.4. All three of these systems are particularly strong in that they
allow us to drive the paraconsistent negation inwards; e.g. it is possible to derive
∼A,∼B from ∼(A ∨ B), and similariy to derive A ∧ ∼B from ∼(A ⊃ B). A
distinctive feature of CLuNs is that it is paraconsistent but not paracomplete
(unlike the other Schütte systems): it can model cases where both A and ∼A are
true, but it cannot model cases in which both are false.

CLuNs is axiomatized by the rule MP (to infer B from A,A ⊃ B), the
positive fragment of CL (see Appendix B), the rule of excluded middle:

EM A ∨ ∼A

and the following axioms that drive negation inwards:

A∼∼ ∼∼A ≡ A
A∼⊃ ∼(A ⊃ B) ≡ (A ∧ ∼B)
A∼∧ ∼(A ∧B) ≡ (∼A ∨ ∼B)
A∼∨ ∼(A ∨B) ≡ (∼A ∧ ∼B)
A∼≡ ∼(A ≡ B) ≡ ∼(A ⊃ B) ∨ ∼(B ⊃ A))

For reasons of space, I will not discuss the various semantic characterizations
of CLuNs – see e.g. [28, 27, 25, 161]. Note that since ⊃ and ⊥ behave classically
in CLuNs, it is possible to define a classical negation ¬ in this system by ¬A =def

(A ⊃ ⊥).
To see how CLuNs behaves, consider Υ2 = {∼(p ⊃ (q∨r)), (∼s∨(t∧∼∼u))∧

p,∼(∼q ∧ p), v,∼v ∧∼q}. Each of the following holds:

(1) Υ2 `CLuNs p ∧ ∼(q ∨ r) (by A∼⊃)
(2) Υ2 `CLuNs p,∼q,∼r (by (1) and A∧1, A∧2)
(3) Υ2 `CLuNs ∼s ∨ (t ∧ u) (by A∧1 and A∼∼)
(4) Υ2 `CLuNs ∼s ∨ t,∼s ∨ u (by (3) and A∧1, A∧2)
(5) Υ2 `CLuNs ∼∼q ∨ ∼p (by A∼∧)
(6) Υ2 `CLuNs q ∨ ∼p (by (5) and A∼∼)
(7) Υ2 `CLuNs (p ∧ ∼p) ∨ (q ∧ ∼q) (by (2), (6))

Υ2 is clearly inconsistent. Since CLuNs invalidates disjunctive syllogisme, it is
not possible to CLuNs-derive e.g. ∼p from ∼q and q∨∼p. Hence Υ2 0CLuNs ∼p.

F.3.2 CLuNs-relevance

I will now illustrate the three steps we need to obtain a subclassical relevance
axiom, using CLuNs as an example: the definition of a finest CLuNs-splitting,
the definition of CLuNs-relevance, and finally the axiom of CLuNs-relevance
itself. The set Υ2 from Section F.3.1 will be used to illustrate each of these
notions.
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Consider Υ′
2 = {p,∼q,∼r,∼s ∨ t,∼s ∨ u,∼p ∨ q, v,∼v}. In view of (1)-(7),

it follows immediately that Υ2 `CLuNs Υ′
2. It can easily be verified that also

Υ′
2 `CLuNs Υ2. As a result, Υ2 and Υ′

2 are CLuNs-equivalent.

Note that Υ′
2 can be partitioned into three subsets: ∆1 = {p,∼q,∼p ∨ q},

∆2 = {∼r}, ∆3 = {∼s ∨ t,∼s ∨ u} and ∆4 = {v,∼v}. Note also that the letter
sets of the sets ∆i are pairwise disjoint. Hence we can obtain a CLuNs-splitting
of Υ2, i.e. E(Υ2) = {{p, q}, {r}, {s, t, u}, {v}}.

In Section F.5.1, it is proven that every set Υ has a finest CLuNs-splitting,
and in Section F.5.2 I show that one can obtain this splitting by the construction
of a specific set MinCluNs(Υ) ⊂ CnCLuNs(Υ). In the current case, these results
warrant that E(Υ2) is in fact the finest CLuNs-splitting of Υ2.

Suppose that we contract Υ2 by (p∨∼s)∧ (r∨∼r). Before we can determine
which formulas are relevant to this contraction, we first have to find a least letter-
set representation of the new information. In the current case, this is simple: we
take p ∨ ∼s. In Section F.5.3, it is shown that every formula and every set of
formulas has a least-letter set representation with respect to CLuNs.

Note that {p, q} and {s, t, u} are the only sets Λ in E(Υ2) for which Λ∩E(p∨
∼s) 6= ∅. The axiom of CLuNs-relevance tells us the following: a formula A ∈
CnCLuNs(Υ2) is relevant to the contraction of Υ2 by p∨∼s iff E(A)∩{p, q} 6= ∅
or E(A) ∩ {s, t, u} 6= ∅. Hence the following CLuNs-consequences of Υ2 are not
relevant to the contraction of Υ2 by p: ∼r, v,∼v.

This immediately brings us to the axiom of relevance. In the current case,
this axiom stipulates that the beliefs ∼r, v,∼v should be upheld. Note that this
means that a contradiction has to be upheld, in order to obey PCLuNs – I will
return to this fact in Section F.3.3. However, the axiom does not require us to
believe just anything: e.g. if we remove p from Υ′

2, we obtain a non-trivial yet
fairly rich revision that does not CLuNs-entail p ∨ r.

So, on the one hand, we are able to separate e.g. ∼r from p, notwithstanding
the fact that in the initial formulation of Υ2, these formulas are tied to each
other. On the other hand, some beliefs are still considered relevant to the new
information, and removing some of these results in a reasonable contraction set.
In short, we obtain a non-trivial, yet also non-trivializing relevance axiom for
inconsistent belief bases and sets.

F.3.3 Local Change and CLuNs-relevance

Consider again the contraction operation of Υ2 by (p∨∼s)∧(r∨∼r), as described
in the preceding section. One could ask oneself: should the beliefs v and ∼v be
upheld? If so, the resulting contraction set will remain inconsistent. But is this a
sufficient reason to remove (either of) these beliefs from Υ2? Clearly, they have
little to do with the formula by which we are contracting, no matter whether we
consider Υ2 and the new information as they were initially formulated, or more
analyzed versions of them, such as Υ′

2 and p ∨ ∼s.
According to the standard AGM approach, inconsistencies cannot occur in

any contraction or revision set. This also applies to the more recent approaches
in terms of belief bases: in both cases, it is required that Υ 	 Ψ and Υ⊕ Ψ
are consistent. Hence any inconsistency is removed from Υ whenever this set is
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contracted or revised.
At least some authors seem to suggest that it should be possible to leave

certain inconsistencies in Υ undisturbed – to uphold the belief in these inconsis-
tencies, while focusing on other problematic parts of Υ. Such an approach may
perhaps best be understood as a kind of “local consolidation” or “local revision”,
as described by Hansson and Wasserman in their [75, p. 51]:

Local Consolidation. Inconsistencies are removed from some part of
the belief base. The rest of the agent’s beliefs may well be inconsis-
tent. For instance, I can make my beliefs about biological evolution
consistent, while retaining global inconsistency between biological and
religious beliefs.

Local Revision. A new belief is added to the belief base in such a way
that a certain part of the resulting base is made (kept) consistent. If
I see, for example, that it is a sunny day in Amsterdam, then this
contradicts my belief that it is always raining in Holland, and leads
to revision. This can be done without checking whether my beliefs
about Brazilian politics are consistent with the new belief.

Similar ideas can be found in [127, p. 10], where it is argued that a relevantist
approach to belief contraction allows us to model processes in which inconsis-
tencies are removed one by one, such that the intermediary belief states remain
inconsistent. The authors quote Fuhrmann, who writes the following in a section
of his [54] titled “Local Inconsistency”:

[...] Thus, in the face of inconsistent theories we should want two
things:

(a) localise inconsistencies – an inconsistent theory should not be
rendered totally corrupt just because some inconsistency has crept
into the theory; and

(b) locally restore consistency – we should be able to resolve one in-
consistency at a time by contracting an inconsistent theory such that
other inconsistencies, which we cannot yet resolve, may be carried
over into the contraction theory.

In order to obtain (a) and (b), Fuhrmann recommends that “theories be
generated from bases by means of a consequence operation induced by some
parconsistent logic.”[54, p. 187]

Recall that in our example, the axiom stipulated that the inconsistency v,∼v
is upheld, since it is not relevant to the formula by which we contract. More
generally, the axiom of CLuNs-relevance does not distinguish between formulas
that behave consistently and those that behave inconsistently; all that matters is
whether formulas are relevant to the revision or contraction. If an inconsistency
is not relevant to this operation, then it is upheld.

In Furhmanns terms, the axiom of CLuNs-relevance requires that we should
only locally restore consistency. Moreover, it does so in very clear and precise
logical terms, and in a way that is perhaps much stronger than what Fuhrmann
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and the later advocates of local consolidation had in mind – recall the remark in
Section 9.2 that relevance is invariant under different equivalent formulations of
Υ.

F.4 Some Subclassical Logics

In this section, I define 9 subclassical logics, and list some generic properties of
these systems. These properties make it possible to apply the strategy spelled out
in Section F.2.2 to these logics. As a result, they provide a sufficient condition
for the properties proven in Section F.5.

F.4.1 The Logics

The Schütte Logics. Let us start with the two systems CLoNs and CLaNs,
which were already mentioned in Section F.3.1. CLoNs is obtained by removing
EM from CLuNs. As a result, the standard negation displays both gluts and
gaps: A and ∼A can both be true, but they can also both be false. CLaNs is the
counterpart of CLuNs, in that its negation displays gaps but not gluts. CLaNs
and can be obtained by adding the rule of ex falso quodlibet to CLoNs:

EFQ A ⊃ (∼A ⊃ B)

Note that, since EM is not valid in CLaNs, this logic invalidates the rule
(A ⊃ B)∧(∼A ⊃ B) ` B, which makes it somewhat similar to intuitionistic logic.
However, Peirce’s axiom A⊃2 remains valid in CLaNs, unlike intuitionistic logic
(see below).

In view of their axiomatization, it follows immediately that CLuNs is stronger
than CLoNs, that CLaNs is stronger than CLoNs and that CLuNs and
CLaNs are incommensurable.

The Basic Paralogics. The three basic paralogics CLoN, CLuN and CLaN
are the weaker nephews of CLoNs, CLuNs and CLaNs respectively, in that
they invalidate the axioms that drive negation inwards. Hence e.g. CLaN is
obtained by closing the set of CLaNs-axioms, minus A∼∼,A∼ ⊃,A∼∧,A∼∨
and A∼ ≡ under MP.

Alternatively, we may say that CLuN,CLaN and CLoN boil down to the
full positive part of CL (see Appendix B), with gluts, gaps, and respectively
both gluts and gaps for the Negation. As before, we can easily infer that CLuN
and CLaN are incommensurable, but that both are stronger than CLoN. Also,
each of the basic logics is weaker than its respective Schütte-variant.

The advantage of the basic logics is that they maximally localize inconsisten-
cies, or in the case of CLaN, ∼-incompleteness. For example, if A is not itself
contradictory and A 6= B, then A ∧ ∼A 0CLuN B ∧ ∼B. This makes CLuN a
very good candidate to serve as the lower limit logic of inconsistency-adaptive
logics – see also Chapter 2.
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The Vasil’ev Logics. A third class of logics are the Vasil’ev systems CLoNv,
CLuNv and CLaNv. These are peculiarly strong, in that in them, the negation
∼ is assumed to behave classically in front of all complex formulas. Hence e.g.
∼(A ∧B) is equivalent to (A ∧B) ⊃ ⊥.

The Vasil’ev systems are obtained by adding the following axiom schema to
CLoN, CLuN and CLaN respectively:

A∼V Where A ∈ W∼ − S: ∼A ⊃ (A ⊃ ⊥)

Note that in view of this axiom schema, none of the Vasil’ev systems are fully
paraconsistent. For example, (p ∨ q) ∧ ∼(p ∨ q) `CLuNv A for any A ∈ W∼.
As a result, these systems are only useful in a context where inconsistency or
∼-incompleteness is restricted to the level of propositional letters, as e.g. in Γ =
{p, q ∧ ∼p, r ∨ s,∼r,∼s}.

Intuitionistic Logic. The last system we will consider is of a rather different
nature: intuitionistic logic. I will assume familiarity with this system and its
properties – I merely present an axiomatization for the sake of self-containedness.
The system I can be obtained as follows: (i) take the positive fragment of CL;
(ii) remove axiom A⊃2, and (iii) add the following two axioms that characterize
∼ in I:

A∼I1 (A ⊃ B) ⊃ ((A ⊃ ∼B) ⊃ ∼A)
A∼I2 ∼A ⊃ (A ⊃ B)

F.4.2 The Properties

Let in the remainder L be a metavariable for all logics axiomatized in the pre-
ceding sections plus CL. In view of my definition of Γ `L A, the following is
immediate:

Theorem F.1 Γ `L A iff there are B1, . . . , Bn ∈ Γ such that {B1, . . . , Bn} `L

A. (Compactness)

The next property on the list is the Deduction Theorem. For I, a proof can
be found in [49, Chapter 4]. For the 9 paralogics from Section F.4.1, it follows
immediately from the fact that ⊃ behaves classically in each of these systems.
For the current purposes, it is convenient to rewrite this property as follows:

Theorem F.2 A ∧B `L C iff A `L B ⊃ C (Deduction Theorem)

Note that this theorem follows from the regular Deduction Theorem for L,
whenever ∧ behaves classically in L, i.e. whenever A ∧B a`L {A,B}.

In view of the Deduction Theorem and the definition of Γ `L A, each of the
logics L is reflexive, transitive and monotonic:

Theorem F.3 Each of the following holds:

1. Γ ⊆ CnL(Γ) (Reflexivity)
2. if Γ′ ⊆ CnL(Γ), then CnL(Γ′) ⊆ CnL(Γ) (Transitivity)



322 APPENDIX F. SUBCLASSICAL RELEVANCE

3. CnL(Γ) ⊆ CnL(Γ ∪ Γ′) (Monotonicity)

In view of the above properties, it can easily be shown that Γ ⊆ CnL(Γ′)
and Γ′ ⊆ CnL(Γ) iff Γ a`L Γ′. The last property I will need is (Standard)
Interpolation:

Theorem F.4 If Γ `L A, then there is a B such that Γ `L B, B `L A, and
E(B) ⊆ E(Γ) ∩ E(A). (Standard Interpolation)

For all considered logics except I and CL, Standard Interpolation was proven
in [28]. For I, I refer to [49, Chapter 4].

F.5 Generic Results for L-relevance

In this section, I establish a number of theoretic results concerning L-splittings
and L-relevance – recall that L is used as a metavariable for any of the logics
axiomatized in the preceding sections, and CL. The proofs only rely on the
properties mentioned in Section F.4.2, whence the current results may easily
be generalized to a yet broader class of logics. Eventually, this yields a partial
answer to the question posed in the concluding section of [87]:

[...] how far can the results [of our paper] be established for sub-
classical, (e.g. intuitionistic) consequence relations or supraclassical
ones (e.g., preferential consequence relations or the relation of logical
friendliness of Makinson [8])?

F.5.1 Finest L-splitting

A crucial theorem for Kourousias and Makinson’s finest splitting result in [87]
is that of Parallel Interpolation for CL, which is a strengthening of Standard
Interpolation. The proof for Theorem F.5 is readily obtained through a variation
on the proof for Theorem 1.1 in [87].

Theorem F.5 Let ∆ =
⋃

i∈I{∆i} where the letter sets E(∆i) are pairwise dis-
joint, and suppose ∆ `L A. Then there are formulas Bi such that (1) each
E(Bi) ⊆ E(∆i) ∩ E(A), (2) each ∆i `L Bi, and (3)

⋃

i∈I{Bi} `L A. (Parallel
Interpolation)

Proof. Suppose the antecedent holds. By the compactness of L, there is a finite
subfamily of finite subsets of the ∆i, the conjunction of whose elements implies A.
Let these subsets be ∆′

j1
, . . . ,∆′

jn
, and let for every k ≤ n, Bk be the conjunction

of the members of ∆′
jk

. It follows that B1 ∧ . . . ∧ Bn `L A. By the Deduction
Theorem, B1 `L (B2 ∧ . . . ∧Bn) ⊃ A, which implies, by Standard Interpolation,
that there is a formula C1 such that (1) B1 `L C1 and C1 `L (B2∧ . . .∧Bn) ⊃ A
and (2) E(C1) ⊆ E(B1) ∩ E((B2 ∧ . . . ∧ Bn) ⊃ A). Since the sets E(Bi) are
pairwise disjoint, (2) implies that E(C1) ⊆ E(B1) ∩ E(A).

By (1) and the Deduction Theorem, C1 ∧ B2 ∧ . . . ∧ Bn `L A and the
sets E(C1), E(B2), . . . , E(Bn) are pairwise disjoint. Hence we may repeat the
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procedure for B2, obtaining a suitable interpolant C2, and so on. After n ap-
plications of Standard Interpolation, we have obtained C1, . . . , Cn, where each
E(Ci) ⊆ E(Bi) ∩ E(A) ⊆ E(∆ji ) ∩ E(A) and C1 ∧ . . . ∧ Cn `L A.

By a similar variation on the proofs for Lemma 2.3 and Theorem 2.4 of [87],
we may derive the following:

Theorem F.6 Every Γ ⊆ W∼ has a finest L-splitting.

I will not provide the proof for this Theorem here. Just as the proof for
Theorem F.5, it is almost identical to the proof in [87]. It suffices to merely
replace the ` in Lemma 2.3 and Theorem 2.4 from that paper by `L. More
importantly, in Section F.5.2 from the current chapter, it is explained how an
alternative proof for Theorem F.6 can be obtained, relying on the notion of L-
minimal formulas.

Once the notion of a finest splitting is generalized to a class of logics L, a
question that immediately springs to mind is when and how the finest L-splitting
relates to the finest L′-splitting, for two logics L and L′. In fact, the stronger a
logic, the finer the associated finest splitting of Γ:

Theorem F.7 If L is at least as strong as L′, then the finest L′-splitting of Γ
is a L-splitting of Γ.

Proof. Suppose the antecedent holds and E = {Ei}i∈I is the finest L′-splitting of
Γ. Hence there is a ∆ =

⋃

i∈I ∆i such that ∆ a`L′ Γ and each E(∆i) ⊆ Ei. It
follows from the supposition that ∆ a`L Γ. But then E is a L-splitting of Γ.

Note that this proof works for any logic L and L′, on the assumption that
every Γ has a finest L′-splitting. Trivial as its proof is, this is a noteworthy result.
Recall that in order to avoid that relevance results in triviality, it was necessary
to weaken the standard of deduction, hence to define a notion of subclassical
finest splittings and an associated relevance criterion. Theorem F.7 indicates
that the stronger the subclassical logic of our choice, the better we may approx-
imate the finest CL-splitting without ending up with triviality in the case of an
inconsistency.

By Theorem F.7, we may infer that e.g. the finest CLuNs-splitting of Υ
is always at least as fine as the finest CLuN-splitting of Υ, and likewise that
the finest CLaNv-splitting of Υ is always at least as fine as the finest CLaN-
splitting. Also, we may infer that each of the subclassical splittings is further
refined by the finest CL-splitting of Υ.

To illustrate this point, we may consider the following splittings of Υ2 from
page 317:

E1(Υ2) = {{p, q, r}, {s, t, u}, {v}}
E2(Υ2) = {{p, q}, {r}, {s, t, u}, {v}}
E3(Υ2) = {{p}, {q}, {r}, {s}, {t}, {u}, {v}}

E1(Υ2) is the finest CLuN-splitting of Υ2, E2(Υ2) the finest CLuNs-splitting
of Υ2 and E3(Υ2) the finest CL-splitting of Υ2.
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From the preceding observations, we can also infer that wheneverB ∈ CnCL(Γ)
is L-irrelevant to the revision (contraction) of Υ by A, then it is also CL-irrelevant
to the revision (contraction) of Υ by A. In other words, there are just as many
means to show that a formula is CL-irrelevant to a particular revision or con-
traction operation, as there are subclassical logics for which Theorem F.6 holds.

F.5.2 The Set of L-minimal Formulas

In the current section, I define a unique set MinL(Γ) for every Γ.4 This set is
used in subsequent sections, where it is shown that (i) MinL(Γ) is a least letter-
set representation of Γ in L, and (ii) it is also an L-canonical form of Γ – see
below.

Definition F.4 A is a minimal L-consequence of Γ, A ∈ MinL(Γ) iff A ∈
CnL(Γ) and there is no Γ′ ⊆ CnL(Γ) such that (i) Γ′ `L A and for every B ∈ Γ′,
E(B) ⊂ E(A).

Intuitively, the set MinL(Γ) corresponds to the maximal level of analysis (in
terms of the separation of letters) the logic L allows us to perform.

Lemma F.1 MinL(Γ) a`L Γ

Proof. In view of Definition F.4, it suffices to prove the left-right direction.
Suppose A ∈ Γ, whence by the reflexivity of L, A ∈ CnL(Γ). I prove by an
induction that A ∈ CnL(MinL(Γ)). If A ∈ MinL(Γ), then by the reflexivity
of L, A ∈ CnL(MinL(Γ)). If A 6∈ MinL(Γ), then since A ∈ CnL(Γ) and by
Definition F.4, there is a Γ′ ⊆ CnL(Γ), such that (i) Γ′ `L A and (ii) for every
B ∈ Γ′, E(B) ⊂ E(A). For every B ∈ Γ′ such that B 6∈ MinL(Γ), we repeat
the same reasoning: since B ∈ CnL(Γ), there is a Γ′′ ⊆ CnL(Γ) such that (i)
for every C ∈ Γ′′, E(C) ⊂ E(B) ⊂ E(A) and (ii) Γ′′ `L B, whence by the
transitivity and monotonicity of L, (Γ′ − {B}) ∪ Γ′′ `L A. Since A contains
finitely many letters, we will at a finite point arrive at a set ∆ ⊆ MinL(Γ) such
that ∆ `L A. By the monotonicity of L, MinL(Γ) `L A.

F.5.3 The Least Letter-set Theorem

As explained in Chapter 9, the least letter-set theorem tells us that for every
(possibly infinite) Γ, there is a unique least set of letters ∆ ⊆ S, such that Γ can
be CL-equivalently expressed using only letters from ∆.5 Makinson makes the
following remark on this property ([94, p. 378]):

Intuitively, the least letter-set theorem is just what anyone would
expect, but it needs proof. Getting minimal letter sets is trivial since
every formula contains only finitely many letters. But getting a least
one (which, by the antisymmetry of set-inclusion, will be unique)
requires a bit more work.

4The precise formulation in the definition of MinL(Γ) greatly benefited from a suggestion
made by David Makinson (personal correspondence).

5For the finite case, the proof of the theorem is almost trivial whenever Standard Interpo-
lation is available, as explained in the appendix of [93].
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I refer to the same paper for some more background on this theorem, and to
[93, Appendix] for Makinson’s (semantic) proof. Both papers are restricted to
the case where L = CL. I will prove here that this theorem holds whenever L is
reflexive, transitive, monotonic and obeys Standard Interpolation.6 However, we
must be careful: the exact formulation of the theorem in [93] is slightly different
from the one in [94], because it is applied in a different context.7 My formulation
is a variation on the one in [94]. The proof I will present is very short, thanks to
the introduction of the concept of L-minimality in the preceding section.

Theorem F.8 For every Γ ⊆ W∼, there is a ∆ ⊆ E such that (a) for every Γ′

that is L-equivalent to Γ: ∆ ⊆ E(Γ′) and (b) for a Γ′′ that is L-equivalent to Γ,
∆ = E(Γ′′). (Least letter-set Theorem)

Proof. Let ∆ = E(MinL(Γ)). (b) follows immediately by the construction and
Lemma F.1; hence it suffices to prove (a). Assume that (1) Γ′ a`L Γ, but
∆ 6⊆ E(Γ′). Hence there is a A ∈ MinL(Γ): E(A) 6⊆ E(Γ′), whence also (2)
E(A) ∩ E(Γ′) ⊂ E(A). By (1) and Definition F.4, Γ′ `L A. By Interpolation,
there is a B such that (3) Γ′ `L B, (4) B `L A and (5) E(B) ⊆ E(Γ′) ∩ E(A).
By (1) and (3), it follows that B ∈ CnL(Γ), and by (2) and (5), it follows that
E(B) ⊂ E(A). But then by (3) and in view of Definition F.4, A 6∈ MinL(Γ) —
a contradiction.

Theorem F.8 states that every set Γ ⊆ W∼ has a least letter-set representation
Γ∗ in L. To see that also every A ∈ W∼ has a least letter-set representation A∗

in L, it suffices to replace Γ by {A}, and to let A∗ =
∧

Γ∗. So for instance
p ∧ (q ∨ ∼r) is a least letter-set representation of (p ⊃ (q ∨ ∼r) ∧ p ∧ (r ∨ ∼r) in
CLuN.

F.5.4 L-canonical Forms

Recall the definition of a canonical form of the belief base Υ from Chapter 9:
where E = {Λi}i∈I is the finest CL-splitting of Υ, Υ′ =

⋃

i∈I Υi is a canonical
form of Υ iff (i) it is CL-equivalent to Υ, and (ii) each E(Υi) ⊆ Ei. As I explained
there, there may in fact be several canonical forms Υ′ for one and the same Υ,
whence it is better to speak of the set of canonical forms of Υ instead of “the”
canonical form of Υ. If we generalize this notion in order to include subclassical
logics, we obtain the following definition:

Definition F.5 (Set of L-canonical Forms) Where E = {Λi}i∈I is the finest
L-splitting of Υ: CL(Υ) = {∆ =

⋃

i∈I{∆i} | ∆ a`L Υ and for every i ∈ I :
E(∆i) ⊆ Λi}.

6As Makinson pointed out to me (personal correspondence), a weaker kind of Interpolation
suffices to obtain the least letter-set theorem along the lines of my proof: if Γ `L A, then
there is a Γ′ such that (i) Γ `L Γ′, (ii) Γ′ `L A and (iii) E(Γ′) ⊆ E(Γ) ∩ E(A) (Non-compact
Interpolation).

7In [93], a specific set Γ∗ is defined for every Γ, and it is shown that this set is a least
letter-set representation of Γ. Γ∗ is defined in semantic terms, and the proof proceeds likewise.
On the other hand, the formulation of the least letter-set theorem in [94] is a “bare statement of
existence” (Makinson, personal correspondence), without reference to any specific least letter-
set representation.



326 APPENDIX F. SUBCLASSICAL RELEVANCE

Kourousias and Makinson show that if Υ is consistent, then every partial
meet contraction of a canonical form of Υ by A obeys the axiom of relevance. To
generalize the result of Kourousias and Makinson to the subclassical logics from
Section F.4, we first have to define subclassical contraction and revision opera-
tions on belief bases.8 For the sake of simplicity, I only consider contractions and
revisions in view of a single formula in the current section.9 Given this assump-
tion, the operations of L-partial meet contraction and revision are obtained by
a generalization of partial meet contraction and revision for bases, as defined in
[73]. It suffices to replace all references to CL in the definition of partial meet
contraction and revision by L:

Definition F.6 (Set of L-remainders) Υ fL A is the set of all ∆ ⊆ Υ such
that:

(i) ∆ 0L A, and
(ii) for no ∆′ ⊆ Υ: ∆ ⊂ ∆′ and ∆′

0L A.

Let γ be a choice function, such that ∅ 6= γ(Υ fL A) ⊆ (Υ fL A) whenever
Υ fL A is non-empty, and γ(Υ fL A) = Υ otherwise.

Definition F.7 (L-partial meet contraction) Υ 	γL A =
⋂

γ(Υ fL A).

Definition F.8 (L-partial meet revision) Υ ⊕γL A = Υ 	L ∼A ∪ {A}.

Note that when A a`L A′, it follows that Υ fL A = Υ fL A′, whence also
Υ 	γL A = Υ 	γL A

′ and Υ ⊕γL A = Υ ⊕γL A
′. Below, I show that any operation

of L-partial meet contraction and revision of an L-canonical form by a formula
A warrants that L-relevance is obeyed. I use 	L and ⊕L as metavariables for
operations of L-partial meet contraction, resp. revision.

We first need to prove two lemmas:

Lemma F.2 Where Υ is not L-trivial and Υ′ ∈ CL(Υ): if B ∈ Υ′ is not L-
relevant to the contraction of Υ by A, then B ∈ Υ′ 	L A.

Proof. Suppose B ∈ Υ′ but B 6∈ Υ′ 	L A, whereas B is not L-relevant to the
contraction of Υ by A — I derive a contradiction. Let EL(Υ) = {Ei}i∈I be the
finest L-splitting of Υ, such that Υ′ =

⋃

i∈I Υi and for each i ∈ I, E(Υi) ⊆ Ei.
Let A∗ be a least letter-set representation ofA in L. Let {Ej}j∈J be the subfamily
of cells in EL(Υ) that share some elementary letter with E(A∗) = E∗

L(A). By
the irrelevance,

⋃

j∈J{Ej} ∩E(B) = ∅.
Note that Υ′ 	L A

∗ = Υ′ 	L A by the L-equivalence of A and A∗. It follows
that A 6∈ Υ′ 	L A

∗. Hence by Definition F.7, there is a ∆ ∈ Υ′ fL A∗ such

8Where Υ is a theory, we may obtain the contracted resp. revised theory by closing the
result of the contraction (revision) operation defined here under L.

9According to Fuhrmann and Hansson, we can interpret the contraction of Υ by Ψ (also
called “multiple contraction”) in several ways: either we want to obtain a Υ′ ⊆ Υ such that it
does not entail any member of Ψ, or we want to obtain a Υ′ ⊆ Υ such that it does not entail
all members of Ψ (Υ′ 0L Υ). Which of the two readings is most suitable, depends on the goal
of the contraction: if it is a preparatory step before a revision, we need the first interpretation;
if the contraction is a goal in itself, then the second interpretation is more apt.
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that B 6∈ ∆. By Definition F.6, ∆ ∪ {B} `L A∗. Put Υa =
⋃

j∈J Υj and
Υb =

⋃

i∈I−J Υi. Then since ∆ ⊆ Υ′ = Υa ∪ Υb, we have (∆ ∩ Υa) ∪ (∆ ∩
Υb) ∪ {B} = ∆ ∩ (Υa ∪ Υb) ∪ {B} = ∆ ∪ {B} `L A∗. Hence by compactness,
{C1, . . . , Cn} ∪ {D1, . . . , Dm} ∪ {B} `L A, where C1, . . . , Cn are elements of Υa

and D1, . . . , Dm are elements of Υb.
By the Deduction Theorem: {D1, . . . , Dm} ∪ {B} `L (C1 ∧ . . . ∧ Cn) ⊃ A∗.

In view of the construction, the formulas on the left side and those on the right
side have no letters in common. But this means that either {D1, . . . , Dm}∪ {B}
is L-trivial, or (C1 ∧ . . . ∧ Cn) ⊃ A∗ is an L-theorem. In the former case, since
D1, . . . , Dm, B ∈ Υ′, it follows that Υ′ is L-trivial whence also Υ is L-trivial
— a contradiction. In the latter case, since C1, . . . , Cn ∈ ∆, by the Deduction
Theorem, ∆ `L A

∗, which contradicts the fact that ∆ ∈ Υ′ fL A∗.

The following lemma is easily derivable from the Parallel Interpolation theo-
rem. It provides the link between the weak relevance from the preceding lemma,
and the strong relevance as defined in Section 9.2.

Lemma F.3 If ∆ =
⋃

i∈I ∆i `L A, ∆ is not L-trivial, and the letter sets E(∆i)
are pairwise disjoint, then

⋃

i∈I{∆i | E(∆i) ∩E(A) 6= ∅} `L A.

Proof. Suppose the antecedent holds. By Parallel Interpolation, there are Bi
(with i ∈ I) such that (1) each ∆i `L Bi, (2) each E(Bi) ⊂ E(∆i) ∩ E(A)
and (3) {Bi}i∈I `L A. Suppose that for an i ∈ I, E(∆i) ∩ E(A) = ∅. By (3),
E(Bi) = ∅, whence (4) Bi a`L ⊥ or (5) Bi a`L >. In view of the supposition and
(1), (4) is false. In view of (5), it follows that {B1, . . . , Bi−1, Bi+1, . . . , Bn} `L A.

Hence for every i such that E(∆i) ∩ E(A) = ∅, we may remove the formula
Bi from the set {Bi}i∈I , without losing A as a L-consequence. Hence {Bi |
E(Bi) ∩ E(A) 6= ∅} `L A. By (1), (3) and the transitivity of L,

⋃

i∈I{∆i |
E(∆i) ∩ E(A) 6= ∅} `L A.

Theorem F.9 Where Υ is not L-trivial and Υ′ ∈ CL(Υ): if B ∈ CnL(Υ) and
B is not L-relevant to the contraction of Υ by A, then B ∈ CnL(Υ′ 	L A).

Proof. Suppose the antecedent holds. Note that since Υ′ a`L Υ, Υ′ `L B.
Let EL(Υ) = {Ei}i∈I be the finest L-splitting of Υ, such that Υ′ =

⋃

i∈I Υi

and for each i ∈ I, E(Υi) ⊆ Ei. By Lemma F.3, it follows that (†)
⋃

i∈I{Υi |
E(Υi) ∩ E(B) 6= ∅} `L B.

Let A∗ be a least letter-set representation of A in L. Note that for every
i ∈ I such that Ei ∩ E(B) 6= ∅, Ei ∩ E(A∗) = ∅, in view of the supposition
and Definition 9.3. Hence for every C ∈ Υi such that E(Υi) ∩ E(B) = ∅, C
is not relevant to the contraction of Υ by A∗. By Lemma F.2, C ∈ Υ′ 	L A

∗.
Hence, {Υi | E(Υi)∩E(B) 6= ∅} ⊆ Υ′ 	L A

∗. By (†) and the monotonicity of L,
B ∈ CnL(Υ′ 	L A

∗). Since A and A∗ are L-equivalent, B ∈ CnL(Υ′ 	L A).

Theorem F.10 Where Υ is not L-trivial and Υ′ ∈ CL(Υ): if B ∈ CnL(Υ) and
B is not L-relevant to the revision of Υ by A, then B ∈ CnL(Υ′ ⊕L A

∗).

Proof. Immediate in view of (i) the fact that relevance to a revision by A is
equivalent to relevance to a contraction by ∼A, (ii) Definition F.8, (iii) Theorem
F.9, and (iv) the monotonicity of L.
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F.5.5 MinL(Γ) is an L-canonical form of Γ

In this section, I will prove the following:

Theorem F.11 MinL(Γ) is an L-canonical form of Γ

As the reader will note, the proof of Theorem F.11 is obtained by a rather
straightforward generalization of the proof for Theorem 9.3 from Chapter 9. In
view of Theorem F.9 and Theorem F.10, we may use MinL(Γ) in order to obtain
a relevant belief contraction or revision. Moreover, the result below forms the
basis of a proof for Theorem F.6: it is shown how we may obtain the finest
splitting of Υ from the set MinL(Γ).

In view of Lemma F.1, it suffices to prove that there is a splitting E = {Ei}i∈I
of E , and a partition {∆i}i∈I of MinL(Γ) such that (1) each E(∆i) ⊆ Ei and
(2) E is the finest splitting of Γ. In the remainder of this section, I will define an
E for which it is quite easy to show that it fulfills requirement (1); by a slightly
longer proof, I will arrive at (2), as stated in Theorem F.12.

As in Chapter 9, we may define a relation ∼∆ over the members of ∆, for
every A,B ∈ W∼ and ∆ ⊆ W∼:

Definition F.9 Let A is path-relevant to B modulo ∆ (A ∼∆ B) iff there are
C1, . . . , Cn ∈ ∆ such that E(A) ∩ E(C1) 6= ∅, E(C1) ∩ E(C2) 6= ∅, . . ., and
E(Cn) ∩ E(B) 6= ∅.

It will be convenient to rely on the following property specific to ∼∆ defined
only over the members of ∆:

Fact F.1 ∼∆ is transitive, reflexive and symmetric with respect to all A,B,C ∈
∆, whence ∼∆ is an equivalence relation on the members of ∆.

Definition F.10 ML(Γ) is the quotient set of MinL(Γ) by ∼MinL(Γ).
10 Where

ML(Γ) = {∆i}i∈I , EL(Γ) = {E(∆i)}i∈I ∪ {{A} | A ∈ E −E(MinL(Γ))}.

Since ∼MinL(Γ) is an equivalence relation on MinL(Γ), ML(Γ) is a partition
of MinL(Γ). Also, note that for no ∆i ∈ ML(Γ) : ∆i = ∅, whence also for no
Ei ∈ EL(Γ): Ei = ∅. It remains prove that EL(Γ) is the finest L-splitting of Γ.

I first prove that EL(Γ) is a partition of E . This follows immediately from
(1) the fact that every Ei is non-empty, (2) the fact that

⋃

EL(Γ) = E , and the
following lemma:

Lemma F.4 For every Ei, Ej ∈ EL(Γ): Ei 6= Ej iff Ei ∩Ej = ∅.

Proof. Let Ei, Ej ∈ EL(Γ). The right-left direction is obvious since no Ei ∈
EL(Γ) is empty. For the left-right direction, suppose that for Ei, Ej ∈ EL(Γ),
Ei ∩ Ej 6= ∅. I only consider the case where Ei = E(∆i) and Ej = E(∆j) for
∆i,∆j ∈ ML(Γ) – in the other case, it follows immediately that Ei ∩ Ej = ∅.
Suppose that E(∆i) ∩ E(∆j) 6= ∅. This implies that there are A ∈ ∆i, B ∈ ∆j :
E(A) ∩ E(B) 6= ∅, whence A ∼MinL(Γ) B, hence A and B are in the same
equivalence class. As a result, ∆i = ∆j , whence Ei = Ej .

10This is the set of all equivalence sets of MinL(Γ), given the equivalence relation ∼MinL(Γ)

on MinL(Γ).
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Theorem F.12 EL(Γ) is the finest L-splitting of Γ.

Proof. Suppose there is a splitting E = {Ej}j∈J of Γ, such that E is finer than
EL(Γ). Hence for some Ek ∈ EL(Γ), there is a j ∈ J : ∅ ⊂ Ej ⊂ Ek. This means
that Ek cannot be a singleton, whence Ek = E(∆k) for some ∆k ∈ ML(Γ). So
we have:

(†) For a ∆k ∈ ML(Γ), there is a j ∈ J : ∅ ⊂ Ej ⊂ E(∆k)

I will first prove that (‡) there is a D ∈ ∆k, for which E(D) ∩ Ej 6= ∅,
E(D) 6⊆ Ej .

Suppose that for every A ∈ ∆k, E(A) ⊆ Ej . In that case, E(∆k) ⊆ Ej , which
contradicts (†). Hence there is a A ∈ ∆k : E(A) 6⊆ Ej . Suppose that for every
B ∈ ∆k, E(B) ∩ Ej = ∅. In that case, E(∆k) ∩ Ej = ∅, which also contradicts
(†). Hence there is a B ∈ ∆k : E(B) ∩ Ej 6= ∅.

Since A,B ∈ ∆k, A ∼MinL(Γ) B. Hence there are C1, . . . , Cn ∈ ∆k such that
E(A)∩E(C1) 6= ∅, E(C1)∩E(C2) 6= ∅, . . . , E(Cn)∩E(B) 6= ∅. If E(A)∩Ej 6= ∅,
take D = A. If E(A) ∩ Ej = ∅, we can infer that E(C1) 6⊆ Ej from the fact
that E(A)∩E(C1) 6= ∅ and that E(C1) is non-empty. We now start up recursive
procedure, relying on the same reasoning:

If E(Cl) ∩ Ej 6= ∅, then let D = Cl
If E(Cl) ∩ Ej = ∅, then E(Cl+1) 6⊆ Ej

This means that sooner or later, and to the latest at B, we arrive at a D ∈ ∆k,
for which it holds that E(D) ∩Ej 6= ∅, E(D) 6⊆ Ej .

I will now derive a contradiction from (‡). Note that since E is a splitting
of Γ, E

′ = {Ej ,
⋃

E − Ej} is also a splitting of Γ. Hence there are Θj ,Θ such
that Θj ∪ Θ a`L Γ, E(Θj) ⊆ Ej and E(Θ) ⊆

⋃

E − Ej . It follows that (‡)
E(Θj) ∩ E(Θ) = ∅. Moreover, since Γ `L D, also Θj ∪ Θ `L D, whence by
Parallel Interpolation, there are two formulae Fj and F such that (1) E(Fj) ⊆
E(Θj) ∩ E(D), (2) E(F ) ⊆ (Θ) ∩ E(B) and (3) {Fj , F} `L D.

Note that since Θ ∪ Θj a`L Γ, also Γ `L Fj and Γ `L F . By (‡), (1)
and (2), E(Fi) ⊂ E(D) and E(F ) ⊂ E(D). Hence by (3), D 6∈ MinL(Γ) — a
contradiction.

F.6 Further Research

Note that we can easily obtain prioritized axioms of L-relevance, along the lines
spelled out in Section 10.4 of Chapter 10. It suffices to relativize the notions of
finest splitting, relevance and least letter-set representation to the subclassical
logic under consideration, in exactly the same way as it happened for “flat”
relevance in the current chapter. This way, we can obtain sensible relevance
axioms for prioritized belief bases Υ = 〈Υ1,Υ2, . . .〉, where the sets Υi can be
inconsistent in themselves.

In view of the general set-up of the current chapter and Chapters 9-10, the
following topics for further research require little explanation:
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• Is it possible to further generalize the results from this chapter to other
subclassical logics such as e.g. Priest’s paraconsistent logic LP, Brazilian
anti-intuitionistic logic or the very powerful system CL− from [159]?11

• Is it possible to develop adaptive logics for L-relevant belief revision or
contraction, in a similar vein as the adaptive logics for CL-relevant belief
revision from Chapter 9, but where L is a paraconsistent or paracomplete
logic?

Another interesting topic would be the possibility of a non-monotonic (correc-
tive) finest splitting. For instance, quite a few adaptive logics have been developed
that allow one to interpret a set of beliefs “as consistently as possible”, without
trivializing inconsistent beliefs. The logic CLuNm, introduced in Chapter 2 is
only one of them.12 Some of these systems are equivalent to CL whenever the
belief base is consistent, and most of them are usually much stronger than the
monotonic systems from the current chapter. It would hence be worthwhile to
see whether such non-monotonic logics also yield a finest splitting for every belief
base – in that case, the associated relevance axiom would be very strong, but it
would still not trivialize inconsistent belief bases.

11To the best of my knowledge, no Interpolation results are available for these systems, which
makes them tougher candidates to prove the finest splitting theorem for.

12I refer to [25, Chapters 7] for an introduction to and overview of other inconsistency-
adaptive logics.






