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Abstract

While conflict-tolerant logics (CTDLs) usually allow for obligation-
obligation conflicts, they fall short of tolerating obligation-permission con-
flicts (OP-conflicts) of the type OA ∧ P¬A. Moreover, for the sake of
conflict-tolerance these logics usually do not validate the very intuitive
principle (D), OA ⊃ PA.

We demonstrate in this paper that by relaxing the interdefinability
between obligations and permission PA =df ¬O¬A that is characteristic
for most deontic logics, the logics get more conflict-tolerant since they
allow for OP-conflicts. Moreover, this way they can be equipped with (D)
without the need to sacrifice conflict-tolerance. In this paper we offer a
generic procedure that transforms a given CTDL into a logic that tolerates
OP-conflicts and validates (D).
Key Words: deontic logic, interdefinability, conflict-tolerance, deontic
conflicts, deontic dilemmas

1 Introduction

Deontic logics intend to formalize reasoning with and about norms. In order to
do so they employ logical operators such as O where OA expresses the obliga-
tion to bring about A, or P where PA expresses the permission to bring about
A. Similarly conditional deontic logics employ dyadic operators O(A | B) ex-
pressing that in the context B the obligation to bring about A is in force (and
analogously for permissions). We will focus in this paper on unary normative
operators since this simplifies the technical level of the discussion. However, our
arguments and results apply in a straightforward way also to the dyadic case.

The last decades of research in deontic logics have been characterized by a
strongly increasing awareness of the existence of deontic conflicts ([9, 18, 11])
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and the importance of developing formal frameworks that are able to deal with
them ([8, 15, 4, 10, 14]). Deontic conflicts occur whenever norms offer conflicting
directives. For instance, one norm may oblige you to bring about A while, (i),
another one may oblige you to bring about not-A, or, (ii), another one may
permit you to bring about not-A.

The challenge is to develop conflict-tolerant deontic logics (henceforth, CT-
DLs), i.e., logics that do not validate forms of deontic explosion when being
confronted with premise sets that feature deontic conflicts. The most com-
monly considered form of deontic explosion in the literature occurs if from a
given set of premises it is derivable that anything is obliged. There are basically
two approaches to deal formally with deontic conflicts, one that stays within
the classical logic framework and another one employing paraconsistent logics.
This paper is mainly situated in the former, classical enterprise. We will discuss
the paraconsistent case shortly in Section 9.

It is remarkable that scholars have been focusing mainly on only one type
of deontic conflicts, namely conflicts between obligations such as for instance
between OA and O¬A. However, another type of conflict has been entirely
neglected, namely conflicts between obligations and permissions such as for
instance between OA and P¬A. In this respect the numerous proposed CTDLs
are not “fully” conflict tolerant. This creates an unnecessary and moreover
unmotivated asymmetry in the modeling offered by these logics.

This is a severe defect of CTDLs. However, it is not a fatal one. We will
propose in this paper a transformation procedure that turns a given CDTL L
into a CTDL L⋆ that is also conflict-tolerant concerning obligation-permission
conflicts. The mainspring of our transformation is to give up the interdefinability
between obligations and permission that is characteristic for most deontic logics
(henceforth, IP for interdefinability principle). Usually, either PA is defined by
¬O¬A or there is an axiom which enforces the equivalence. In the transformed
logic L⋆ only one direction of the equivalence holds.

The logics gained by our transformation procedure offer many advantages.
First and foremost, acknowledging the so far neglected conflict type does not
necessitate the development of entirely new deontic systems, but the already
proposed systems can be transformed in a way that preserves their strengths and
modeling features while making them at the same time more conflict-tolerant.

Giving up IP weakens the transformed logic compared to L. In the first
instance this sounds like a shortcoming. However, this makes it possible to add
a very intuitive principle that is usually not validated by CTDLs, namely axiom
(D) that allows to derive from the obligation to bring about A, the permission
to bring about A. Given the intuitive appeal of (D) we will argue that this is
indeed a very good compensation for losing one direction of IP.

The paper is structured as follows. In Section 2 we will introduce two types
of deontic conflicts, namely conflicts between obligations (OO-conflicts) on the
one hand and conflicts between obligations and permissions (OP-conflicts) on
the other hand. In Standard Deontic Logic, both types of conflicts lead to the
problem of deontic explosion which is discussed in Section 3. In Section 4 we will
show that there are certain shortcomings to classical CTDLs due to the fact that
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they validate IP. In Section 5 we will present a generic procedure to transform
a given CTDL into a system that is conflict tolerant with respect to both OO-
and OP-conflicts. Interesting meta-theoretic properties of this translation are
presented in Section 6. In Sections 7 and 8 we will illustrate the procedure for
some existing CTDLs.

In order to improve the readability of the paper we collected the sometimes
technical proofs of the meta-theoretic results in the Appendix [19].

2 Deontic conflicts

Deontic conflicts occur whenever various norms offer incompatible directives.
Often there are resolutions to such situations. For instance, if in a certain
situation we have the obligation to bring about A as well as the obligation to
bring about not-A, but the former obligation has higher preference (e.g. it may
have been issued by a higher authority than the latter one), then the conflict
can be resolved by obeying OA while neglecting O¬A. All-things-considered
the former obligation is our proper, actual obligation which guides our actions.
In cases in which there is (at present) no normative procedure that offers a
directive in order to resolve the conflicting norms, authors often speak of deontic
dilemmas. It is a common fact of life that such situations occur. Whether or
not all of them are in the end resolvable, is a question that we believe to be
independent of the practical need for being able to reason in their presence.

Deontic conflicts are usually taken to be constituted by obligations that
cannot be mutually realized. Where OA denotes the obligation to bring about
A, a deontic conflict is for instance given by OA and O¬A, or by OA,OB and
O¬(A ∧ B). In the remainder, we refer to this type of conflicts as obligation-
obligation conflicts, or simply OO-conflicts.

As an example of what we mean by an OO-conflict, consider people who
think that unpreventable pain ought not to be tolerated and that human life
ought not to be deliberately shortened. These people will face a deontic conflict
in deciding whether or not to withdraw life support from a dying patient ([12]).

Deontic conflicts are also widely present in legal contexts. Consider, for ex-
ample, the case of SWIFT, a Belgium-based company with offices in the United
States which operates a worldwide messaging system used to transmit, inter
alia, bank transaction information. According to the U.S. Treasury, informa-
tion derived from the use of SWIFT data has enhanced the United States’ and
third countries’ ability to identify financiers of terrorism, to map terrorist net-
works and to disrupt the activities of terrorists and their supporters. However,
in September 2006 the Belgian Data Protection Authority stated that SWIFT
processing activities for the execution of interbank payments are in breach of
Belgian data protection law. American diplomats and politicians claim that
SWIFT ought to continue passing information to the U.S. Treasury, whereas
according to Belgian law SWIFT ought not to pass this information, since this
activity is in breach of Belgian data protection law.

Next to OO-conflicts, we can distinguish a second, much neglected type of
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conflicts: conflicts between one or more obligation(s) and one or more per-
mission(s). We dub these conflicts obligation-permission conflicts, or shortly
OP-conflicts. The most simple forms of an OP-conflict are given by OA ∧ P¬A
(where PA denotes the permission to bring about A) and O¬A∧ PA. Suppose,
for instance, that you are walking along a wild river, and that you see someone
drowning in it. Since you are a good swimmer, you feel morally obliged to save
this person (OS). But since the river is wild, there is a chance that you will
also drown in trying to rescue this person. This risk factor permits you to not
save the drowning person (P¬S).

As another example, consider the case of Yilmaz, who ought not to drink
alcohol according to his religious beliefs (O¬A). However, according to the laws
of his country, he is permitted to drink alcohol (PA).

Both OO-conflicts and OP-conflicts can be seen as morally over-determined
situations in the sense that they impose contradicting normative directives on
the moral agent. For instance in an OO-conflict OA ∧ O¬A we are determined
to break either the obligation to bring about A or to break the obligation to
bring about ¬A. It is exactly this over-determination that causes the conflict.
The main difference between OO- and OP-conflicts is that the latter are weaker
in the sense that one does not need to break an obligation in order to fulfill
all moral considerations at hand. Obviously deciding to bring about A facing
the OP-conflict OA ∧ P¬A is a choice in which no normative directive is vio-
lated (presupposing it conforms with other given norms). Hence, OP-conflicts
generally have a less dilemmatic character than OO-conflicts.

Considering the fact that a normative authority that issues a norm expressing
an obligation OA typically is in support of the permission PA, OO-conflicts
typically give rise to OP-conflicts.1 Indeed, given the OO-conflict, OA ∧ O¬A,
and the fact that OA entails PA (resp. O¬A entails P¬A), we end up with the
OP-conflicts O¬A ∧ PA and OA ∧ P¬A.

OO- and OP-conflicts as defined above are not the only types of deontic
conflicts. Conflicts of the type OA ∧ ¬OA or PA ∧ ¬PA have been neglected
in our discussion. In order to handle them, paraconsistent logics are necessary,
since logics that employ the classical negation validate the ex contradictione
quodlibet’ principle, i.e. A ∧ ¬A ⊢ B. Since the goal of this paper is to stay
as conflict-tolerant as possible within a classical framework, we do not deal
with such conflicts. We will, however, shortly discuss the paraconsistent case in
Section 9.

3 The problem of deontic explosion

Both OO- and OP-conflicts pose a problem for the deontic logician due to the
problem of deontic explosion. We can demonstrate this by taking a look at the
very well-known system Standard Deontic Logic (henceforth SDL). We formu-
late SDL in the language L that features two unary deontic operators, O for
obligations and P for permissions, as well as all the classical connectives. We

1We argue more in favor of this in Section 4.1.
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write W for the set of all well-formed formulas in L. SDL is for instance de-
fined by enriching classical propositional logic (henceforth CL) by the following
axioms and rules:

OA ⊃ PA (D)

¬O⊥ (N)

O⊤ (P)
(

OA ∧ OB
)

⊃ O(A ∧B) (AND)

If ⊢ A ⊃ B, then ⊢ OA ⊃ OB. (RM)

PA ≡ ¬O¬A (DfP)

Instead of using the richer language L that also features the permission operator
P, SDL may also be formulated in the weaker language L′ that only features the
obligation operator O in addition to the classical symbols. Instead of the axiom
(DfP), the permission operator is then defined by PA =df ¬O¬A. The presented
axiomatization is only one of many alternative equivalent axiomatizations of
SDL. We chose it since it allows us to introduce certain rules and axioms that
will play a rule in the further discussion.

Note that in CL and hence in SDL also the following ‘ex contradictione
quodlibet’ principle holds:

(A ∧ ¬A) ⊃ B (ECQ)

(AND) is often called the aggregation principle, (RM) the inheritance principle.
In the presence of a conflict OA ∧ O¬A, we can derive O(A ∧ ¬A) by (AND),
and by (ECQ) and (RM) it follows that OB. Hence, in SDL, the presence of
a deontic conflict OA ∧O¬A allows us to derive that, for any proposition B, it
holds that OB:

(

OA ∧ O¬A
)

⊃ OB (OO-EX)

(OO-EX) states that triviality ensues whenever a premise set contains an OO-
conflict. This phenomenon is usually called deontic explosion.

Scholars have developed various strategies in order to invalidate deontic ex-
plosion. Systems of deontic logic that do not validate (OO-EX) will be called
conflict-tolerant deontic logics (CTDLs). Since it is clear from our discussion
above that each CTDL must either reject or restrict at least one of (AND), (RM)
and (ECQ), we can distinguish between three main approaches. The first ap-
proach consists of restricting or rejecting (AND), the second approach consists
of restricting or rejecting (RM), and the third approach consists of restricting or
rejecting (ECQ).2 The first and second approach are classical in the sense that
they validate all theorems of CL. The third approach is non-classical in this
sense, because it rejects some theorems of CL. In this paper, we will mainly be

2Some systems that were presented fall in various categories. For instance some of Lou
Goble’s DPM logics in [8] restrict inheritance and aggregation, and Van Der Torre and Tan’s
“2-phase logic” in [21] is a sequential system that first abandons inheritance and in the second
phase abandons aggregation.
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concerned with the classical approaches and shortly discuss the paraconsistent
case in Section 9.

Bearing in mind the fact that there are various kinds of deontic conflicts, it
would be a too narrow view to consider (OO-EX) as the only principle of deontic
explosion. In analogy to (OO-EX), we can also state an explosion principle for
OP-conflicts:3

(

OA ∧ P¬A
)

⊃ OB (OP-EX)

Note that (OP-EX) is valid in SDL since P¬A entails by (DfP), ¬O¬¬A and
hence by (RM), ¬OA. However, in view of (ECQ), the latter causes logical
explosion together with OA.

We will elaborate more on deontic explosion types in Section 6. However, the
two mentioned types, (OO-EX) and (OP-EX), are sufficient for our discussion
at this point.

4 Two shortcomings of classical CTDLs

To our present knowledge, all of the hitherto proposed classical CTDLs validate
the following principle:4

PA ⊃ ¬O¬A (DfP1)

We will argue in this section that this gives rise to two serious problems. On
the one hand CTDLs do not validate the very intuitive principle (D). On the
other hand, they are explosive with respect to OP-conflicts. That is to say, they
validate the explosion principle (OP-EX).

4.1 Principle (D)

There are two formulations of principle (D) that are frequent in the literature:

OA ⊃ PA (D)

OA ⊃ ¬O¬A (D’)

In logics that validate (DfP1) both formulations are equivalent. Classical CT-
DLs that validate (DfP1), do not validate (D). The reason is simple: suppose
that there is an OO-conflict between two premises OA and O¬A. By (D) we
would be able to derive PA from OA. However, by (DfP1), PA implies ¬O¬A.
Together with O¬A this trivializes the premises. Thus, conflict-tolerant logics
that are formulated within classical (modal) logic do not validate both, (D) and
(DfP1). Neither do classical CTDLs validate (D’). Evidently in case of a deon-
tic conflict, OA ∧ O¬A, by (D’) e.g. ¬O¬A is derivable. However this leads to
triviality.

3Strictly speaking we should also feature the analogous principle
(

O¬A ∧ PA
)

⊃ OB.
However, we will only discuss systems that validate PA ≡ P¬¬A. Evidently, in these logics
both principles are equivalent.

4In most CTDLs (DfP1) is trivially the case due to the fact that the permission operator
P is defined by PA =df ¬O¬A.
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These observations have led some authors to reject (D) and (D’) without
further argument. Routley & Plumwood for instance, claim that (D) resp.
(D’) “is deontically incorrect because it rules out consistent inclusion of moral
dilemmas” ([14], p.667). This argument holds evidently for (D’). However, it is
dubious for (D), since (D) only rules out consistent inclusion of conflicts if it is
assumed that (DfP1) is already valid.

Given the intuitive appeal of (D), it is unfortunate that authors tend to reject
this principle without further ado. In command theories for example, we do not
see how one could possibly command someone to do A without also permitting
this person to do A. In legal contexts too, (D) seems perfectly intuitive: if
someone is legally obliged to bring about A, he or she is also legally permitted
to bring about A. Nevertheless, both in command theories and in legal contexts,
deontic conflicts may occur.

It can also be argued more generally that, given the obligation to bring
about A, there is or has to be assumed a source (such as a legal authority,
an institution, a deity, etc.) that issued this very obligation. Moreover, it is
reasonable to assume further that this source, implicitly or explicitly, supports
also the permission to bring about A. If that were not so, then our normative
source would be severely incoherent: it would oblige us to do something without
at the same time permitting us to do so.

4.2 Tolerance concerning OP-conflicts

Classical CTDLs have yet another shortcoming. Although they allow for OO-
conflicts, they do not allow for OP-conflicts (without causing explosion). Note
that in classical CTDLs that validate (DfP1), OA ∧ P¬A is equivalent to OA ∧
¬OA. By (ECQ) this does not just cause deontic explosion, i.e., the derivability
of OB for any formula B, but even triviality, i.e., the derivability of any formula
B. This is obviously undesired. First, it creates an asymmetry concerning the
deontic conflict type that is tolerated, namely OO-conflicts, and the one that is
neglected, namely OP-conflicts, which is hard to justify. To put it more bluntly:
Why do CTDLs tolerate OO-conflicts but not OP-conflicts? Let us consider two
possible replies:

1) One answer may be that OO-conflicts are prioritized by deontic logicians
due to the fact that they are more frequent. However, as we have pointed out
in Section 2, OO-conflicts typically give rise to OP-conflicts. This on the one
hand undercuts the argument and on the other hand sheds even more bad light
on CTDLs. Since CTDLs do not validate (D), in these logics OO-conflicts do
not give rise to OP-conflicts.

2) Another answer may be that OO-conflicts possibly represent deontic
dilemmas while OP-conflicts do not or have at least a clearly less dilemmatic
character. Indeed, as argued in Section 2, given the conflict OA∧P¬A, there is
a way to act such that no norm is violated, namely by bringing about A. Given
an OO-conflict OB ∧ O¬B there is evidently no way to avoid the violation of
one of the two obligations. However, we turn the tables also on this argument.
If a deontic logic is able to deal with deontic conflicts that have a more or less
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severe dilemmatic character then, a fortiori, the logic should also be able to deal
with lighter types of conflicts.

In conclusion we state that, considering the fact that OP-conflicts are no less
frequent than OO-conflicts as pointed out in 1), as well as the less problematic
character of OP-conflicts highlighted in 2), it is highly dubious that CTDLs are
tolerant with respect to the former but not with respect to the latter type of
conflict. This motivates the following requirement: CTDLs should be conflict-
tolerant with respect to both types of conflicts, OO-, and OP-conflicts.

A last “excuse” for CTDLs not to be tolerant with respect to OP-conflicts
would be that it is either technically very difficult or even impossible to realize
or that realizing OP-conflict tolerance comes with prizes (in terms of deriva-
tive strength, complexity, etc.) that are too high to pay. However, we will
demonstrate in this paper that neither is the case.

4.3 Solving the problems

As elaborated above, (DfP1) is a common root to both problems. This suggests
that by giving up on (DfP1) both problems can be solved.

On the one hand, by abandoning (DfP1), CTDLs gain a higher degree of
conflict-tolerance. Not just are they able to deal with OO-conflicts, but further-
more are they able to deal with OP-conflicts.

On the other hand, giving up (DfP1) offers the possibility to add (D) to the
axiomatization of a CTDL without causing the problems pointed out above.
That is to say, we gain conflict tolerant logics with respect to both conflict
types that, on top, also validate the very intuitive (D).

Not only would (DfP1) cause triviality in CTDLs that allow for OP-conflicts.
Depending on our interpretation of the deontic operators, (DfP1) may also be
intuitively incorrect. Under a descriptive reading of O and P for instance, (D)
is intuitively acceptable and OP-conflicts may very well occur, yet (DfP1) is
unwanted. Suppose that we take a formula OA (resp. PA) to express that there
is a norm which obliges (resp. permits) us to do A. Similarly, we take a formula
¬OA (resp. ¬PA) to express that there is no such norm. Now assume we have
PA. Then it might very well be that there is also an obligation O¬A, possibly
issued by another normative source. Hence, to derive ¬O¬A, expressing that
there is no norm offering the obligation to bring about ¬A, is unwanted here.

Next to the descriptive reading of the deontic operators, there is also a
prescriptive reading. In the latter, OA (resp. PA) expresses that we or the
agent(s) in question are obliged (resp. permitted) to bring about A. ¬OA (resp.
¬PA) expresses that we are not obliged (resp. permitted) to bring about A.
In a prescriptive context, (DfP1) seems more intuitive. But here too (D) is
intuitively correct and OP-conflicts may occur. Hence overall it is better to give
up (DfP1) than to invalidate (D) and to verify (OP-EX)5.

5An additional argument against (DfP1) is that, although it seems more appealing in case
O and P are interpreted prescriptively, some authors have argued quite convincingly against
such a reading of O and P (see, for instance, [22], Ch. 8, Sec. 2; [23], p. 11; [1]).
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Now that we explained why we want adequate CTDLs to invalidate (DfP1),
we still need to show that this will not cause any technical drawbacks. We will
do so by presenting an algorithm for turning existing CTDLs into CTDLs that
validate (D), that allow for the consistent inclusion of OP-conflicts, and that
invalidate (DfP1) (Section 5). In Section 6 we show that logics obtained by this
algorithm are sufficiently conflict-tolerant and offer a deductive strength that is
comparable to the one of the original logic.

5 The generic transformation

In this section we will present a generic procedure for transforming a given
CTDL into a system without the interdefinability between obligations and per-
missions. More precisely the transformed logic does not validate (DfP1) and
is hence able to tolerate OP-conflicts. Moreover, this enables us to add the
intuitive axiom (D).

We will first present the syntactic and then the semantic approach in terms
of an algorithm. In Sections 7 and 8 we will give paradigmatic examples for
our transformation based on concrete CTDLs that have been proposed in the
literature.

In the following we presuppose (a) that a given CTDL L is formulated in
the language L that features the unary operators O and P, and the classical
connectives; (b) that L is axiomatized by means of all rules and axioms of
classical logic and a some of the following rules and axioms: (N), (P), (rAND),
(rRM), (DfP), and

If ⊢ A ≡ B, then OA ≡ OB. (RE)

(c) that (RE) and (DfP) are part of the axiomatization of L; (d) that L is a
rank-1 modal logic.6

Many CTDLs do indeed satisfy these points. Deontic logics that do not
feature (DfP) as an axiom are usually formulated in the weaker language L
that does not feature a permission operator and hence define PA by ¬O¬A.
Evidently, a logic of the latter type can be straightforwardly transformed into
a logic of the former kind that has the same consequence relation by simply
adding the axiom (DfP) (see also [23], p. 17).

For the sake of simplicity, we do not allow for nested occurrences of O’s and
P’s. We moreover presuppose that with the exception of (DfP) all the rules and
axioms of a given CTDL are stated without occurrences of P-operators. Due
to the fact that L features the axiom (DfP), every other rule and axiom has a
canonical L-equivalent representation like that. That is to say, we only have to
replace every occurrence of PA by ¬O¬A.7

6Rank-1 modal logics are axiomatized in such a way that there are no nested occurrences of
modal operators in the rules and axioms. Note that the language of these logics may very well
allow for nested occurrences of modal operators, the restriction only concerns the formulation
of the axioms and rules.

7Due to aesthetic reasons we also remove double negations ‘¬¬’ in- and outside of the scope
of O. By (RE) and classical logic this yields equivalent rules and axioms.
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5.1 Three types of CTDLs

As discussed in Section 3, there are basically two classical strategies to gain OO-
conflict tolerance: (1) by restricting or abandoning the aggregation principle
(AND), or (2) by restricting or abandoning the inheritance principle (RM). Of
course, there are also (3) hybrid methods combining (1) and (2).

We will henceforth refer to logics following strategy (1) as A-CTDLs. Either
these logics abandon the aggregation principle entirely (e.g. [3, 5, 6]), or restrict
it along the following lines:

(

OA ∧ OB ∧R∧
A,B

)

⊃ O(A ∧B) (rAND)

where R∧
A,B is a wff expressing a restriction on the aggregation principle. We

presuppose that R∧
A,B is a formula in the closure of {A,B} under the classical

logical connectives and O.8 Let us give some examples:

(

OA ∧ OB ∧ ¬O¬(A ∧B)
)

⊃ O(A ∧B) (PAND)
(

OA ∧ OB ∧ ¬O¬A ∧ ¬O¬B
)

⊃ O(A ∧B) (PAND’)

(PAND) was used by Goble in [8], (PAND’) was introduced in [20]. In the
presence of (ECQ) a logic that abandons aggregation is equivalent to the same
logic enriched with the axiom (rAND) where R∧

A,B = A ∧ ¬A. Thus, we will
henceforth presuppose that all A-CTDLs validate a form of the axiom (rAND).

Logics following strategy (2) will be denoted from now on I-CTDLs. Either
these logics abandon the inheritance principle (RM) or they restrict it along the
following lines:

If A ⊢ B and 0 ¬A, then
(

OA ∧R⊃

A,B

)

⊃ OB. (rRM)

where R⊃

A,B is a wff expressing a restriction on the inheritance principle. Again

we presuppose that R⊃

A,B is a formula in the closure of {A,B} under the classical
logical connectives and O. Examples for restricted inheritance principles are:

If A ⊢ B and 0 ¬A, then
(

OA ∧ ¬O¬A
)

⊃ OB. (RPM)

If A ⊢ B and 0 ¬A, then
(

OA ∧ ¬O¬B
)

⊃ OB. (RPM’)

The first one was used for Goble’s DPM systems [8]. We are not aware of any
logics employing the second proposal. Again, a logic that abandons inheritance
is in the presence of (ECQ) equivalent to the same logic enhanced by (rRM)
where R⊃

A,B = A ∧ ¬A. Thus, we presuppose that all I-CTDLs validate a form
of (rRM).

Hybrid logics employ a restricted version of aggregation (rAND) as well as

8The closure of {A,B} under the classical connectives and O is the smallest set of formulas
Ψ such that {A,B} ⊆ Ψ, if C,D ∈ Ψ then C ∧ D,C ∨ D,C ⊃ D,C ≡ D ∈ Ψ, and if C ∈ Ψ
then ¬C,OC ∈ Ψ.
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a restricted version of inheritance (rRM).9 Some hybrid approaches that we are
aware of are the logics DPM.2 (see [8]) and DPM.2′ (see [20]). We refer to
hybrid CTDLs by H-CTDLs.10

5.2 The Axiomatization

Given a CTDL L, let us call it the base logic, we transform it into an OO- and
OP-conflict tolerant logic L⋆ by means of the following steps. Our starting point
is the axiomatization of L. The four steps indicate how this axiomatization is
altered in order to arrive at the axiomatization of L⋆.

Step 1: Removing (DfP) As discussed before, the main feature that will
turn the transformed logics OP-conflict tolerant is that they do not validate
(DfP1). Hence we remove (DfP) from the axiomatization of L⋆.

Step 2: Adding (DfP2) Since our axiomatization does not feature anymore
(DfP), (DfP1) and

¬PA ⊃ O¬A (DfP2)

are not anymore validated per default. Thus, we add (DfP2) to the axiomati-
zation of L⋆.11 Since, as argued above, (DfP1) is causing deontic explosion for
OP-conflicts, we obviously keep it out of our axiomatization.

Step 3: Adding (D) As discussed in Section 4, the lack of (D) is a serious
shortcoming of classical CTDLs. One of the merits of removing (DfP1) is that
it allows for the addition of (D) to the axioms without the usual disadvantages.
That is to say, adding (D) does not make the logic less conflict-tolerant (see our
discussion in Section 4). Hence, we add axiom (D) to the axiomatization of L⋆.

9The reader may wonder why hybrid cases are at all needed since, as we pointed out in
our discussion, it is enough to either restrict aggregation or to restrict inheritance in order
to achieve conflict-tolerance concerning OO-conflicts. However, besides the technical point
of achieving conflict-tolerance there are other reasons that motivate the restriction of the
aggregation and inheritance principles. It is not clear why aggregation (resp. inheritance)
should hold unrestrictedly. For instance: Should aggregation (resp. inheritance) be applied to
conflicting obligations? Should aggregation (resp. inheritance) be applied in cases it leads to
deontic conflicts? A negative answer to these questions motivates the restriction of aggregation
in addition to a restriction of inheritance (resp. vice versa).

10There are also approaches offered in the literature that sequentially apply CTDLs of
different types. One example is the Two-Phase-Logic in [21]. Here first an A-CTDL and then
an I-CTDL is applied. The generic transformation procedure that is presented in Section 5.2
and 5.3 can also be applied to such proposals by treating each logic in the sequence separately.

11By adding (DfP2) to our axiomatization we remain conservative with respect to the base
logic L where (DfP2) is valid. If the reader finds (DfP2) counterintuitive or not fitting for
the intended application, then step 2 of our transformation may be skipped. Nothing in our
construction essentially relies on (DfP2). In general, invalidating (DfP2) does not make a
logic any more conflict-tolerant than it already is. It does however make the logic gap-tolerant

to some extent, i.e. invalidating (DfP2) is necessary if one wants to allow for situations where
a wff A is neither permitted nor forbidden. This discussion, however, is beyond the scope of
this paper.
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Step 4: Further strengthenings Due to the fact that we give up on (DfP1),
some intuitive theorems of L do not hold anymore. Since our aim is, on the
one hand, to weaken L in order to gain OP-conflict-tolerance, and, on the other
hand, to stay close to the deductive power of L, we are going to add certain
further axioms and rules that are not in the way of the former goal.

(a) In case L is an A-CTDL, we add

If ⊢ A ⊃ B, then ⊢ PA ⊃ PB. (P-RM)

Note that, while the contra-position to (RM) is in A-CTDLs equivalent to
(P-RM), this is not the case after giving up on (DfP1). Only the following
weakened version of (P-RM) is valid in the transformed A-CTDLs:

If ⊢ B ⊃ A, then ⊢
(

PB ∧ ¬O¬B
)

⊃ PA. (RM-OP)

Since full inheritance is valid for obligations, it is intuitive to allow also for
full inheritance for permissions. Hence, we strengthen our translation by
the rule (P-RM).

(b) In case L is an I-CTDL or an H-CTDL, note that without (DfP1) the
congruence principle for permission operators is not anymore entailed by
the other axioms and rules. Thus, we add

If ⊢ A ≡ B, then ⊢ PA ≡ PB. (P-RE)

5.3 The semantics

In order to give a generic account concerning the semantics of CTDLs we need
to consider a semantic frame powerful enough to represent most CTDLs, such
as the two systems that we are going to present in Sections 7 and 8. We settle
for neighborhood semantics12 since they offer a well-known and very generic
semantic framework in terms of which many CTDLs can be represented in a
technically straightforward way. Moreover, strong completeness for the canoni-
cal formulations presented in this paper has been generically proven in [16].13

One of the basic ideas of the neighborhood semantics is that propositions
are interpreted in terms of sets of worlds. Moreover, each world has associated
with it propositions, i.e. sets of worlds. The idea is that an obligation OA is
true at a world w, in case A is one of its associated propositions. Let us first
look at the semantic framework for logics that validate (DfP1) and (DfP2).

12See Segerberg [17] and Chellas [3].
13The semantics that we introduce in this section are very similar to the way Goble defined

neighborhood semantics for his DPM logics in [7, 8]. However, they vary from the former in
two ways: (1) We make use of an actual world in our semantics. This makes the semantics
philosophically more intuitive for the type of applications we have in mind. We are interested
in deriving obligations and permissions from given premises and not only in modeling theo-
remhood. Thus, we will define a semantic consequence relation. (2) We alter the semantics
in order to avoid the interdefinability between obligations and permissions.
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5.3.1 Neighborhood semantics for CTDLs

Let ℘(X) denote the power set of some set X. An O-frame F is a tuple 〈W,O〉
where W is a set of points and O : W → ℘(℘(W )). We call elements of
W worlds. Thus, O assigns to each world w ∈ W a set of propositions, i.e.,
O(w) ⊆ ℘(W ). We write from now on Ow instead of O(w). An F -model M on
an O-frame F is a triple 〈F, v,@〉 where @ ∈ W is called the actual world and
v : S → ℘(W ) with S being the set of propositional atoms. A propositional
atom is mapped by v into the set of worlds in which it is supposed to hold.
Validity at a world in a model is defined as usual for the classical connectives:

M,w |= A iff w ∈ v(A), where A ∈ S (M-S)

M,w |= ¬A iff M,w 6|= A (M-¬)

M,w |= A ∨B iff (M,w |= A or M,w |= B) (M-∨)

M,w |= A ∧B iff (M,w |= A and M,w |= B) (M-∧)

M,w |= A ⊃ B iff M,w |= ¬A ∨B (M-⊃)

Moreover, where w ∈ W , |A|M =df {w ∈ W | M,w |= A}, we define:

M,w |= OA iff |A|M ∈ Ow (M-O)

M,w |= PA iff M,w |= ¬O¬A (M-DfP)

Furthermore, M |= A iff M,@ |= A. Where Γ ⊆ W, we say that M is
an F -model of Γ iff M is an F -model and M |= A for all A ∈ Γ. This can
be generalized for O-frames F and classes of O-frames F in the following way:
Γ F A iff for all F -models M of Γ, M |= A, and Γ F A iff Γ F A for all
F ∈ F .

Completeness and soundness is achieved with respect to a class of O-frames
that is characterized by conditions that correspond to the given axioms of the
logic in question. Let us for instance demonstrate this by giving the frame
conditions for SDL. We define the following requirements on O-frames F =
〈W,O〉. For all w ∈ W we require the following:

For all X ∈ Ow,W \X /∈ Ow (F-D)

∅ /∈ Ow (F-P)

W ∈ Ow (F-N)

For all X,Y ⊆ W, if X,Y ∈ Ow, then X ∩ Y ∈ Ow (F-AND)

For all X,Y ⊆ W, if Y ⊆ X and Y ∈ Ow, then X ∈ Ow (F-RM)

Note that conditions “(F-X)” correspond to rules resp. axioms “(X)”.
All we have to do for a concrete CTDL L is to give the appropriate frame

conditions corresponding to the axiomatization of L. The way the axioms and
rules of L are translated into frame-conditions is straightforward, as demon-
strated above.14 Where F is the class of O-frames that satisfies these conditions,

14We will explicate this for two more examples in Sections 7 and 8.
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a semantic consequence relation is defined by Γ L A iff Γ F A. Schröder and
Pattinson have presented a generic soundness and (strong) completeness result
for all such logics L with respect to the class of frames that fulfill the respective
frame conditions (see [16]).

5.3.2 Neighborhood semantics for the translation

Now we will present the semantic part of our algorithm that turns a given CTDL
L into an OO- and OP-conflict tolerant logic L⋆. The four steps of the algorithm
are semantic counterparts to the four steps presented in Section 5.2.

Step 1: Add the relation P for permissions In order to model an au-
tonomous permission operator, we introduce another assignment besides O,
namely P : W → ℘(℘(W )). The idea is analogous to the one for obligations:
PA is true at a world w, in case A is one of its associated propositions with
respect to P. We hence generalize O-frames: an OP-frame is a tuple 〈W,O,P〉
where 〈W,O〉 is an O-frame. For an OP-frame F = 〈W,O,P〉 we define an
F -model again by the triple 〈F, v,@〉. The validity relation |= is defined by
(M-S)–(M-⊃) and (M-O) as above, only without (M-DfP) and the following
requirement is added for permissions:

M,w |= PA iff |A|M ∈ Pw (M-P)

In order to define the class of OP-frames that correspond to L⋆ we need to
introduce some additional frame conditions corresponding to steps 2–4 in the
axiomatic construction of L⋆.

Step 2: Add the frame condition for (DfP2) The frame condition for
(DfP2) is given by15

For all X ⊆ W, if W \X /∈ Ow, then X ∈ Pw. (FP-DfP2)

Step 3: Add the frame condition for (D) The frame condition for (D) is
given by:

For all X ⊆ W, if X ∈ Ow, then X ∈ Pw. (FP-D)

Step 4: Add the frame conditions for the further strengthenings
Analogous to the axiomatization presented in Section 5.2, in case L is a A-
CTDL we add:

For all X,Y ⊆ W, if X ⊆ Y and X ∈ Pw, then Y ∈ Pw. (FP-P-RM)

Note that in case L is an I-CTDL or an H-CTDL, there is no need to add a frame-
condition that corresponds to (P-RE) (cp. point 4 (b) in the syntactical part of

15In case the reader is interested in a system that does not validate (DfP2), step 2 can be
skipped. Compare the discussion on giving up on (DfP2) in Footnote 11.
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the algorithm) since the congruence principles for the two deontic operators are
by definition valid in the neighborhood semantics.16

The class of OP-frames corresponding to L⋆ consists thus of all frames
F⋆ = 〈W,O,P〉 where 〈W,O〉 is an L-frame and where F⋆ satisfies the addi-
tional frame conditions given in steps 2–4.

The following results are direct consequences of the way OP-frames where
defined. It is easy to see that OP-frames are a generalization of O-frames in
view of the following fact:

Fact 1. Given a set of frame conditions C for O-frames, let FO be the class of
O-frames satisfying C. Moreover let FOP be the class of OP-frames satisfying
C,

For all X ⊆ W, if X ∈ Ow then W \X /∈ Pw. (FP-DfP1)

and (FP-DfP2). We have, Γ FO
A iff Γ FOP

A.

Let WO be all formulas in the language L′, i.e., all formulas without occur-
rences of the P-operator.

Fact 2. Where F = 〈W,O〉 is an O-frame, F⋆ = 〈W,O,P〉 is an OP-frame
that satisfies (FP-DfP2), M = 〈F, v,@〉 and M⋆ = 〈F⋆, v,@〉 we have: (i) For
all A ∈ WO, M |= A iff M⋆ |= A, (ii) if M |= PA then M⋆ |= PA, and (iii)
|A|M = |A|M⋆

for all A ∈ WO.

6 Some meta-theory

Let L⋆ be the translation of a given CTDL L gained by the algorithm pre-
sented in Section 5. In this section we will present some meta-theoretic insights
for L⋆. In the Appendix [19] the reader can find the meta-theory for various
strengthenings of L⋆.

Let us first compare the consequence relations that are characterized by L
and L⋆. Evidently, they are not identical. In case a premise set features OP-
conflicts this is desired, since L is explosive in these cases and we expect our
L⋆ not to have explosive behavior. Moreover, they are also not equivalent for
premise sets that do not give rise to OP-conflicts. For instance PA ⊢L ¬O¬A,
though PA 0L⋆ ¬O¬A. This is due to the fact that L validates (DfP1), while
L⋆ doesn’t. Similarly, OA ⊢L⋆ PA while OA 0L PA due to that fact that only
L⋆ validates (D). However, the two logics are equivalent with respect to premise
sets that only feature formulas without occurrences of P-operators.

Theorem 1. Where Γ ⊆ WO and A ∈ WO, Γ ⊢L A iff Γ ⊢L⋆ A.

Given a set of premises Γ we define ΓO by replacing every A ∈ Γ by π(A)
where π(A) is the result of replacing every occurrence of a formula PB in A by
¬O¬B. Hence ΓO = {π(A) | A ∈ Γ} ⊆ WO. The following fact is an immediate
consequence of L validating (DfP).

16The very easy proof is left to the reader.
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Fact 3. Γ and ΓO are L-equivalent, i.e. Γ ⊢L A iff ΓO ⊢L A.

We say that L⋆ is L-conservative iff for all A ∈ WO and all L-consistent Γ ⊆ W,
Γ ⊢L A iff ΓO ⊢L⋆ A. By Theorem 1 and Fact 3 we get the following corollary.

Corollary 1. L⋆ is L-conservative.

Moreover, the following theorem holds.

Theorem 2. Where Γ is L-consistent, if Γ ⊢L PA then ΓO ⊢L⋆ PA.

Of course, this is not valid the other way around, since for instance OA ⊢L⋆

PA while OA 0L PA. Similarly, Theorem 2 cannot be generalized for negated
permissions, since for instance OA ⊢L ¬P¬A, while OA 0L⋆ ¬P¬A. This is due
to the fact that, in order to allow for OP-conflicts, we had to abandon (DfP1).

Let us now have a look at issues concerning conflict-tolerance. Goble argued
repeatedly in favor of the following requirement on CTDLs (e.g. [8], p. 464):

(†): A CTDL should be such that adding (D) as an axiom results in
a logic that is equivalent to SDL.

Criterion (†) seems to presuppose that CTDLs essentially need to abandon
(D) in order to gain conflict-tolerance. However, we have argued that an al-
ternative procedure is to give up on (DfP1) and to keep (D). Hence, normative
criteria for CTDLs such as (†) have to be formulated relative to certain basic
principles that have been given up in order to achieve conflict-tolerance. While
for most CTDLs one such principle is indeed (D), in our case it is (DfP1). Thus,
we reformulate the criterion accordingly for our transformation L⋆:

(‡): A CTDL that does not validate (DfP1) should be such that
adding (DfP1) as an axiom results in a logic that is equivalent to
SDL.

There is a strong relation between (†), (‡), L and L⋆, as the following theorem
shows:

Theorem 3. If L satisfies (†), then L⋆ satisfies (‡).

Criterion (†) is very demanding. Many CTDLs do not validate it. Take for
instance logic F (see Section 7). It is not enough to add the axiom (D) to the
axiomatization of F in order to gain a consequence relation that is equivalent
to SDL. However, if additionally (AND) is added, it is enough. The following
result shows that in these cases we also have an analogous principle to the one
stated in Theorem 3.

Theorem 4. If L strengthened by (D) and the set of axioms and rules Θ charac-
terizes the same consequence relation as SDL, then L⋆ strengthened by (DfP1)
and the axioms and rules in Θ characterizes the same consequence relation as
SDL.
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Let us introduce another requirement concerning OP-conflicts: for an L-
consistent premise set the only OP-conflicts that are L⋆-derivable should be the
ones resulting from the given OO-conflicts. This is expressed by the following
theorem.

Theorem 5. Where Γ is L-consistent: For all finite index sets I and all wffs
Ai, ΓO 0L⋆

∨

i∈I

(

OAi ∧ P¬Ai ∧ ¬O¬Ai

)

.

Similarly this can be expressed semantically in terms of the following theorem.

Theorem 6. For every L-model M of Γ there is an L⋆-model M⋆ of ΓO for
which M⋆ |= OA ∧ P¬A iff M |= OA ∧ O¬A iff M⋆ |= OA ∧ O¬A.

In the remainder of this section we will further investigate in the conflict-
tolerance of L⋆. Therefore it is useful to specify certain explosion principles that
serve as benchmarks for the conflict-tolerance of CTDLs. We have two types of
conflicts, OO- and OP-conflicts, and hence two types of explosion. An obligation
explosion occurs if from a given conflict any obligation OB is derivable.

OA,O¬A ⊢ OB (OO-EX-O)

OA,P¬A ⊢ OB (OP-EX-O)

In semantic terms this means that there is no model that (i) validates the given
conflict and that (ii) does not validate all obligations, or in other words, that
validates ¬OB for some B.

These principles may be refined in various ways. In the paragraph above
we have presented a very strict reading of obligation explosions, i.e. that all
obligations are derivable given a deontic conflict. Another, weaker type of ex-
plosion is the case that for each B, OB ∨O¬B is derivable. Obviously it is not
desirable that the logic, if it is confronted with a conflict, entails for each B
either that it is obliged or that ¬B is obliged. The same holds for the explosion
type that corresponds to the case that for every B, OB ∨ ¬PB resp. OB ∨ PB
resp. OB ∨ ¬O¬B resp. PB is derivable. This can be formally expressed by:

OA,O¬A ⊢ OB ∨ O¬B (OO-EX-OO¬)

OA,O¬A ⊢ OB ∨ ¬PB (OO-EX-O¬P)

OA,O¬A ⊢ OB ∨ PB (OO-EX-OP)

OA,O¬A ⊢ OB ∨ ¬O¬B (OO-EX-O¬O¬)

OA,O¬A ⊢ PB (OO-EX-P)

Note that in the names of the principles the prefix (OO and OP) denotes the
conflict type, while the suffix (e.g. O, P, OP, etc.) denotes the explosion type.

A further requirement is to demand not just that there is a non-explosive
model that validates the conflicting norms, but to impose certain normality con-
ditions on this model. For instance, non-explosive models should also validate a
non-conflicting obligation, e.g. OC and ¬O¬C, and/or a non-conflicting permis-
sion, e.g. PD and ¬O¬D, and/or there should be a proposition E such that nei-
ther E nor ¬E is obliged, i.e. ¬OE∧¬O¬E, and/or there is a proposition F such
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that both, F and ¬F , are allowed, i.e. PF ∧ P¬F . These conditions obviously
hold for the real world and hence there should be also interpretations of deontic
conflicts that satisfy these criteria. We will denote such refinements by adding
the additional requirements in set brackets after the basic principle, for instance,
where γ = {¬OE,¬O¬E} and γ′ = {OC,¬O¬C,PD,¬O¬D,¬OE,¬O¬E,PF,P¬F},

{OA,O¬A} ∪ γ ⊢ OB ∨ PB (OO-EX-OP-γ)

{OA,P¬A} ∪ γ′ ⊢ OB ∨ PB (OP-EX-OP-γ′)

Indeed, any “truly” conflict-tolerant logic should be tolerant concerning any of
these principles. We call a logic Conflict-Tolerant iff it does not validate δ-
EX-τ -β for any δ ∈ {OO,OP}, any β ⊆ γ′ and any τ ∈ {O,P,OO¬,O¬P,O¬O¬}.
Moreover, a logic is OO-Conflict-Tolerant iff it does not validate OO-EX-
τ -β for any β ⊆ γ′ and any τ ∈ {O,P,OO¬,O¬P,O¬O¬}.

OO-EX-OP-γ-tolerance is indeed a strong criterion since, as the following
theorem shows, it is enough that L is OO-EX-OP-γ-tolerant, in order to guar-
antee the conflict-tolerance of L⋆.

Theorem 7. If L is OO-EX-OP-γ-tolerant then L⋆ is conflict-tolerant.

Of course, if L is OO-Conflict-Tolerant then it is also OO-EX-OP-γ-
tolerant and hence L⋆ is Conflict-Tolerant.

The next theorem shows that the conflict tolerance concerning OO-conflicts
entails conflict-tolerance concerning OP-conflicts for our transformed logics.

Theorem 8. Where τ ∈ {O,P,OO¬,O¬P,OP,O¬O¬} and β is a set of wffs,
if L⋆ is OO-EX-τ -β-tolerant, then it is also OP-EX-τ -β-tolerant.

The next theorem generalizes on Theorem 7. It shows that if L enjoys a
certain type of conflict tolerance concerning OO-conflicts then L⋆ inherits this
property.

Theorem 9. Let β be set of formulas of the form OA, ¬OA and PA, and
τ ∈ {O,OO¬,O¬P,OP,O¬O¬}. If L is OO-EX-τ -β-tolerant, then

(i) L⋆ is OO-EX-τ -β-tolerant,

(ii) L⋆ is OP-EX-τ -β-tolerant,

(iii) if τ = O¬O¬, then L⋆ is OO-EX-P-β-tolerant and OP-EX-P-β-tolerant.

7 Translating A-CTDLs: the logic F

In Section 5 a generic procedure was presented that transforms a given CTDL
L into an OP-conflict-tolerant CTDL L⋆. After having investigated some prop-
erties of L⋆ in Section 6 it is time to apply the transformation to a concrete
CTDL. While in this section we will demonstrate our algorithm on the basis of
an A-CTDL, we will focus in the next section on an I-CTDL and a H-CTDL.
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In [5] Van Fraassen presented the first axiomatization of a deontic logic that
invalidates (AND). Chellas ([3]), Goble ([6]) and Schotch & Jennings ([15])
proposed (nearly) identical systems based on Van Fraassen’s system, which we
call F. We have chosen F as a first illustration of the application of our procedure
defined in Section 5 since it is a well-known and rather simple system.

Definition 1. ΨF is the least set of formulas containing all classical tautologies,
plus all instances of (P) and (DfP) that is closed under (RM) and Modus Ponens.

We define in a canonical way, ⊢F A iff A is a member of ΨF. Furthermore,
where Γ ⊆ W, Γ ⊢F A iff for some suitable B1, . . . , Bn ∈ Γ we have ⊢F (B1 ∧
· · · ∧Bn) ⊃ A.17

The neighborhood semantics for F are defined in terms of the frame condi-
tions (F-RM), and (F-N).

Where the F-frames are O-frames that satisfy the conditions above, by [16]
we have the following soundness and completeness result: Γ ⊢F A iff Γ F A.

Concerning the conflict-tolerance of F the following theorem is proved in the
Appendix [19].

Theorem 10. F is OO-Conflict-Tolerant.

F was devised by Van Fraassen in order to allow for OO-conflicts without
causing explosion. However, although F is OO-conflict-tolerant, it is not
conflict-tolerant in the sense specified in Section 6. For instance, it vali-
dates OP-EX-O. We will now show that, by applying the algorithm defined in
Section 5, we can define a variant of F that invalidates (DfP1) and that will
turn out to be conflict-tolerant:

Definition 2. F⋆ is defined according to our algorithm in the following way:
(1) we remove axiom (DfP), (2) we add axiom (DfP2), (3) we add axiom (D),
(4) we add rule (P-RM). The consequence relation ⊢F⋆ is defined analogous to
⊢F.

For the neighborhood semantics of F⋆ we need to (1) use OP-frames, (2)
add the frame condition (FP-DfP2), (3) add the frame condition (FP-D), and
(4) add the frame condition (FP-P-RM). The F⋆-frames are hence all OP-
frames that satisfy the frame conditions (F-RM), (F-N), (F-D), (FP-P-RM),
and (FP-DfP2). Due to [16], Γ ⊢F⋆ A iff Γ F⋆ A.

With our meta-theory in Section 6 we immediately get the following result.

Corollary 2. F⋆ is F-conservative.

We expect F⋆ to be OO-Conflict-Tolerant as is F. Moreover, the logic
should now also be conflict-tolerant with respect to OP-conflicts. The following
corollary shows that indeed F⋆ has both properties. It follows directly from
Theorem 7 and Theorem 10.

Corollary 3. F⋆ is Conflict-Tolerant.

17See also [16] where the authors define consequence relations for rank-1 modal logics in
this way and prove strong completeness. Van Fraassen originally defined F in terms of the-
oremhood. Since we are interested in modeling the consequences of premises we defined a
consequence relation for F.
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8 Translating I-CTDLs and H-CTDLs: the DPM
logics

Goble proposed in [7, 8] a way to deal with deontic dilemmas by restricting the
inheritance principle. The full inheritance principle (RM) is replaced by (RPM)
(see Section 5.1). The idea is to apply inheritance to an obligation OA if there
is no OO-conflict concerning OA, i.e., in case ¬O¬A. Goble defines his DPM.1
along the following lines:

Definition 3. ΨDPM.1 is the least set of formulas containing all classical tau-
tologies of formulas of W, plus all instances of (N), (AND), (DfP), that is closed
under Modus Ponens, (RE), and (RPM). We define in a canonical way, ⊢DPM.1

A iff A is a member of ΨDPM.1. Furthermore, where Γ ⊆ W, Γ ⊢DPM.1 A iff
for some suitable B1, . . . , Bn ∈ Γ we have ⊢DPM.1 (B1 ∧ · · · ∧Bn) ⊃ A.18

SemanticallyDPM.1 can be represented by O-frames that satisfy conditions
(F-P), (F-AND), and

If X ⊆ Y ;X ∈ Ow and W \X /∈ Ow, then Y ∈ Ow. (F-RPM)

In Section 5.1 we have already motivated why H-CTDLs are useful. Let
us take a look at a concrete H-CTDL: DPM.2. This system stems from the
same family of logics as DPM.1. Note, that in DPM.1 axiom (N), ¬O⊥, is
not valid. Due to the fact that in DPM.1 full aggregation is valid, given an
OO-conflict, OA ∧ O¬A, O(A ∧ ¬A) is derivable. This violates the Kantian
‘ought implies can’ principle since the obligation to bring about A ∧ ¬A is
impossible to realize. In order to gain a system that validates (N) and that is
in the spirit of ‘ought implies can’, Goble introduces a variant of his I-CTDL.
Instead of full aggregation, DPM.2 features a restricted version of aggregation,
namely (PAND) (see Section 5.1). The idea is that aggregation is applicable
to two obligations OA and OB in the case that O(A ∧ B) does not cause an
OO-conflict. A similar system was proposed under the name DPM.2′ in [20].
It is just as DPM.2, only instead of (PAND) it features the axiom (PAND’).
The idea behind (PAND’) is that aggregation is only applied to non-conflicting
obligations.

Definition 4. The hybrid CTDL DPM.2 resp. DPM.2′ is defined just as
DPM.1, with two exceptions: we add (N) and replace (AND) by (PAND) resp.
(PAND’). Semantically we add (F-P) and replace (F-AND) by

For all X,Y ⊆ W, if X,Y ∈ Ow and W \X ∩ Y /∈ Ow, then X ∩ Y ∈ Ow.
(F-PAND)

resp. by

For all X,Y ⊆ W, ifX,Y ∈ Ow,W\X /∈ Ow, andW\Y /∈ Ow, thenX∩Y ∈ Ow.
(F-PAND’)

We call the resulting frames the DPM.2-frames resp. the DPM.2′-frames.

18Goble originally defines his DPM.1 in terms of theoremhood. Since we are interested in
modeling the consequences of premises we defined a consequence relation for DPM.1.
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By [16] we get, where α ∈ {1, 2, 2′}, Γ ⊢DPM.α A iff Γ DPM.α A.
As suggested in Section 5 we define variants of DPM.1, DPM.2, and

DPM.2′ that do not validate (DfP1), that validate (D), and that will turn
out to be conflict-tolerant.

Definition 5. Where α ∈ {1, 2, 2′}, we define the logic DPM.α⋆ according to
our algorithm in the following way: (1) we remove axiom (DfP), (2) we add
axiom (DfP2), (3) we add axiom (D), (4) we add rule (P-RE).

SemanticallyDPM.α⋆ is represented by OP-frames that satisfy theDPM.α
frame conditions, (FP-DfP2), and (FP-D).

By [16] we have, where α ∈ {1, 2, 2′}, Γ ⊢DPM.α⋆ A iff Γ DPM.α⋆ A.
Let us take a look at some of the properties of the given logics. It fol-

lows immediately by our meta-theory of Section 6 that DPM.α⋆ is DPM.α-
conservative.

Corollary 4. Where α ∈ {1, 2, 2′}, DPM.α⋆ is DPM.α-conservative.

Theorem 11. DPM.1 and DPM.2′ satisfy criterion (†).

Corollary 5. DPM.1⋆ and DPM.2′⋆ satisfy criterion (‡).

In order to demonstrate the full conflict-tolerance of our translationsDPM.1⋆,
DPM.2⋆, and DPM.2′⋆ we make use of Theorem 7 and of the following result.

Theorem 12. Where α ∈ {1, 2, 2′}, DPM.α is OO-Conflict-Tolerant.

Corollary 6. Where α ∈ {1, 2, 2′}, DPM.α⋆ is Conflict-Tolerant.

9 Some thoughts on paraconsistent CTDLs

In Section 1, we briefly mentioned the paraconsistent approach for making de-
ontic logics more conflict-tolerant. We did not include this approach in the
presentation of our generic procedure in Section 5, because, to the best of our
knowledge, all paraconsistent deontic systems presented in the literature are al-
ready OO- as well as OP-conflict-tolerant, even though they validate (DfP) (see,
for instance, [4, 13]). Typically, explosion principles rest on (i) the derivation
of an inconsistency from a deontic conflict and (ii), the application of (ECQ) to
this inconsistency, which causes the derivation of the obligation and/or permis-
sion of every proposition in the domain. Since paraconsistent deontic systems
invalidate (ECQ), step (ii) is blocked and explosion is avoided. Hence there is no
need for applying our generic procedure to such systems in order to make them
more conflict-tolerant. However, as discussed in Section 4.3, under a descriptive
reading of the normative operators it is rather dubious to infer from OA by
(DfP1) ¬P¬A. Hence, there are applications for which it is also interesting to
relax the interdefinability between O and P in a paraconsistent setting.19 For

19In [2], a nonmonotonic paraconsistent deontic logic has been presented that invalidates the
application of (DfP) to possibly conflicted norms. We are unaware of monotonic paraconsistent
systems that invalidate (DfP).
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paraconsistent deontic logics validating both aggregation and inheritance, our
generic translation reduces to applying steps 1-3 in the procedure presented in
Section 5.

10 Conclusion

In this paper we proposed a way to deal with obligation-permission conflicts of
the kind OA ∧ P¬A in deontic logics. The idea was to relax the usual inter-
definability between obligations and permissions. This enabled us to validate
the very intuitive principle (D) that makes it possible to derive the permission
to bring about A from the obligation to bring about A. (D) is usually not
valid in classical conflict-tolerant deontic logics. We have presented our idea in
terms of an algorithm that turns conflict-tolerant logics into logics that are also
non-explosive concerning obligation-permission conflicts. We have shown that
the transformed systems have a similar derivative strength compared to the old
logics and are as conflict-tolerant concerning obligation-obligation conflicts as
the old logics. Although we have presented our results in terms of monadic
deontic logics, it is a very easy exercise to adjust the transformation procedure
for the conditional case. Altogether our procedure makes available a multi-
tude of highly conflict-tolerant systems that have not been considered before in
the literature. Moreover, relaxing the interdefinability between obligations and
permissions instead of abandoning principle (D) is a novel design principle for
conflict-tolerant logics that has not been addressed in the literature so far and
may be fruitful for the designing of new deontic logics that aim for a high degree
of conflict-tolerance.
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